Transcript
Page 1: Molecular simulation and theory of homogeneous cavitationhorsch/pdt/slides/2017_MolMod.pdf · Molecular simulation and theory of homogeneous cavitation Martin Horsch,1, 2 Kai Langenbach,1,

Molecular simulation and theory of homogeneous cavitation

Martin Horsch,1, 2 Kai Langenbach,1, 3 Martin Lautenschläger,1, 4 Hans Hasse1

1Laboratory of Engineering Thermodynamics, University of Kaiserslautern,2Department of Chemical Engineering, Indian Institute of Technology Kanpur,3Department of Chemical and Biomolecular Engineering, Rice University,4Department of Mechanical Engineering, University of California, Berkeley

ProcessNet MolMod ConferenceFrankfurt am Main, 10th March 2017

Page 2: Molecular simulation and theory of homogeneous cavitationhorsch/pdt/slides/2017_MolMod.pdf · Molecular simulation and theory of homogeneous cavitation Martin Horsch,1, 2 Kai Langenbach,1,

Homogeneous liquid to vapour nucleation

210 Mar 2017 Martin Horsch, Kai Langenbach, Martin Lautenschläger, Hans Hasse

Bubble formation

MD simulation of nucleation requires large systems and performant codes.

Carbon dioxide

density [mol / l]0 10 20

tem

pera

ture

[K]

220

240

260

280

300

Merker et al., J. Chem. Phys. 132, 234512, 2010.

15 255

Merker et al.Vrabec et al.

Zhang and DuanMöller and FischerHarris and Yung

3CLJQ

Page 3: Molecular simulation and theory of homogeneous cavitationhorsch/pdt/slides/2017_MolMod.pdf · Molecular simulation and theory of homogeneous cavitation Martin Horsch,1, 2 Kai Langenbach,1,

Scalable molecular dynamics simulation

310 Mar 2017 Martin Horsch, Kai Langenbach, Martin Lautenschläger, Hans Hasse

Collaboration within

IMEMO (2008 – 2011)

SkaSim (2013 – 2016)

TaLPas (2017 – 2020)

Page 4: Molecular simulation and theory of homogeneous cavitationhorsch/pdt/slides/2017_MolMod.pdf · Molecular simulation and theory of homogeneous cavitation Martin Horsch,1, 2 Kai Langenbach,1,

Scalable molecular dynamics simulation

410 Mar 2017 Martin Horsch, Kai Langenbach, Martin Lautenschläger, Hans Hasse

Spatial domain decomposition

Dynamic load balancing

Communication (almost) only with neighbour processes

large systems “1”: molecular dynamics http://www.ls1-mardyn.de/

Linked-cell data structurenear-field pair potentials

Summation techniques, e.g.Janeček, FMM, for far field

(non-blocking,overlapping MPI

send/receiveoperations)

Page 5: Molecular simulation and theory of homogeneous cavitationhorsch/pdt/slides/2017_MolMod.pdf · Molecular simulation and theory of homogeneous cavitation Martin Horsch,1, 2 Kai Langenbach,1,

Scalable molecular dynamics simulation

510 Mar 2017 Martin Horsch, Kai Langenbach, Martin Lautenschläger, Hans Hasse

Scaling of ls1 mardyn examined on SuperMUC up to 146 016 cores.1

ideal strong scaling

observed strong scaling

number of cores

homogeneous LJTS liquidwith 4.8 billion molecules

128

1024

8192

65536

spe

edu

p (

fro

m 1

28 c

ore

s)

128 512 2048 8192 32768 131072

1W. Eckhardt, A. Heinecke, et al., Proceedings of ISC 2013, Springer, LNCS 7905, 1 – 12, 2013.

Page 6: Molecular simulation and theory of homogeneous cavitationhorsch/pdt/slides/2017_MolMod.pdf · Molecular simulation and theory of homogeneous cavitation Martin Horsch,1, 2 Kai Langenbach,1,

Scalable molecular dynamics simulation

610 Mar 2017 Martin Horsch, Kai Langenbach, Martin Lautenschläger, Hans Hasse

Up to N = 4 · 1012

on SuperMUC1

number of cores

spe

edup

weak scalingwith 31.5 million

molecules per core

MD simulation world record achieved for a liquid Lennard-Jones system.1

1Eckhardt et al., ISC 2013, LNCS 7905, 1 – 12, 2013.

Page 7: Molecular simulation and theory of homogeneous cavitationhorsch/pdt/slides/2017_MolMod.pdf · Molecular simulation and theory of homogeneous cavitation Martin Horsch,1, 2 Kai Langenbach,1,

Bubble formation in metastable liquid CO2

710 Mar 2017 Martin Horsch, Kai Langenbach, Martin Lautenschläger, Hans Hasse

metastable liquid carbon dioxideCanonical MD simulation of cavitation in carbon dioxide.

Evaluation of local density at180 x 180 x 180 grid points:

Liquid phase: More than five neighbours present within a rad-ius of 6.9 Å around the grid point. up to 100 million interaction sites

Page 8: Molecular simulation and theory of homogeneous cavitationhorsch/pdt/slides/2017_MolMod.pdf · Molecular simulation and theory of homogeneous cavitation Martin Horsch,1, 2 Kai Langenbach,1,

Nucleation rate from population statistics

810 Mar 2017 Martin Horsch, Kai Langenbach, Martin Lautenschläger, Hans Hasse

3CLJQ model by Merkeret al.1 for carbon dioxide

simulation time t / ps

num

ber

of b

ubbl

es w

ith V

II >

θ

θ =

1 nm

= 5

nm3

θ =

20 n

m3

θ =

100

nm3

θ = 500 nm3

N = 13 000 000, ρ = 23.6 mol/l, T = 220 K

Observation of● metastable relaxation,● nucleation,● growth of supercritical

bubbles,● ripening / coalescence

θ = 1, 2, 5, 10, 20, 50, 100, 200, and 500 nm3

1Merker et al., J. Chem. Phys. 132, 234512, 2010.

Page 9: Molecular simulation and theory of homogeneous cavitationhorsch/pdt/slides/2017_MolMod.pdf · Molecular simulation and theory of homogeneous cavitation Martin Horsch,1, 2 Kai Langenbach,1,

Nucleation rate from population statistics2

910 Mar 2017 Martin Horsch, Kai Langenbach, Martin Lautenschläger, Hans Hasse

θ =

1 nm

= 5

nm3

θ =

20 n

m3

θ =

100

nm3

θ = 500 nm3

N = 13 000 000, ρ = 23.6 mol/l, T = 220 K

Observation of● metastable relaxation,● nucleation,● growth of supercritical

bubbles,● ripening / coalescence

θ = 1, 2, 5, 10, 20, 50, 100, 200, and 500 nm3

simulation time t / ps

num

ber

of b

ubbl

es w

ith V

II >

θ

3CLJQ model by Merkeret al.1 for carbon dioxide

2Yasuoka and Matsumoto, J. Chem. Phys. 109, 8451, 1998.

1Merker et al., J. Chem. Phys. 132, 234512, 2010;

Page 10: Molecular simulation and theory of homogeneous cavitationhorsch/pdt/slides/2017_MolMod.pdf · Molecular simulation and theory of homogeneous cavitation Martin Horsch,1, 2 Kai Langenbach,1,

Nucleation rate from population statistics

1010 Mar 2017 Martin Horsch, Kai Langenbach, Martin Lautenschläger, Hans Hasse

rate

of f

orm

atio

n J(

V II >

θ)

/ m-3s-1

≈ V*

threshold bubble size θ / nm3

Objective: Determine themacroscopic nucleation rate J.

The rate of formation J(V II > θ)

from the method of Yasuokaand Matsuomoto depends onthe threshold size θ.

Two types of finite-size effectsare present, due to bubble sizeand due to system size.

Page 11: Molecular simulation and theory of homogeneous cavitationhorsch/pdt/slides/2017_MolMod.pdf · Molecular simulation and theory of homogeneous cavitation Martin Horsch,1, 2 Kai Langenbach,1,

Nucleation rate from population statistics

1110 Mar 2017 Martin Horsch, Kai Langenbach, Martin Lautenschläger, Hans Hasse

Subcritical bubbles are formed at a higher rate.

For large bubbles, the rate of formation is limited by the system volume.

≈ V*

threshold bubble size θ / nm3

Objective: Determine themacroscopic nucleation rate J.

The rate of formation J(V II > θ)

from the method of Yasuokaand Matsuomoto depends onthe threshold size θ.

Two types of finite-size effectsare present, due to bubble sizeand due to system size.

rate

of f

orm

atio

n J(

V II >

θ)

/ m-3s-1

Page 12: Molecular simulation and theory of homogeneous cavitationhorsch/pdt/slides/2017_MolMod.pdf · Molecular simulation and theory of homogeneous cavitation Martin Horsch,1, 2 Kai Langenbach,1,

Comparison to classical nucleation theory

1210 Mar 2017 Martin Horsch, Kai Langenbach, Martin Lautenschläger, Hans Hasse

CNT → capillarity approximationγ = γ

planar(T ) independent of the bubble radius

metastable liquid density ρ / mol l -1

nuc

lea

tion

rate

J /

m -3

s -1

Page 13: Molecular simulation and theory of homogeneous cavitationhorsch/pdt/slides/2017_MolMod.pdf · Molecular simulation and theory of homogeneous cavitation Martin Horsch,1, 2 Kai Langenbach,1,

order parameter

fre

e e

ne

rgy

/ kT

Density gradient theory

1310 Mar 2017 Martin Horsch, Kai Langenbach, Martin Lautenschläger, Hans Hasse

1 L. D. Landau, E. M. Lifshitz, Phys. Z. Sowjet. 8, 153, 1935;2 J. W. Cahn, J. E. Hilliard, J. Chem. Phys. 28, 258, 1958;3 C. I. Poser, I. C. Sanchez, Macromol. 14, 361, 1981;4 M. P. A. Fisher, M. Wortis, Phys. Rev. B 29, 6252, 1984;5 H. Kahl, S. Enders, Phys. Chem. Chem. Phys. 4, 931, 2002.

γ+κ(∇ρ)2

Page 14: Molecular simulation and theory of homogeneous cavitationhorsch/pdt/slides/2017_MolMod.pdf · Molecular simulation and theory of homogeneous cavitation Martin Horsch,1, 2 Kai Langenbach,1,

order parameter

fre

e e

ne

rgy

/ kT

Density gradient theory + PC-SAFT EOS

1410 Mar 2017 Martin Horsch, Kai Langenbach, Martin Lautenschläger, Hans Hasse

1 L. D. Landau, E. M. Lifshitz, Phys. Z. Sowjet. 8, 153, 1935;2 J. W. Cahn, J. E. Hilliard, J. Chem. Phys. 28, 258, 1958;3 C. I. Poser, I. C. Sanchez, Macromol. 14, 361, 1981;4 M. P. A. Fisher, M. Wortis, Phys. Rev. B 29, 6252, 1984;5 H. Kahl, S. Enders, Phys. Chem. Chem. Phys. 4, 931, 2002.

6 J. Gross, G. Sadowski, Ind. Eng. Chem. Res. 40, 1244, 2001;7 J. Gross, G. Sadowski, Ind. Eng. Chem. Res. 41, 5510, 2002.

A = Aideal+Ahard chain+Adispersion+Aassociation

Perturbed-Chain StatisticalAssociating Fluid Theory

γ+κ(∇ρ)2

adjustedto model

properties

Page 15: Molecular simulation and theory of homogeneous cavitationhorsch/pdt/slides/2017_MolMod.pdf · Molecular simulation and theory of homogeneous cavitation Martin Horsch,1, 2 Kai Langenbach,1,

Hybrid Nucleation Theory

1510 Mar 2017 Martin Horsch, Kai Langenbach, Martin Lautenschläger, Hans Hasse

J = J0 exp(−Δ A *kT )

thermodynamic factor from densitygradient theory with the PC-SAFT EOS

kinetic factor from molecular dynamics

ρ / mol l -12015

280 KCO

2

1040

1030

1020

1010

J /

m-3s-1

CNT

HyN

T

extrapolationby the hybrid

nucleation theory

τnucl

τS

τ = 1 – T / Tc

J = 1

06 m

-3 s-1

0 0.04 0.080.02

0.02

0.04

0.06

satu

rate

d liq

uid

iso-choric

HyNT

experimental data:Straub (1973)Huang et al. (1975)

Page 16: Molecular simulation and theory of homogeneous cavitationhorsch/pdt/slides/2017_MolMod.pdf · Molecular simulation and theory of homogeneous cavitation Martin Horsch,1, 2 Kai Langenbach,1,

Conclusion

1610 Mar 2017 Martin Horsch, Kai Langenbach, Martin Lautenschläger, Hans Hasse

Molecular modelling and simulation of bubble formationby homogeneous nucleation requires the efficient useof HPC resources by scalable MD simulation.

Here, ls1 mardyn was employed on over 100 000 coresto simulate metastable liquid carbon dioxide in sys-tems containing up to 100 000 000 interaction sites.

The classical nucleation theory predicts an unphysical temperaturedependence of the thermodynamic factor which determines the nucleation rate in the spinodal limit.

A hybrid nucleation theory was developed by combining density gra dient theory and the PC-SAFT equation of state with MD simulation results.


Recommended