Transcript
Page 1: Molecular Modeling of Ion Channels · V Lz Ez drops across the entire simulation box Lz i) Homogeneous Electrical Field Ez across the membrane ii) Explicit electrolyte imposing V

Membranes under transmebrane voltages

Werner TreptowWerner [email protected]

Laboratório de Biologia Teórica e ComputacionalUniversidade de Brasília UnB

Molecular Modeling of Ion ChannelsMolecular Modeling of Ion Channels

VII Escola de Modelagem Molecular em Sistemas BiológicosVII Escola de Modelagem Molecular em Sistemas Biológicos

Page 2: Molecular Modeling of Ion Channels · V Lz Ez drops across the entire simulation box Lz i) Homogeneous Electrical Field Ez across the membrane ii) Explicit electrolyte imposing V

Membranes under transmebrane voltages

Biological Membranes

Ionic Currents and Channels

Ion flow

(#) High free energy barrier

Ion Channel

Eletrochemical Gradient

dW = V dqV= voltageq = charge

dW = µA dnA

µA = µi = [∂/∂ni(G)]T,P,nj≠i

nA mol number of A in the system

sy

ste

m:

q e

nA

KCl

Energy source for cell transport and signaling!

Ion channels

Energetics

Chemical, Electrical and Mechanical Stimuli Modulate Ion Channels and Conduction

Reaction Coordinate

C ← → O

Mo

du

lati on

Page 3: Molecular Modeling of Ion Channels · V Lz Ez drops across the entire simulation box Lz i) Homogeneous Electrical Field Ez across the membrane ii) Explicit electrolyte imposing V

Membranes under transmebrane voltages

Ion transport triggered by a TM potential Voltage gradient from explicit ion dynamicsChannels versus Microscopic ProcessesX

-Ray

Cry

stal

S

tru

ctu

res KcsA, a pH-dependent K+ channel MthK, Ca+2-gated K+ channel

Kv1.2, a voltage-gated K+ channel

Structural Models

Homology Modeling and ab initio modeling

Palovcak et al., Sequence-structure relationships in the TRP and Kv channel superfamilies (2014)

MI: Mutual Information (Gobel et al., Proteins 1994)

MI ij=∑A ,B

f ij( A ,B )lnf ij (A , B)

fi (A ) fj(B)

MSA

i j … L

P (A1 , ... , A L)=1Z

exp[−∑i < j

eij( Ai , A j )+∑i

h i( Ai) ] Potts Model: Max. Shannon Entropy

DCA: Direct Coupling Analysis (Morcos et al., PNAS 2011)

Page 4: Molecular Modeling of Ion Channels · V Lz Ez drops across the entire simulation box Lz i) Homogeneous Electrical Field Ez across the membrane ii) Explicit electrolyte imposing V

Membranes under transmebrane voltages

Ion transport triggered by a TM potential Voltage gradient from explicit ion dynamicsWatching water, ions, lipids and channel move

Kv channels and excitable membranesAtomistic MD Simulations

Channels versus Microscopic Processes

Treptow & Tarek (Treptow & Tarek (Biophys. J. 2006aBiophys. J. 2006a)) FORCE FIELD: water TIP3 model CHARMM36-CMAP POPC lipids

SYSTEM SIZE ~ 105 atoms

DYNAMICS: NPT PBC time step = 2.0 fs (multiple) langevin dynamics (300 K) langevin piston (1 atm) PME

SY

ST

EM

OF

N

PA

RT

ICL

ES

i

NN

iUf r

rr )()(FORCES ON

PARTICLE i

)( Niii fm rr SOLVE THE

EQUATIONS OF MOTION

)()...,,( 21N

N UU rrrr

Standard Simulations

Equilibrium properties over short timescales ~ 100 ns – 10 us: Sampling a single state “A”!

Page 5: Molecular Modeling of Ion Channels · V Lz Ez drops across the entire simulation box Lz i) Homogeneous Electrical Field Ez across the membrane ii) Explicit electrolyte imposing V

Membranes under transmebrane voltages

Ion transport triggered by a TM potential Voltage gradient from explicit ion dynamics

MD Simulations

Advanced Simulations: Sampling State “B” Channels versus Microscopic ProcessesS

imu

lati

on

s u

nd

er a

pp

lied

vo

lta

ges

F z=qE z Additive force in the equations of motion

E z=VLz

Ez drops across the entire simulation box Lz

i) Homogeneous Electrical Field Ez across the membrane

ii) Explicit electrolyte imposing V across the membrane:

ΔV=QC

Delemotte, Dehez, Treptow & Tarek JPCB 2008

Ess

enti

al D

ynam

ics

C=⟨ p (t) p (t )T ⟩Covariance:

p (t)= x( t)−⟨ x ⟩Atomic motion:

q (t)=T T p (t)

C=T DTTEigenvectors and eigenvalues of C:

in which

each eigenvector contributes with

i to the total atomic motion !

⟨ q(t )T q( t)⟩=∑i

λ i

Treptow et al. (Biophys. J. 2004)

Sampling – up to ns!

M ' q(t )=M x( t)

Motion in the Essential Space:

In which:

M '=TT MTis the transformed mass tensor!

Effective Sampling up to µs!

Microscopic manipulation of the channel:

Moving Harmonic Constraints

Dellemotte, Tarek, Klein, Amaral, Treptow PNAS 2011Amaral, Carnevale, Klein, Treptow PNAS 2012Jensen et al., Science 2012

Simulation time ~ 2.25 μs JADE (SGI / 910 cores)

ξ

F

Page 6: Molecular Modeling of Ion Channels · V Lz Ez drops across the entire simulation box Lz i) Homogeneous Electrical Field Ez across the membrane ii) Explicit electrolyte imposing V

Membranes under transmebrane voltages

Voltage gradient from explicit ion dynamics

Ion channels and conduction

Conduction mechanism

1 2 3 4

5 6 7 8

Knock-on process: ions and water move in concert in the SF adopting a single-file configuration

Up-Down Cycle

V

ξ

Steered MD and Irreversible work

thxt,x 0

2

2tt,x

kth

vdtttxktW ,)(

vtt 0

Hamiltonian:External Potential:Potential position:External work:

-ξ:

ξ forward

backward

Treptow & Tarek Biophys. J. (2006b) - Free energy of the conduction cycle

PMF at 0 mV

Up-Down throughput cycle triggered by knock-on

(Åqvist & Coworkers; Roux & coworkers; Sansom & coworkers; Carloni &

coworkers; Schulten & coworkers; Treptow & Tarek, 2006)

General mechanism

in which, mean <W> and the variance s over M values

Fourth order formula for Jarzynki's identity

Jarzynski’s identity relating the free-energy variation (F) to the irreversible work (W)

Channels versus Microscopic Processes

Page 7: Molecular Modeling of Ion Channels · V Lz Ez drops across the entire simulation box Lz i) Homogeneous Electrical Field Ez across the membrane ii) Explicit electrolyte imposing V

Membranes under transmebrane voltages

Computing Binding Affinities

Ion transport triggered by a TM potential Voltage gradient from explicit ion dynamics

Ion channels and conduction

Ligand BindingChannels versus Microscopic Processes

ΔG=∑i=1

N −1

ΔGi , i+1=−1β∑i=1

N−1

ln ⟨exp−βΔU i , i+1 ⟩i

Free energy Perturbation

ΔG=1β

lnV

V oLoss of translational entropy

2) Free Energy Calculations: Free-Energy Perturbation

ΔGbinding=ΔGgas−R−ΔGsolv−ΔGrestraint

L+R←→ L⋯R

nothing+R←→ nothing⋯R

ΔGsolv↑↓ ↑↓ΔGgas− R

ΔG=0

ΔGbinding

ΔGrestraint

Bin

din

g A

ffin

itie

s

3) Free Energy Calculations: LIE

ΔG=α(⟨U LJLR ⟩−⟨U LJ

L ⟩)+β( ⟨U ElectLR ⟩−⟨U Elect

L ⟩ )

Kraszewski et al. ACS Nano (2010)

Simple Overlap Sampling method

ΔG=−1β∑i=1

N

lnxi( f)

x i(b )

ΔG=−1β ln (K∗C

o)

Binding Constant K

Barber et al. Biophys. J. (2011)

1) Ligand Force Field: CGenFF – CHARMM General Force Field

QM (Gaussian)Optimization and validation

of parameters MM (NAMD)

FF related to CHARMM.

Iterative Procedure: to minimize differences between QM and MM

QM optimization (g03 runs). Geometry MP2/6-31G(d). Partial charges: Merz Kollman (MK) method. Interaction energy: HF/6-31G(d). Bond, angle and torsion parameters: MP2/6-31G(d).

Page 8: Molecular Modeling of Ion Channels · V Lz Ez drops across the entire simulation box Lz i) Homogeneous Electrical Field Ez across the membrane ii) Explicit electrolyte imposing V

Chemical Free energy

● Reaction Coordinate RMSD + Enhanced Sampling Techniques (ABF, Metadynamics)

Huge CPU Cost!

Chemical, Electrical and Mechanical Stimuli Modulate Ion Channels: Challenges

F (X .V , pH , ligand ...) = F(X ,0 ,0. ..) + Δ F(X ,V , pH , ligand ...)

Reaction Coordinate

C ← → O

+

Chemical [F(X, 0, 0...)]

Excess [F(V, pH, ligand...)]

Excess Free Energy (Voltage)

Δ F (X ,V )=V Q(X)

Effective ChargeQ(X)=∑i

qiφX(r i)

Excess Free Energy

∇⋅[ϵ(r)∇ φ(r )]−κ2(r) [φ(r)−V Θ(r)]=0

Linearized Poisson Boltzmann: PB-V

Electrical distanceφ(r)≡ ∂∂V

Φ(r ,V ) |V=0

∇ 2Φ(r ,V )=−4π∑i

ρi(r ,V ) Poisson Equation

Page 9: Molecular Modeling of Ion Channels · V Lz Ez drops across the entire simulation box Lz i) Homogeneous Electrical Field Ez across the membrane ii) Explicit electrolyte imposing V

Membranes under transmebrane voltages

Acknowledgements

Ion channels and conduction

Graduate Students:

Letícia Stock (LBTC, UnB BR)Caio Souza (LBTC, UnB BR)Juliana Hosoume (LBTC, UnB BR)Camila Pontes (LBTC, UnB BR)

Researchers:

Dr Mounir Tarek (eDAM, UHP France)Dr Michael Klein (ICMS, Temple US)Dr Vincenzo Carnevale (ICMS Temple US)

Post-Docs:

Dr Lucie Delemotte (ICMS, Temple US)Dr Cristiano Amaral (LBTC, UnB BR)Dr. Alessandra Kiamentis (LBTC, UnB, BR)

UnderGraduate Students:

Matheus CostaLeonardo Cirqueira


Recommended