Transcript
Page 1: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

1

Structural Analysis - III

Dr. Rajesh K. N.Asst. Professor in Civil Engineering

Govt. College of Engineering, Kannur

Stiffness Method

Page 2: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

2

β€’ Development of stiffness matrices by physical approach –stiffness matrices for truss,beam and frame elements –displacement transformation matrix – development of total stiffness matrix - analysis of simple structures – plane truss beam and plane frame- nodal loads and element loads – lack of fit and temperature effects.

Stiffness method

Module II

Page 3: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN3

β€’ Displacement components are the primary unknowns

β€’ Number of unknowns is equal to the kinematic indeterminacy

β€’ Redundants are the joint displacements, which are automatically specified

β€’ Choice of redundants is unique

β€’ Conducive to computer programming

FUNDAMENTALS OF STIFFNESS METHOD

Introduction

Page 4: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN4

β€’ Stiffness method (displacements of the joints are the primary unknowns): kinematic indeterminacy

β€’ kinematic indeterminacy

β€’ joints: a) where members meet, b) supports, c) free endsβ€’ joints undergo translations or rotations

β€’ in some cases joint displacements will be known, from the restraint conditions

β€’ the unknown joint displacements are the kinematicallyindeterminate quantities

o degree of kinematic indeterminacy: number of degrees of freedom

Page 5: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

5

β€’ in a truss, the joint rotation is not regarded as a degree of freedom. joint rotations do not have any physical significance as they have no effects in the members of the truss

β€’ in a frame, degrees of freedom due to axial deformations can be neglected

Page 6: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN6

β€’Example 1: Stiffness and flexibility coefficients of a beam

Stiffness coefficients

Unit displacement

Unit action

Forces due to unit dispts– stiffness coefficients

11 21 12 22, , ,S S S S Dispts due to unit forces – flexibility coefficients

11 21 12 22, , ,F F F F

Page 7: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

7

β€’Example 2: Action-displacement equations for a beam subjected to several loads

1 11 12 13A A A A= + +

1 11 1 12 2 13 3A S D S D S D= + +

2 21 1 22 2 23 3A S D S D S D= + +

3 31 1 32 2 33 3A S D S D S D= + +

Page 8: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

8

1 11 1 12 2 13 3 1

2 21 1 22 2 23 3 2

1 1 2 2 3 3

......

...............................................................

n n

n n

n n n n nn n

A S D S D S D S DA S D S D S D S D

A S D S D S D S D

= + + + += + + + +

= + + + +

1 11 12 1 1

2 21 22 2 2

1 211

...

...... ... ... ... ......

...

n

n

n n nn nnn n nn

A S S S DA S S S D

S S S DAΓ— Γ—Γ—

⎧ ⎫ ⎧ ⎫⎧ ⎫βŽͺ βŽͺ βŽͺ βŽͺβŽͺ βŽͺβŽͺ βŽͺ βŽͺ βŽͺβŽͺ βŽͺ=⎨ ⎬ ⎨ ⎬⎨ ⎬βŽͺ βŽͺ βŽͺ βŽͺβŽͺ βŽͺβŽͺ βŽͺ βŽͺ βŽͺβŽͺ βŽͺ⎩ ⎭⎩ ⎭⎩ ⎭

A = SD

β€’Action matrix, Stiffness matrix, Displacement matrix

β€’Stiffness coefficient ijS

{ } [ ] { } [ ] [ ]1 1A F D S Fβˆ’ βˆ’= β‡’ =

oIn matrix form,

{ } [ ]{ }A S D=

[ ] [ ] 1F S βˆ’=

Stiffness matrix

Page 9: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

9

Example: Propped cantilever (Kinematically indeterminate to first degree)

Stiffness method (Direct approach: Explanation using principle of superposition)

β€’degrees of freedom: one

β€’ Kinematically determinate structure is obtained by restraining all displacements (all displacement components made zero -restrained structure)

β€’ Required to get BΞΈ

Page 10: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

10

Restraint at B causes a reaction of MB as shown.

Hence it is required to induce a rotation of BΞΈ

The actual rotation at B is BΞΈ

2

12BwLM = βˆ’

(Note the sign convention: anticlockwise positive)

β€’Apply unit rotation corresponding to BΞΈ

Let the moment required for this unit rotation be Bm

4B

EImL

= anticlockwise

Page 11: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

β€’ Moment required to induce a rotation of BΞΈ B Bm ΞΈis

2 4 012 BwL EI

LΞΈβˆ’ + =

3

48B

BB

wLEI

Mm

θ∴ = βˆ’ =

Bm (Moment required for unit rotation) is the stiffness coefficient here.

0B B BM m ΞΈ+ = (Joint equilibrium equation)

Page 12: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

12

Stiffnesses of prismatic members

Stiffness coefficients of a structure are calculated from the contributions of individual members

Hence it is worthwhile to construct member stiffness matrices

[ ] [ ] 1Mi MiS F βˆ’=

Page 13: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

13

Member stiffness matrix for prismatic beam member with rotations at the ends as degrees of freedom

[ ] 2 121 2Mi

EISL

⎑ ⎀= ⎒ βŽ₯

⎣ ⎦

[ ] [ ]

1

11 2 13 6

1 266 3

Mi Mi

L LLEI EIS F

L L EIEI EI

βˆ’

βˆ’βˆ’

βˆ’βŽ‘ ⎀⎒ βŽ₯ βˆ’βŽ› ⎞⎑ ⎀

= = =⎒ βŽ₯ ⎜ ⎟⎒ βŽ₯βˆ’ βˆ’βŽ£ ⎦⎝ ⎠⎒ βŽ₯⎒ βŽ₯⎣ ⎦

2 1 2 16 21 2 1 2(3)

EI EIL L

⎑ ⎀ ⎑ ⎀= =⎒ βŽ₯ ⎒ βŽ₯

⎣ ⎦ ⎣ ⎦

Verification:

BA

1

Page 14: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

14

[ ] 11 12

21 22

3 2

2

12 6

6 4

M MMi

M M

S SS

S S

EI EIL LEI EIL L

⎑ ⎀= ⎒ βŽ₯⎣ ⎦⎑ βŽ€βˆ’βŽ’ βŽ₯

= ⎒ βŽ₯⎒ βŽ₯βˆ’βŽ’ βŽ₯⎣ ⎦

Member stiffness matrix for prismatic beam member with deflection and rotation at one end as degrees of freedom

Page 15: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

[ ] [ ]

13 212

1

2

2 33 26 3 6

2

Mi Mi

L LL LLEI EIS F

EI LL LEI EI

βˆ’

βˆ’βˆ’

⎑ ⎀⎒ βŽ₯ βŽ› ⎞⎑ ⎀

= = =⎒ βŽ₯ ⎜ ⎟⎒ βŽ₯⎜ ⎟⎒ βŽ₯ ⎣ ⎦⎝ ⎠⎒ βŽ₯⎣ ⎦

( )2

2

3

2

2

6 363

12 6

6 423

EI EIL LEI EIL

LEIL LL L

L

βˆ’βŽ‘ ⎀= =⎒ βŽ₯βˆ’βŽ£

⎑ βŽ€βˆ’βŽ’ βŽ₯⎒ βŽ₯⎒⎒

⎦ βŽ₯βˆ’ βŽ₯⎣ ⎦

Verification:

[ ]MiEASL

=

β€’Truss member

Page 16: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

16

β€’Plane frame member

[ ]11 12 13

21 22 23

31 32 33

3 2

2

0 0

12 60

6 40

M M M

Mi M M M

M M M

S S SS S S S

S S S

EAL

EI EIL LEI EIL L

⎑ ⎀⎒ βŽ₯= ⎒ βŽ₯⎒ βŽ₯⎣ ⎦⎑ ⎀⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯= βˆ’βŽ’ βŽ₯⎒ βŽ₯⎒ βŽ₯βˆ’βŽ£ ⎦

Page 17: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

17

β€’Grid member

[ ]

3 2

2

12 60

0 0

6 40

Mi

EI EIL L

GJSL

EI EIL L

⎑ βŽ€βˆ’βŽ’ βŽ₯⎒ βŽ₯⎒ βŽ₯=⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯βˆ’βŽ£ ⎦

Page 18: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

18

β€’Space frame member

[ ]

3 2

3 2

2

2

0 0 0 0 0

12 60 0 0 0

12 60 0 0 0

0 0 0 0 0

6 40 0 0 0

6 40 0 0 0

Z Z

Y Y

Mi

Y Y

Z Z

EAL

EI EIL L

EI EIL LS

GJL

EI EIL L

EI EIL L

⎑ ⎀⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯βˆ’βŽ’ βŽ₯⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯=⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯βˆ’βŽ’ βŽ₯⎣ ⎦

Page 19: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

19

(Explanation using principle of complimentary virtual work)Formalization of the Stiffness method

{ } [ ]{ }Mi Mi MiA S D=

Here{ }MiD contains relative displacements of the k end with respect to j end of the i-th member

If there are m members in the structure,

{ }{ }{ }

{ }

{ }

[ ] [ ] [ ] [ ] [ ][ ] [ ] [ ] [ ] [ ][ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

{ }{ }{ }

{ }

{ }

11 1

22 2

33 3

0 0 0 00 0 0 00 0 0 0

0 0 0 0

0 0 0 0

MM M

MM M

MM M

MiMi Mi

MmMm Mm

SA DSA D

SA D

SA D

SA D

⎧ ⎫ ⎧ ⎫⎑ ⎀βŽͺ βŽͺ βŽͺ βŽͺ⎒ βŽ₯βŽͺ βŽͺ βŽͺ βŽͺ⎒ βŽ₯βŽͺ βŽͺ βŽͺ βŽͺ⎒ βŽ₯βŽͺ βŽͺ βŽͺ βŽͺ⎒ βŽ₯=⎨ ⎬ ⎨ ⎬⎒ βŽ₯βŽͺ βŽͺ βŽͺ βŽͺ⎒ βŽ₯βŽͺ βŽͺ βŽͺ βŽͺ⎒ βŽ₯βŽͺ βŽͺ βŽͺ βŽͺ⎒ βŽ₯βŽͺ βŽͺ βŽͺ βŽͺ⎒ βŽ₯⎩ ⎭ ⎩ ⎭⎣ ⎦

M M MA = S D

Page 20: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

20

{ } [ ]{ }M M MA S D=

[ ]MS is the unassembled stiffness matrix of the entire structure

Page 21: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

21

β€’ Relative end-displacements in will be related to a vector of joint

displacements for the whole structure,

{ }MD

{ }JD

β€’ If there are no support displacements specified,

{ }RD will be a null matrix

β€’ Hence, { } [ ]{ } [ ] [ ] { }{ }

FM MJ J MF MR

R

DD C D C C

D⎧ ⎫

= = ⎑ ⎀ ⎨ ⎬⎣ ⎦⎩ ⎭

{ }JD{ }FDfree (unknown) joint displacements

{ }RDand restraint displacements consists of:

{ } [ ]{ }M MJ JD C D=

displacement transformation matrix (compatibility matrix) [ ]MJC

Page 22: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

22

β€’ Elements in displacement transformation matrix

(compatibility matrix) [ ]MJC are found from compatibility conditions.

β€’Each column in the submatrix consists of member displacements caused by a unit value of a support displacementapplied to the restrained structure.

[ ]MRC

[ ]MFCβ€’ Each column in the submatrix consists of member displacements caused by a unit value of an unknown displacementapplied to the restrained structure.

{ }MDrelate to respectively

[ ]MFC

[ ]MRC

and{ }FD

{ }RD

and

Page 23: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

23

{ }MDΞ΄

{ } [ ]{ } [ ] [ ] { }{ }

FM MJ J MF MR

R

DD C D C C

DΞ΄

δ δδ

⎧ ⎫= = ⎑ ⎀ ⎨ ⎬⎣ ⎦

⎩ ⎭

β€’ Suppose an arbitrary set of virtual displacements

is applied on the structure.

{ } { } { } { }T T T FJ J F R

R

DW A D A A

DΞ΄

δ δ δδ⎧ ⎫⎑ ⎀= = ⎨ ⎬⎣ ⎦ ⎩ ⎭

{ }JDΞ΄β€’ External virtual work produced by the virtual displacements

{ }JAand real loads is

Page 24: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

24

{ } { }TM MU A DΞ΄ Ξ΄=

β€’ Internal virtual work produced by the virtual (relative) end displacements { }MDΞ΄ { }MAand actual member end actions is

{ } { } { } { }T TJ J M MA D A DΞ΄ Ξ΄=

β€’ Equating the above two (principle of virtual work),

{ } [ ]{ }M MJ JD C D= { } [ ]{ }M M MA S D=But and

{ } [ ]{ }M MJ JD C DΞ΄ Ξ΄=Also,

{ } { } { } [ ] [ ] [ ]{ }TT T TJ J J MJ M MJ JA D D C S C DΞ΄ Ξ΄=Hence,

{ } [ ]{ }J J JA S D=

Page 25: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

25

[ ] [ ] [ ][ ]TJ MJ M MJS C S C=Where, , the assembled stiffness matrix for the

entire structure.

β€’ It is useful to partition into submatrices pertaining to free

(unknown) joint displacements

[ ]JS

{ }FD { }RDand restraint displacements

{ } [ ]{ } { }{ }

[ ] [ ][ ] [ ]

{ }{ }

FF FRF FJ J J

RF RRR R

S SA DA S D

S SA D⎧ ⎫ ⎧ ⎫⎑ ⎀

= β‡’ =⎨ ⎬ ⎨ ⎬⎒ βŽ₯⎩ ⎭ ⎩ ⎭⎣ ⎦

[ ] [ ] [ ][ ]TFF MF M MFS C S C= [ ] [ ] [ ][ ]T

FR MF M MRS C S C=

[ ] [ ] [ ][ ]TRF MR M MFS C S C= [ ] [ ] [ ][ ]T

RR MR M MRS C S C=

Where, 

Page 26: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

26

{ } [ ]{ } [ ]{ }F FF F FR RA S D S D= + { } [ ]{ } [ ]{ }R RF F RR RA S D S D= +

{ } [ ] { } [ ]{ }1F FF F FR RD S A S Dβˆ’β‡’ = βˆ’βŽ‘ ⎀⎣ ⎦

{ } { } [ ]{ } [ ]{ }R RC RF F RR RA A S D S D= βˆ’ + +

β€’ Support reactions

{ }RCArepresents combined joint loads (actual and equivalent) applied directly to the supports.

If actual or equivalent joint loads are applied directly to the supports,

Joint displacements

Page 27: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

27

{ } { } [ ] [ ]{ } [ ]{ }( )M ML M MF F MR RA A S C D C D= + +

β€’ Member end actions are obtained adding member end actions calculated as above and initial fixed-end actions

{ } { } [ ][ ]{ }M ML M MJ JA A S C D= +i.e.,

{ }MLAwhere represents fixed end actions

Page 28: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

28

Important formulae:

Joint displacements:

Member end actions:

Support reactions:

{ } [ ] { } [ ]{ }1F FF F FR RD S A S Dβˆ’= ⎑ βˆ’ ⎀⎣ ⎦

{ } { } [ ]{ } [ ]{ }R RC RF F RR RA A S D S D= βˆ’ + +

{ } { } [ ] [ ]{ } [ ]{ }( )M ML M MF F MR RA A S C D C D= + +

Page 29: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

29

β€’Problem 1

[ ]

4 2 0 02 4 0 020 0 2 10 0 1 2

MEISL

⎑ ⎀⎒ βŽ₯⎒ βŽ₯=⎒ βŽ₯⎒ βŽ₯⎣ ⎦

Unassembled stiffness matrix

[ ] 2 121 2Mi

EISL

⎑ ⎀= ⎒ βŽ₯

⎣ ⎦Member stiffness matrix of beam member

Kinematic indeterminacy = 2

Page 30: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

30

Fixed end actions

Equivalent joint loads

Page 31: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

Joint displacements

Free (unknown) joint displacements { }FD { }RDRestraint displacements

Page 32: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

Joint displacements

Free (unknown) joint displacements { }FD { }RDRestraint displacements

β€’Each column in the submatrix consists of member displacements caused by a unit value of an unknown displacementapplied to the restrained structure.

[ ]MFC

β€’Each column in the submatrix consists of member displacements caused by a unit value of a support displacementapplied to the restrained structure.

[ ]MRC

Page 33: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

0 1 1 0

0 0 0 1

[ ]

0 01 01 00 1

M FC

⎑ ⎀⎒ βŽ₯⎒ βŽ₯=⎒ βŽ₯⎒ βŽ₯⎣ ⎦

DF1 DF2=1 =1

Page 34: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

1 L 1 L 0 0 1 0 0 0

1 Lβˆ’ 1 Lβˆ’ 1 L 1 L 0 0 1 Lβˆ’ 1 Lβˆ’

Page 35: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

35

[ ] [ ] [ ]MJ MF MRC C C= ⎑ ⎀⎣ ⎦

0 0 1 1 00 1 0 1 010 0 0 1 1

0 0 0 1 1

LLLL

L

βˆ’βŽ‘ ⎀⎒ βŽ₯βˆ’βŽ’ βŽ₯=⎒ βŽ₯βˆ’βŽ’ βŽ₯βˆ’βŽ£ ⎦

[ ]

1 1 1 01 0 1 0

0 0 1 10 0 1 1

MR

L LL L

CL LL L

βˆ’βŽ‘ ⎀⎒ βŽ₯βˆ’βŽ’ βŽ₯=

βˆ’βŽ’ βŽ₯⎒ βŽ₯βˆ’βŽ£ ⎦

DR1 DR2 DR3 DR4=1 =1 =1 =1

DR1 DR2 DR3 DR4=1 =1 =1 =1

DF1 DF2=1 =1

Page 36: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

36

{ } [ ] { } [ ]{ }1F FF F FR RD S A S Dβˆ’= βˆ’βŽ‘ ⎀⎣ ⎦

{ } [ ] { }1F FF FD S Aβˆ’βˆ΄ =

Joint displacements

[ ] [ ] [ ][ ]TFF MF M MFS C S C=

4 2 0 0 0 00 1 1 0 2 4 0 0 1 020 0 0 1 0 0 2 1 1 0

0 0 1 2 0 1

EIL

⎑ ⎀ ⎑ ⎀⎒ βŽ₯ ⎒ βŽ₯⎑ ⎀ ⎒ βŽ₯ ⎒ βŽ₯= ⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯⎣ ⎦⎒ βŽ₯ ⎒ βŽ₯⎣ ⎦ ⎣ ⎦

6 121 2

EIL

⎑ ⎀= ⎒ βŽ₯

⎣ ⎦

is a null matrix, since there are no support displacements

{ }RD

Page 37: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

{ }1

6 1 121 2 29F

EI PLDL

βˆ’βŽ› ⎞⎑ ⎀ ⎧ ⎫

= ⎨ ⎬⎜ ⎟⎒ βŽ₯⎣ ⎦ ⎩ ⎭⎝ ⎠

Free (unknown) joint displacements

2 201.11 818 11

011

PLE EII

PL⎧ ⎫ ⎧= =

⎫⎨⎨ ⎬

⎭ ⎩⎩⎬⎭

2

3

6 2 3 320 0 3 3L L L LEI

L L L⎑ βŽ€βˆ’ βˆ’

= ⎒ βŽ₯βˆ’βŽ£ ⎦

[ ] [ ] [ ][ ]TFR MF M MRS C S C=

4 2 0 0 1 1 00 1 1 0 2 4 0 0 1 0 1 02 10 0 0 1 0 0 2 1 0 0 1 1

0 0 1 2 0 0 1 1

LEIL L

βˆ’βŽ‘ ⎀ ⎑ ⎀⎒ βŽ₯ ⎒ βŽ₯βˆ’βŽ‘ ⎀ ⎒ βŽ₯ ⎒ βŽ₯= ⎒ βŽ₯ βˆ’βŽ’ βŽ₯ ⎒ βŽ₯⎣ ⎦⎒ βŽ₯ ⎒ βŽ₯βˆ’βŽ£ ⎦ ⎣ ⎦

Page 38: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

{ } { } [ ]{ } [ ]{ }R RC RF F RR RA A S D S D= βˆ’ + +

is a null matrix.{ }RD

Support reactions

[ ] [ ] [ ][ ]TRF MR M MFS C S C=

2

6 02 02

3 33 3

LEIL

⎑ ⎀⎒ βŽ₯⎒ βŽ₯=βˆ’βŽ’ βŽ₯⎒ βŽ₯βˆ’ βˆ’βŽ£ ⎦

1 1 0 4 2 0 0 0 01 0 1 0 2 4 0 0 1 01 20 0 1 1 0 0 2 1 1 00 0 1 1 0 0 1 2 0 1

TLEI

L L

βˆ’βŽ‘ ⎀ ⎑ ⎀ ⎑ ⎀⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯βˆ’βŽ’ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯=

βˆ’βŽ’ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯βˆ’βŽ£ ⎦ ⎣ ⎦ ⎣ ⎦

{ } { } [ ]{ }R RC RF FA A S D∴ = βˆ’ +

Page 39: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

[ ] [ ] [ ][ ]TRR MR M MRS C S C=

1 1 0 4 2 0 0 1 1 01 0 1 0 2 4 0 0 1 0 1 01 2 10 0 1 1 0 0 2 1 0 0 1 10 0 1 1 0 0 1 2 0 0 1 1

TL LEI

L L L

βˆ’ βˆ’βŽ‘ ⎀ ⎑ ⎀ ⎑ ⎀⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯βˆ’ βˆ’βŽ’ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯=

βˆ’ βˆ’βŽ’ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯βˆ’ βˆ’βŽ£ ⎦ ⎣ ⎦ ⎣ ⎦

3

12 6 12 06 4 6 0212 6 18 60 0 6 6

LL L LEI

LL

βˆ’βŽ‘ ⎀⎒ βŽ₯βˆ’βŽ’ βŽ₯=βˆ’ βˆ’ βˆ’βŽ’ βŽ₯⎒ βŽ₯βˆ’βŽ£ ⎦

Page 40: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

2

2

2 6 02 0 02

33 3 11833 3

PPL LEI PL

L EIPP

βˆ’βŽ§ ⎫ ⎑ ⎀βŽͺ βŽͺβˆ’ ⎒ βŽ₯βŽͺ βŽͺ ⎧ ⎫⎒ βŽ₯= βˆ’ +⎨ ⎬ ⎨ βŽ¬βˆ’βŽ’ βŽ₯ ⎩ ⎭βŽͺ βŽͺβˆ’ ⎒ βŽ₯βŽͺ βŽͺ βˆ’ βˆ’βŽ£ βŽ¦βˆ’βŽ© ⎭

2

2

02 20 002

3 3318 33 33

3

P PPL PL

PL EI PEI LP P

PP P

⎧ βŽ«βˆ’βŽ§ ⎫ ⎧ ⎫ βŽͺ βŽͺ⎧ ⎫βŽͺ βŽͺ βŽͺ βŽͺ βŽͺ βŽͺβˆ’ βŽͺ βŽͺβŽͺ βŽͺ βŽͺ βŽͺβŽͺ βŽͺ βŽͺ βŽͺ= βˆ’ + = +⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬βŽͺ βŽͺ βŽͺ βŽͺ βŽͺ βŽͺ βŽͺ βŽͺβˆ’βŽͺ βŽͺ βŽͺ βŽͺ βŽͺ βŽͺ βŽͺ βŽͺβˆ’βŽ© βŽ­βˆ’ βˆ’βŽ© ⎭ ⎩ ⎭ βŽͺ βŽͺ⎩ ⎭

{ } { } [ ]{ }R RC RF FA A S D∴ = βˆ’ +

2

310

323

PPL

P

P

⎧ ⎫βŽͺ βŽͺβŽͺ βŽͺβŽͺ βŽͺβŽͺ βŽͺ⎨ ⎬βŽͺ βŽͺβŽͺ βŽͺβŽͺ βŽͺβŽͺ βŽͺ⎩ ⎭

=

Page 41: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

41

{ } { } [ ] [ ]{ } [ ]{ }( )M ML M MF F MR RA A S C D C D= + +

{ }2

3 4 2 0 0 0 03 2 4 0 0 1 0 02

2 0 0 2 1 1 0 19 182 0 0 1 2 0 1

MPL EI PLA

L EI

⎧ ⎫ ⎑ ⎀ ⎑ ⎀βŽͺ βŽͺ ⎒ βŽ₯ ⎒ βŽ₯βˆ’ ⎧ ⎫βŽͺ βŽͺ ⎒ βŽ₯ ⎒ βŽ₯= +⎨ ⎬ ⎨ ⎬⎒ βŽ₯ ⎒ βŽ₯ ⎩ ⎭βŽͺ βŽͺ ⎒ βŽ₯ ⎒ βŽ₯βŽͺ βŽͺβˆ’βŽ© ⎭ ⎣ ⎦ ⎣ ⎦

2

3 4 2 0 0 03 2 4 0 0 02

2 0 0 2 1 09 182 0 0 1 2 1

PL EI PLL EI

⎧ ⎫ ⎧ ⎫⎑ ⎀βŽͺ βŽͺ βŽͺ βŽͺ⎒ βŽ₯βˆ’βŽͺ βŽͺ βŽͺ βŽͺ⎒ βŽ₯= +⎨ ⎬ ⎨ ⎬⎒ βŽ₯βŽͺ βŽͺ βŽͺ βŽͺ⎒ βŽ₯βŽͺ βŽͺ βŽͺ βŽͺβˆ’βŽ© ⎭ ⎩ ⎭⎣ ⎦

3 03 0

2 19 92 2

PL PL⎧ ⎫ ⎧ ⎫βŽͺ βŽͺ βŽͺ βŽͺβˆ’βŽͺ βŽͺ βŽͺ βŽͺ= +⎨ ⎬ ⎨ ⎬βŽͺ βŽͺ βŽͺ βŽͺβŽͺ βŽͺ βŽͺ βŽͺβˆ’βŽ© ⎭ ⎩ ⎭

11

130

PL⎧ ⎫βŽͺ βŽͺβˆ’βŽͺ βŽͺ⎨ ⎬βŽͺβŽͺ

=βŽͺβŽͺ⎩ ⎭

is a null matrix{ }RD

Member end actions

{ } { } [ ][ ]{ }M ML M MF FA A S C D∴ = +

Page 42: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

42

3

0 00 0 0 2 0 6 4 6 01 1 0 0 4 0 6 2 6 02

0 0 0 2 0 0 3 31 1 1 1 2 0 0 3 3

0 0 1 1

L LL L L

L LEIL L LL

L L

⎑ ⎀⎒ βŽ₯ βˆ’βŽ‘ ⎀⎒ βŽ₯ ⎒ βŽ₯βˆ’βŽ’ βŽ₯ ⎒ βŽ₯= ⎒ βŽ₯ βˆ’βŽ’ βŽ₯⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯βˆ’ βˆ’ βˆ’βŽ£ ⎦⎒ βŽ₯βˆ’ βˆ’βŽ£ ⎦

[ ] [ ][ ] [ ]

2 2 2

2 2

3 2

6 6 2 3 32 0 0 3 3

6 0 12 6 12 022 0 6 4 6 03 3 12 6 18 63 3 0 0 6 6

FF FR

RF RR

L L L L L LL L L L

S SL LEIS SL L L L L

L L LL L

⎑ βŽ€βˆ’ βˆ’βŽ’ βŽ₯βˆ’βŽ’ βŽ₯⎒ βŽ₯ ⎑ βŽ€βˆ’

= =⎒ βŽ₯ ⎒ βŽ₯βˆ’ ⎣ ⎦⎒ βŽ₯⎒ βŽ₯βˆ’ βˆ’ βˆ’ βˆ’βŽ’ βŽ₯βˆ’ βˆ’ βˆ’βŽ£ ⎦

[ ] [ ] [ ][ ]TJ MJ M MJS C S C=

0 00 0 0 4 2 0 0 0 0 1 1 01 1 0 0 2 4 0 0 0 1 0 1 01 2 1

0 0 0 0 0 2 1 0 0 0 1 11 1 1 1 0 0 1 2 0 0 0 1 1

0 0 1 1

L LL L

LEIL LL L L

L

⎑ ⎀⎒ βŽ₯ βˆ’βŽ‘ ⎀⎑ ⎀⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ βˆ’βŽ’ βŽ₯ ⎒ βŽ₯⎒ βŽ₯= ⎒ βŽ₯ ⎒ βŽ₯βˆ’βŽ’ βŽ₯⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯βˆ’ βˆ’ βˆ’βŽ£ ⎦ ⎣ ⎦⎒ βŽ₯βˆ’ βˆ’βŽ£ ⎦

Alternatively, if the entire [SJ] matrix is assembled at a time,

Page 43: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

43

β€’Problem 2:

AB C D

40 kN10 kN/m

2 m4 m 4 m 2 m

100 kN

Kinematic indeterminacy = 3 (Not considering joint D in the overhanging portion)

Degrees of freedom

AB C D

DF2DF1 DF3

Page 44: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

44

[ ]

2 1 0 01 2 0 020 0 2 140 0 1 2

MEIS

⎑ ⎀⎒ βŽ₯⎒ βŽ₯=⎒ βŽ₯⎒ βŽ₯⎣ ⎦

Unassembled stiffness matrix

[ ] 2 121 24Mi

EIS ⎑ ⎀= ⎒ βŽ₯

⎣ ⎦Member stiffness matrix of beam member

Page 45: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

45

Fixed end actions

Equivalent joint loads + actual joint loads

AB

13.33 kNm 13.33

20 kN 20 kN

BC

20 20

20 kN 20 kN

AB

13.33 kNm 6.67

20 kN 20 +20 = 40 kN 20 +100 = 120 kN

2x100 – 20 = 180 kNm

Page 46: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

1 0 0 0

0 1 1 0

DF1 =1

DF2 =1 L

Page 47: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

47

[ ]

1 0 00 1 00 1 00 0 1

M FC

⎑ ⎀⎒ βŽ₯⎒ βŽ₯=⎒ βŽ₯⎒ βŽ₯⎣ ⎦

DF1 DF2 DF3=1 =1 =1

0 0 0 1

DF3 =1

Page 48: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

48

{ } [ ] { }1F FF FD S Aβˆ’βˆ΄ =

Joint displacements

[ ] [ ] [ ][ ]TFF MF M MFS C S C=

1 0 0 2 1 0 0 1 0 00 1 0 1 2 0 0 0 1 020 1 0 0 0 2 1 0 1 040 0 1 0 0 1 2 0 0 1

T

EI⎑ ⎀ ⎑ ⎀ ⎑ ⎀⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯=⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 0.5 00.5 2 0.50 0.5 1

EI⎑ ⎀⎒ βŽ₯= ⎒ βŽ₯⎒ βŽ₯⎣ ⎦

is a null matrix.{ }RD∴

Page 49: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

{ }

11 0.5 0 13.33

1 0.5 2 0.5 6.670 0.5 1 180

FDEI

βˆ’βˆ’βŽ› ⎞⎑ ⎀ ⎧ ⎫βŽͺ βŽͺ⎜ ⎟⎒ βŽ₯= βˆ’βŽ¨ ⎬⎜ ⎟⎒ βŽ₯ βŽͺ βŽͺ⎜ ⎟ βˆ’βŽ’ βŽ₯⎣ ⎦ ⎩ ⎭⎝ ⎠

Joint displacements

43.43560.33210.6

1EI

βˆ’βŽ§ ⎫βŽͺ βŽͺ⎨ ⎬βŽͺ βŽͺβˆ’βŽ© ⎭

=

Page 50: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

50

{ } { } [ ] [ ]{ } [ ]{ }( )M ML M MF F MR RA A S C D C D= + +

{ }43.43560.33210.6

13.33 2 1 0 0 1 0 013.33 1 2 0 0 0 1 02 120 0 0 2 1 0 1 0420 0 0 1 2 0 0 1

MEIA

EI

⎧ ⎫ ⎑ ⎀ ⎑ ⎀βŽͺ βŽͺ ⎒ βŽ₯ ⎒ βŽ₯βˆ’βŽͺ βŽͺ ⎒ βŽ₯ ⎒ βŽ₯= +⎨ ⎬ ⎒ βŽ₯ ⎒ βŽ₯βŽͺ βŽͺ ⎒ βŽ₯ ⎒ βŽ₯βŽͺ βŽͺβˆ’

βˆ’βŽ§ ⎫βŽͺ βŽͺ⎨ ⎬βŽͺ βŽͺβˆ’

⎣⎩

⎭ ⎦ ⎣ ⎦⎭

⎩

02525200

kNm

⎧ ⎫βŽͺ βŽͺβŽͺ βŽͺ⎨ βŽ¬βˆ’βŽͺ βŽͺβŽͺ βŽͺβˆ’βŽ© ⎭

=

is a null matrix{ }RD

Member end actions

{ } { } [ ][ ]{ }M ML M MF FA A S C D∴ = +

Page 51: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

β€’Problem 3

Analyse the beam. Support B has a downward settlement of 30mm. EI=5.6Γ—103 kNm2

[ ]

4 2 0 0 0 02 4 0 0 0 00 0 2 1 0 020 0 1 2 0 060 0 0 0 4 20 0 0 0 2 4

MEIS

⎑ ⎀⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯

= ⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎣ ⎦

Unassembled stiffness matrix

[ ] 2 121 2Mi

EISL

⎑ ⎀= ⎒ βŽ₯

⎣ ⎦Member stiffness matrix of beam member

Page 52: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

Fixed end moments

2525

Equivalent joint loads

2525

Support settlements { }RD(Restraint displacements)

A

BC D30mm 1RD

Free (unknown) joint displacements { }FD

1FD 2FD3FD

Page 53: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

53

BA C D

1 1FD =

0 1 1 0 0 0

and consist of member displacements due to unit displacements on the restrained structure.[ ]MFC [ ]MRC

Page 54: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN54

[ ] [ ] [ ]MJ MF MRC C C= ⎑ ⎀⎣ ⎦

0 0 0 1 31 0 0 1 31 0 0 1 60 1 0 1 60 1 0 00 0 1 0

βˆ’βŽ‘ ⎀⎒ βŽ₯βˆ’βŽ’ βŽ₯⎒ βŽ₯

= ⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎣ ⎦

31 2 1

1 1 11FF F RDD D D

= = ==

A

BC D1 1RD =

1 3βˆ’ 1 3βˆ’ 1 6 1 6 0 0

Page 55: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

55

{ } [ ] { } [ ]{ }1F FF F FR RD S A S Dβˆ’= βˆ’βŽ‘ ⎀⎣ ⎦

Joint displacements

[ ] [ ] [ ][ ]TFF MF M MFS C S C=

0 0 0 4 2 0 0 0 0 0 0 01 0 0 2 4 0 0 0 0 1 0 01 0 0 0 0 2 1 0 0 1 0 00 1 0 0 0 1 2 0 0 0 1 030 1 0 0 0 0 0 4 2 0 1 00 0 1 0 0 0 0 2 4 0 0 1

T

EI

⎑ ⎀ ⎑ ⎀ ⎑ ⎀⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯

= ⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯⎣ ⎦ ⎣ ⎦ ⎣ ⎦

6 1 01 6 2

30 2 4

EI⎑ ⎀⎒ βŽ₯= ⎒ βŽ₯⎒ βŽ₯⎣ ⎦

Page 56: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

[ ] [ ] [ ][ ]TFR MF M MRS C S C=

0 0 0 4 2 0 0 0 0 1 31 0 0 2 4 0 0 0 0 1 31 0 0 0 0 2 1 0 0 1 60 1 0 0 0 1 2 0 0 1 630 1 0 0 0 0 0 4 2 00 0 1 0 0 0 0 2 4 0

T

EI

βˆ’βŽ‘ ⎀ ⎑ ⎀ ⎑ ⎀⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯βˆ’βŽ’ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯

= ⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯⎣ ⎦ ⎣ ⎦ ⎣ ⎦

3 21 2

30

EIβˆ’βŽ§ ⎫βŽͺ βŽͺ= ⎨ ⎬βŽͺ βŽͺ⎩ ⎭

Page 57: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

{ }

16 1 0 0 3 21 6 2 25 1 2 0.03

3 30 2 4 25 0

EI EIβˆ’

βˆ’βŽ› ⎞ ⎑ ⎀⎧ ⎫⎑ ⎀ ⎑ ⎀βŽͺ βŽͺ⎜ ⎟ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯= βˆ’ βˆ’ βˆ’βŽ¨ ⎬⎜ ⎟ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯βŽͺ βŽͺ⎜ ⎟ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯⎩ ⎭⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎣ ⎦

20 4 2 0 0.0453 56004 24 12 25 0.015

116 32 12 35 25 0

EI

βˆ’ ⎑ ⎀⎧ ⎫ ⎧ ⎫⎑ ⎀βŽͺ βŽͺ βŽͺ βŽͺ⎒ βŽ₯⎒ βŽ₯= βˆ’ βˆ’ βˆ’ βˆ’ βˆ’βŽ¨ ⎬ ⎨ ⎬⎒ βŽ₯⎒ βŽ₯ βŽͺ βŽͺ βŽͺ βŽͺ⎒ βŽ₯βˆ’βŽ’ βŽ₯ ⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦

3

16423 108

116 5.6 106

0.0075830.00050.007 311

βˆ’βŽ§ ⎫βŽͺ βŽͺ= =⎨ βŽ¬Γ— Γ— βŽͺ βŽͺ

βˆ’βŽ§ ⎫βŽͺ βŽͺ⎨ ⎬βŽͺ βŽͺ⎩⎩ ⎭⎭

20 4 2 0 843 4 24 12 25 28

1162 12 35 25 0

EI

βˆ’ ⎑ ⎀⎧ ⎫ ⎧ ⎫⎑ ⎀βŽͺ βŽͺ βŽͺ βŽͺ⎒ βŽ₯⎒ βŽ₯= βˆ’ βˆ’ βˆ’ βˆ’ βˆ’βŽ¨ ⎬ ⎨ ⎬⎒ βŽ₯⎒ βŽ₯ βŽͺ βŽͺ βŽͺ βŽͺ⎒ βŽ₯βˆ’βŽ’ βŽ₯ ⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦

{ } [ ] { } [ ]{ }1F FF F FR RD S A S Dβˆ’= βˆ’βŽ‘ ⎀⎣ ⎦

Page 58: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

58

{ } { } [ ]{ } [ ]{ }R RC RF F RR RA A S D S D= βˆ’ + +

Support reactions

[ ]

4 2 0 0 0 0 0 0 02 4 0 0 0 0 1 0 00 0 2 1 0 0 1 0 0

1 3 1 3 1 6 1 6 0 00 0 1 2 0 0 0 1 030 0 0 0 4 2 0 1 00 0 0 0 2 4 0 0 1

EI

⎑ ⎀ ⎑ ⎀⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯

= βˆ’ βˆ’ ⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯⎣ ⎦ ⎣ ⎦

[ ] [ ] [ ][ ]TRF MR M MFS C S C=

[ ]3 2 1 2 03

EI= βˆ’

Page 59: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

{ } { } [ ] { }0.007583

0 3 2 1 2 0 0.0005 0.033 2

0.0031R

EI EIAβˆ’βŽ§ ⎫βŽͺ βŽͺ ⎑ ⎀= βˆ’ + βˆ’ + βˆ’βŽ¨ ⎬ ⎒ βŽ₯⎣ ⎦βŽͺ βŽͺ⎩ ⎭

(Support reaction corresponding to DR . i.e., reaction at B)

( )0.0116 0.045 0.0334 62 53 3

.3EI EI= βˆ’ = βˆ’ βˆ’=

[ ] [ ] [ ][ ]TRR MR M MRS C S C=

[ ]

4 2 0 0 0 0 1 32 4 0 0 0 0 1 30 0 2 1 0 0 1 6

1 3 1 3 1 6 1 6 0 00 0 1 2 0 0 1 630 0 0 0 4 2 00 0 0 0 2 4 0

EI

βˆ’βŽ‘ ⎀ ⎑ ⎀⎒ βŽ₯ ⎒ βŽ₯βˆ’βŽ’ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯

= βˆ’ βˆ’ ⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯⎣ ⎦ ⎣ ⎦

2EI⎑ ⎀= ⎒ βŽ₯⎣ ⎦

Page 60: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN60

{ } { } [ ] [ ]{ } [ ]{ }( )M ML M MF F MR RA A S C D C D= + +

{ } { }

0 4 2 0 0 0 0 0 0 0 1 30 2 4 0 0 0 0 1 0 0 1 3

0.0075830 0 0 2 1 0 0 1 0 0 1 62 0.0005 0.030 0 0 1 2 0 0 0 1 0 1 66

0.003125 0 0 0 0 4 2 0 1 0 025 0 0 0 0 2 4 0 0 1 0

MEIA

βˆ’βŽ›βŽ§ ⎫ ⎑ ⎀ ⎑ ⎀ ⎑ ⎀⎜βŽͺ βŽͺ ⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯βˆ’βŽœβŽͺ βŽͺ ⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯βˆ’βŽ§ ⎫⎜βŽͺ βŽͺ ⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯βŽͺ βŽͺ= + + βˆ’βŽœβŽ¨ ⎬ ⎨ ⎬⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯⎜βŽͺ βŽͺ βŽͺ βŽͺ⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯⎩ ⎭⎜βŽͺ βŽͺ ⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯

βŽͺ βŽͺ ⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯βˆ’βŽ© ⎭ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝

⎞⎟⎟⎟⎟⎟⎟

⎜ ⎟⎜ ⎟⎠

83.755.455.440.3

40.30

⎧ ⎫βŽͺ βŽͺβŽͺ βŽͺβˆ’βŽͺ βŽͺ

⎨ βŽ¬βˆ’βŽͺβŽͺβŽͺ⎩

=βŽͺβŽͺβŽͺ⎭

Member end actions

Page 61: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

61

[ ] [ ][ ] [ ]

FF FR

RF RR

S SS S

⎑ ⎀= ⎒ βŽ₯⎣ ⎦

6 1 0 3 21 6 2 1 20 2 4 033 2 1 2 0 3 2

E Iβˆ’βŽ‘ ⎀

⎒ βŽ₯⎒ βŽ₯=⎒ βŽ₯⎒ βŽ₯βˆ’βŽ£ ⎦

2 0 0 20 1 1 0 0 0 4 0 0 20 0 0 1 1 0 2 1 0 1 20 0 0 0 0 1 1 2 0 1 231 3 1 3 1 6 1 6 0 0 0 4 2 0

0 2 4 0

EI

βˆ’βŽ‘ ⎀⎒ βŽ₯βˆ’βŽ‘ ⎀ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯= ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯βˆ’ βˆ’βŽ£ ⎦⎒ βŽ₯⎣ ⎦

[ ] [ ] [ ][ ]TJ MJ M MJS C S C=

4 2 0 0 0 0 0 0 0 1 30 1 1 0 0 0 2 4 0 0 0 0 1 0 0 1 30 0 0 1 1 0 0 0 2 1 0 0 1 0 0 1 60 0 0 0 0 1 0 0 1 2 0 0 0 1 0 1 631 3 1 3 1 6 1 6 0 0 0 0 0 0 4 2 0 1 0 0

0 0 0 0 2 4 0 0 1 0

EI

βˆ’βŽ‘ ⎀⎑ ⎀⎒ βŽ₯⎒ βŽ₯ βˆ’βŽ‘ ⎀ ⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯= ⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯βˆ’ βˆ’βŽ£ ⎦ ⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎣ ⎦ ⎣ ⎦

Alternatively, if the entire [SJ] matrix is assembled at a time,

Page 62: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

62

[ ] [ ] [ ]MJ MF MRC C C= ⎑ ⎀⎣ ⎦

0 0 0 1 3 1 1 3 0 01 0 0 1 3 0 1 3 0 01 0 0 0 0 1 6 1 6 00 1 0 0 0 1 6 1 6 00 1 0 0 0 0 1 3 1 30 0 1 0 0 0 1 3 1 3

βˆ’βŽ‘ ⎀⎒ βŽ₯βˆ’βŽ’ βŽ₯⎒ βŽ₯βˆ’

= ⎒ βŽ₯βˆ’βŽ’ βŽ₯⎒ βŽ₯βˆ’βŽ’ βŽ₯

βˆ’βŽ’ βŽ₯⎣ ⎦[ ] [ ] [ ][ ]TJ MJ M MJS C S C=

0 0 01 3 1 1 3 0 0 4 2 0 0 0 0 0 0 01 3 1 1 3 0 01 0 01 3 0 1 3 0 0 2 4 0 0 0 0 1 0 01 3 0 1 3 0 01 0 0 0 0 1 6 1 6 0 0 0 2 1 0 0 1 0 0 0 0 1 6 1 6 00 1 0 0 0 1 6 1 6 0 0 0 1 2 0 0 0 1 0 0 0 1 6 1 6 030 1 0 0 0 0 1 3 1 3 0 0 0 0 4 2 0 1 0 0 0 0 1 30 0 1 0 0 0 1 3 1 3 0 0 0 0 2 4 0 0 1

T

EI

βˆ’ βˆ’βŽ‘ ⎀ ⎑ ⎀⎒ βŽ₯ ⎒ βŽ₯βˆ’ βˆ’βŽ’ βŽ₯ ⎒ βŽ₯⎒ βŽ₯βˆ’ βˆ’βŽ’ βŽ₯

= ⎒ βŽ₯ ⎒ βŽ₯βˆ’ βˆ’βŽ’ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯βˆ’βŽ’ βŽ₯ ⎒ βŽ₯βˆ’βŽ’ βŽ₯ ⎣ ⎦⎣ ⎦

1 30 0 0 1 3 1 3

⎑ ⎀⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯βˆ’βŽ’ βŽ₯

βˆ’βŽ’ βŽ₯⎣ ⎦

Alternatively, if ALL possible support settlements are accounted for,

Page 63: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

63

[ ] [ ][ ] [ ]

FF FR

RF RR

S SS S

⎑ ⎀= ⎒ βŽ₯⎣ ⎦

0 1 1 0 0 00 0 0 1 1 0 2 0 0 2 4 2 0 00 0 0 0 0 1 4 0 0 2 2 2 0 0

1 3 1 3 0 0 0 0 2 1 0 0 0 1 2 1 2 01 0 0 0 0 0 1 2 0 0 0 1 2 1 2 031 3 1 3 1 6 1 6 0 0 0 4 2 0 0 0 2 20 0 1 6 1 6 1 3 1 3 0 2 4 0 0 0 2 20 0 0 0 1 3 1 3

EI

⎑ ⎀⎒ βŽ₯ βˆ’βŽ‘ ⎀⎒ βŽ₯ ⎒ βŽ₯βˆ’βŽ’ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ βˆ’βŽ’ βŽ₯⎒ βŽ₯= ⎒ βŽ₯⎒ βŽ₯ βˆ’βŽ’ βŽ₯⎒ βŽ₯ ⎒ βŽ₯βˆ’ βˆ’ βˆ’βŽ’ βŽ₯ ⎒ βŽ₯⎒ βŽ₯βˆ’ βˆ’ βˆ’βŽ£ ⎦⎒ βŽ₯

βˆ’ βˆ’βŽ£ ⎦

6 1 0 2 2 3 2 1 2 01 6 2 0 0 1 2 3 2 20 2 4 0 0 0 2 22 0 0 4 3 2 4 3 0 02 0 0 2 4 2 0 033 2 1 2 0 4 3 2 3 2 1 6 01 2 3 2 2 0 0 1 6 3 2 4 30 2 2 0 0 0 4 3 4 3

EI

βˆ’ βˆ’βŽ‘ ⎀⎒ βŽ₯βˆ’βŽ’ βŽ₯

βˆ’βŽ’ βŽ₯⎒ βŽ₯βˆ’βŽ’ βŽ₯=⎒ βŽ₯βˆ’βŽ’ βŽ₯βˆ’ βˆ’ βˆ’ βˆ’βŽ’ βŽ₯⎒ βŽ₯βˆ’ βˆ’ βˆ’βŽ’ βŽ₯

βˆ’ βˆ’ βˆ’βŽ£ ⎦

Page 64: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

64

{ } [ ] { } [ ]{ }1F FF F FR RD S A S Dβˆ’= βˆ’βŽ‘ ⎀⎣ ⎦

10

6 1 0 0 2 2 3 2 1 2 0 01 6 2 25 0 0 1 2 3 2 2 0.03

3 30 2 4 25 0 0 0 2 2 0

0

EI EIβˆ’βŽ‘ ⎀⎧ ⎫⎒ βŽ₯βŽͺ βŽͺβˆ’ βˆ’βŽ› ⎞ ⎧ ⎫⎑ ⎀ ⎑ ⎀⎒ βŽ₯βŽͺ βŽͺβŽͺ βŽͺ βŽͺ βŽͺ⎜ ⎟⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯= βˆ’ βˆ’ βˆ’ βˆ’βŽ¨ ⎬ ⎨ ⎬⎜ ⎟⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯βŽͺ βŽͺ βŽͺ βŽͺ⎜ ⎟ βˆ’βŽ’ βŽ₯ ⎒ βŽ₯⎩ ⎭⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎒ βŽ₯βŽͺ βŽͺ⎒ βŽ₯βŽͺ βŽͺ⎩ ⎭⎣ ⎦

20 4 2 0 0.0453 56004 24 12 25 0.015

116 32 12 35 25 0

20 4 2 843 4 24 12 3

1162 12 35 25

EI

EI

βˆ’ ⎑ ⎀⎧ ⎫ ⎧ ⎫⎑ ⎀βŽͺ βŽͺ βŽͺ βŽͺ⎒ βŽ₯⎒ βŽ₯= βˆ’ βˆ’ βˆ’ βˆ’ βˆ’βŽ¨ ⎬ ⎨ ⎬⎒ βŽ₯⎒ βŽ₯ βŽͺ βŽͺ βŽͺ βŽͺ⎒ βŽ₯βˆ’βŽ’ βŽ₯ ⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦

βˆ’ βˆ’βŽ§ ⎫⎑ ⎀βŽͺ βŽͺ⎒ βŽ₯= βˆ’ βˆ’ ⎨ ⎬⎒ βŽ₯ βŽͺ βŽͺβˆ’βŽ’ βŽ₯ ⎩ ⎭⎣ ⎦

16423 108

116671

EI

βˆ’βŽ§ ⎫βŽͺ βŽͺ= ⎨ ⎬βŽͺ βŽͺ⎩ ⎭

0.0075830.00050.0031

βˆ’βŽ§ ⎫βŽͺ βŽͺ⎨ ⎬βŽͺ⎩

=βŽͺ⎭

Joint displacements

Page 65: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

65

{ }

0 2 0 0 4 3 2 4 3 0 0 00.0075830 2 0 0 2 4 2 0 0 00.00050 3 2 1 2 0 4 3 2 3 2 1 6 0 0.03

3 30.003150 1 2 3 2 2 0 0 1 6 3 2 4 3 0

50 0 2 2 0 0 0 4 3 4 3 0

REI EIA

βˆ’βŽ§ ⎫ ⎧ ⎫⎑ ⎀ ⎑ ⎀βŽͺ βŽͺ βŽͺ βŽͺ⎒ βŽ₯ ⎒ βŽ₯βˆ’ βˆ’βŽ§ ⎫βŽͺ βŽͺ βŽͺ βŽͺ⎒ βŽ₯ ⎒ βŽ₯βŽͺ βŽͺ βŽͺ βŽͺ βŽͺ βŽͺ= βˆ’ + +βˆ’ βˆ’ βˆ’ βˆ’ βˆ’βŽ’ βŽ₯ ⎒ βŽ₯⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎒ βŽ₯ ⎒ βŽ₯βŽͺ βŽͺ βŽͺ βŽͺ βŽͺ βŽͺβˆ’ βˆ’ βˆ’ βˆ’βŽ© ⎭⎒ βŽ₯ ⎒ βŽ₯βŽͺ βŽͺ βŽͺ βŽͺ⎒ βŽ₯ ⎒ βŽ₯βˆ’ βˆ’ βˆ’ βˆ’βŽͺ βŽͺ βŽͺ βŽͺ⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦

{ } { } [ ]{ } [ ]{ }R RC RF F RR RA A S D S D= βˆ’ + +

{ }

0 28.373 74.6670 28.373 1120 21.653 8450 19.973 9.333

46.29483.62762.34779.3136.5650 13.44 0

RA

βˆ’βŽ§ ⎫ ⎧ ⎫ ⎧ ⎫βŽͺ βŽͺ βŽͺ βŽͺ βŽͺ βŽͺβˆ’βŽͺ βŽͺ βŽͺ βŽͺ βŽͺ βŽͺβŽͺ βŽͺ βŽͺ βŽͺ βŽͺ βŽͺ= βˆ’ + + =βˆ’βŽ¨ ⎬ ⎨ ⎬ ⎨ ⎬βŽͺ βŽͺ βŽͺ βŽͺ βŽͺ βŽͺβˆ’βŽͺ βŽͺ βŽͺ βŽͺ βŽͺ βŽͺβˆ’ βˆ’βŽͺ βŽͺ βŽͺ βŽͺ βŽͺ βŽͺ⎩ ⎭ ⎩ ⎭ ⎩

⎧ ⎫βŽͺ βŽͺβŽͺ βŽͺβŽͺ βŽͺβˆ’βŽ¨ ⎬βŽͺ βŽͺβŽͺ βŽͺβŽͺ⎩ ⎭⎭ βŽͺ

Support reactions

Page 66: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

66

{ } { } [ ] [ ]{ } [ ]{ }( )M ML M MF F MR RA A S C D C D= + +

{ }

0 4 2 0 0 0 0 0 0 0 1 3 1 1 3 0 00 2 4 0 0 0 0 1 0 0 1 3 0 1 3 0 0

0.0075830 0 0 2 1 0 0 1 0 0 0 0 1 6 1 6 02 0.00050 0 0 1 2 0 0 0 1 0 0 0 1 6 1 6 06

0.003125 0 0 0 0 4 2 0 1 0 0 0 0 1 3 1 325 0 0 0 0 2 4 0 0 1 0 0 0

MEIA

βˆ’βŽ§ ⎫ ⎑ ⎀ ⎑ ⎀βŽͺ βŽͺ ⎒ βŽ₯ ⎒ βŽ₯ βˆ’βŽͺ βŽͺ ⎒ βŽ₯ ⎒ βŽ₯ βˆ’βŽ§ ⎫

βˆ’βŽͺ βŽͺ ⎒ βŽ₯ ⎒ βŽ₯ βŽͺ βŽͺ= + +⎨ ⎬ ⎨ ⎬⎒ βŽ₯ ⎒ βŽ₯ βˆ’βŽͺ βŽͺ βŽͺ βŽͺ⎒ βŽ₯ ⎒ βŽ₯ ⎩ ⎭βŽͺ βŽͺ ⎒ βŽ₯ ⎒ βŽ₯ βˆ’βŽͺ βŽͺ ⎒ βŽ₯ ⎒ βŽ₯βˆ’βŽ© ⎭ ⎣ ⎦ ⎣ ⎦

00

0.0300

1 3 1 3

βŽ› ⎞⎑ ⎀⎧ ⎫⎜ ⎟⎒ βŽ₯βŽͺ βŽͺ⎜ ⎟⎒ βŽ₯βŽͺ βŽͺ⎜ ⎟⎒ βŽ₯ βŽͺ βŽͺβˆ’βŽœ ⎟⎨ ⎬⎒ βŽ₯

⎜ ⎟βŽͺ βŽͺ⎒ βŽ₯⎜ ⎟βŽͺ βŽͺ⎒ βŽ₯⎜ ⎟βŽͺ βŽͺ⎒ βŽ₯ ⎩ ⎭⎜ βŽŸβˆ’βŽ£ ⎦⎝ ⎠

{ }

83.755.455.440.3

40.30

MA

⎧ ⎫βŽͺ βŽͺβŽͺ βŽͺβˆ’βŽͺ βŽͺ

⎨ βŽ¬βˆ’βŽͺ βŽͺβŽͺ βŽͺβŽͺ βŽͺ⎩ ⎭

=

Member end actions

Page 67: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

[ ]

2 4 1 4 0 0 0 01 4 2 4 0 0 0 00 0 6 4.8 3 4.8 0 0

20 0 3 4.8 6 4.8 0 00 0 0 0 4 8 2 80 0 0 0 2 8 4 8

MS EI

⎑ ⎀⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯

= ⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎣ ⎦

β€’Problem 4

Unassembled stiffness matrix

Equivalent joint loads

85.33

42.67

1

2

3

Page 68: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

68

β€’ consists of member displacements due to unit displacements on the restrained structure.

[ ]MFC

1 1FD =2 1FD =

[ ]

1 00 10 00 10 10 0

MFC

⎑ ⎀⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯

= ⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎣ ⎦

DF1 DF2=1 =1

Page 69: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

69

{ } [ ] { } [ ]{ }1F FF F FR RD S A S Dβˆ’= βˆ’βŽ‘ ⎀⎣ ⎦

{ } [ ] { }1F FF FD S Aβˆ’= since there are no support displacements.

Joint displacements

[ ] [ ] [ ][ ]TFF MF M MFS C S C=

2 4 1 4 0 0 0 0 1 01 4 2 4 0 0 0 0 0 1

1 0 0 0 0 0 0 0 6 4.8 3 4.8 0 0 0 02

0 1 0 1 1 0 0 0 3 4.8 6 4.8 0 0 0 10 0 0 0 4 8 2 8 0 10 0 0 0 2 8 4 8 0 0

EI

⎑ ⎀ ⎑ ⎀⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯⎑ ⎀

= ⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯⎣ ⎦ ⎒ βŽ₯ ⎒ βŽ₯

⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯⎣ ⎦ ⎣ ⎦

Page 70: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

70

8 44 8

1 0 0 0 0 0 0 200 1 0 1 1 0 0 108

0 80 4

EI

⎑ ⎀⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎑ ⎀

= ⎒ βŽ₯⎒ βŽ₯⎣ ⎦ ⎒ βŽ₯

⎒ βŽ₯⎒ βŽ₯⎣ ⎦

2 11 92

EI ⎑ ⎀= ⎒ βŽ₯

⎣ ⎦

{ } [ ] { }1

1 2 1 01 9 85.3332F FF F

EID S Aβˆ’

βˆ’ βŽ› ⎞⎑ ⎀ ⎧ ⎫∴ = = = ⎨ ⎬⎜ ⎟⎒ βŽ₯

⎣ ⎦ ⎩ ⎭⎝ ⎠

36 4 0 341.3328 14 8 85.333 682.66

10.034272

91203 . 784 0EI EIEI

βˆ’ βˆ’βŽ§ ⎫ ⎧ ⎫⎑ ⎀= = =⎨ ⎬ ⎨ ⎬⎒ βŽ₯βˆ’ ⎩ ⎭ ⎩ ⎭⎣

βˆ’

⎦

⎧ ⎫⎨ ⎬⎩ ⎭

Page 71: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

71

{ } { } [ ] [ ]{ } [ ]{ }( )M ML M MF F MR RA A S C D C D= + +

0 2 4 1 4 0 0 0 0 1 00 1 4 2 4 0 0 0 0 0 1

42.667 0 0 6 4.8 3 4.8 0 0 0 1 10.0391285.333 0 0 3 4.8 6 4.8 0 0 0 0 20.078

0 0 0 0 0 4 8 2 8 0 10 0 0 0 0 2 8 4 8 0 0

EIEI

⎧ ⎫ ⎑ ⎀ ⎑ ⎀βŽͺ βŽͺ ⎒ βŽ₯ ⎒ βŽ₯βŽͺ βŽͺ ⎒ βŽ₯ ⎒ βŽ₯

βˆ’βŽͺ βŽͺ ⎒ βŽ₯ ⎒ βŽ₯ ⎧ ⎫= +⎨ ⎬ ⎨ ⎬⎒ βŽ₯ ⎒ βŽ₯βˆ’ ⎩ ⎭βŽͺ βŽͺ ⎒ βŽ₯ ⎒ βŽ₯βŽͺ βŽͺ ⎒ βŽ₯ ⎒ βŽ₯βŽͺ βŽͺ ⎒ βŽ₯ ⎒ βŽ₯⎩ ⎭ ⎣ ⎦ ⎣ ⎦

is a null matrix{ }RD

0 00 120.47

42.667 200.78185.333 401.568

0 160.6240 80.312

⎧ ⎫ ⎧ ⎫βŽͺ βŽͺ βŽͺ βŽͺβŽͺ βŽͺ βŽͺ βŽͺβŽͺ βŽͺ βŽͺ βŽͺ

= +⎨ ⎬ ⎨ βŽ¬βˆ’βŽͺ βŽͺ βŽͺ βŽͺβŽͺ βŽͺ βŽͺ βŽͺβŽͺ βŽͺ βŽͺ βŽͺ⎩ ⎭ ⎩ ⎭

015.05967.76535.138

20.07810.039

⎧ ⎫βŽͺ βŽͺβŽͺ βŽͺβŽͺ βŽͺ⎨= βŽ¬βˆ’βŽͺ βŽͺβŽͺ βŽͺβŽͺ βŽͺ⎩ ⎭

Member end actions

Page 72: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

72

β€’Homework 2:

32

1

80kNm

3m3m

4m

6m

20kN mC

A

B D

Page 73: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

β€’Problem 5

[ ]

2 1 0 0 0 01 2 0 0 0 00 0 2 1 0 020 0 1 2 0 00 0 0 0 2 10 0 0 0 1 2

MEISL

⎑ ⎀⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯

= ⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎣ ⎦

Unassembled stiffness matrix

Page 74: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

74

[ ]MFC =

0 0 11 0 11 0 00 1 00 1 10 0 1

LL

LL

⎑ ⎀⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎣ ⎦

12

3

DF1 DF2 DF3=1 =1 =1

Page 75: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

75

2 1 0 0 0 0 0 0 11 2 0 0 0 0 1 0 1

0 1 1 0 0 00 0 2 1 0 0 1 0 020 0 0 1 1 00 0 1 2 0 0 0 1 0

1 1 0 0 1 10 0 0 0 2 1 0 1 10 0 0 0 1 2 0 0 1

LL

EIL

L L L LLL

⎑ ⎀ ⎑ ⎀⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯⎑ ⎀⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯= ⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯⎣ ⎦ ⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯⎣ ⎦ ⎣ ⎦

[ ] [ ] [ ][ ]TFF MF M MFS C S C=

1 0 32 0 3

0 1 1 0 0 02 1 020 0 0 1 1 01 2 0

1 1 0 0 1 10 2 30 1 3

LL

EIL

L L L LLL

⎑ ⎀⎒ βŽ₯⎒ βŽ₯⎑ ⎀⎒ βŽ₯⎒ βŽ₯= ⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎣ ⎦ ⎒ βŽ₯⎒ βŽ₯⎣ ⎦

2

4 1 32 1 4 3

3 3 12

LEI LL

L L L

⎑ ⎀⎒ βŽ₯= ⎒ βŽ₯⎒ βŽ₯⎣ ⎦

Page 76: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

76

{ } [ ] { } [ ]{ }1F FF F FR RD S A S Dβˆ’= βˆ’βŽ‘ ⎀⎣ ⎦

{ }

1

2

4 1 3 02 1 4 3 0

3 3 12F

LEID LL

L L L P

βˆ’βŽ› ⎞ ⎧ ⎫⎑ ⎀

βŽͺ βŽͺ⎜ ⎟⎒ βŽ₯= ⎨ ⎬⎜ ⎟⎒ βŽ₯ βŽͺ βŽͺ⎜ ⎟⎒ βŽ₯ ⎩ ⎭⎣ ⎦⎝ ⎠

{ } [ ] { }1F FF FD S Aβˆ’= , since there are no support displacements.

2

13 3 3 03 13 3 0

843 3 5

LL LEI

L L L P

βˆ’ βˆ’ ⎧ ⎫⎑ ⎀βŽͺ βŽͺ⎒ βŽ₯= βˆ’ βˆ’ ⎨ ⎬⎒ βŽ₯ βŽͺ βŽͺβˆ’ βˆ’βŽ’ βŽ₯ ⎩ ⎭⎣ ⎦

233

845

PLEI

L

βˆ’βŽ§ ⎫βŽͺ βŽͺβˆ’βŽ¨ ⎬βŽͺ⎩

=βŽͺ⎭

Joint displacements

Page 77: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

77

{ } { } [ ] [ ]{ } [ ]{ }( )M ML M MF F MR RA A S C D C D= + +

{ }2

2 1 0 0 0 0 0 0 11 2 0 0 0 0 1 0 1

30 0 2 1 0 0 1 0 02 30 0 1 2 0 0 0 1 0 84

50 0 0 0 2 1 0 1 10 0 0 0 1 2 0 0 1

M

LL

EI PLAL EI

LLL

⎑ ⎀ ⎑ ⎀⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯ βˆ’βŽ§ ⎫⎒ βŽ₯ ⎒ βŽ₯ βŽͺ βŽͺ= βˆ’βŽ¨ ⎬⎒ βŽ₯ ⎒ βŽ₯

βŽͺ βŽͺ⎒ βŽ₯ ⎒ βŽ₯ ⎩ ⎭⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯ ⎒ βŽ₯⎣ ⎦ ⎣ ⎦

2

2 1 0 0 0 0 51 2 0 0 0 0 20 0 2 1 0 0 320 0 1 2 0 0 3840 0 0 0 2 1 20 0 0 0 1 2 5

EI PLL EI

⎧ ⎫⎑ ⎀βŽͺ βŽͺ⎒ βŽ₯βŽͺ βŽͺ⎒ βŽ₯βˆ’βŽͺ βŽͺ⎒ βŽ₯

= ⎨ ⎬⎒ βŽ₯ βˆ’βŽͺ βŽͺ⎒ βŽ₯βŽͺ βŽͺ⎒ βŽ₯βŽͺ βŽͺ⎒ βŽ₯⎩ ⎭⎣ ⎦

{ } [ ][ ]{ }M M MF FA S C D=

2

12992984

912

EI PLL EI

⎧ ⎫βŽͺ βŽͺβŽͺ βŽͺβˆ’βŽͺ βŽͺ

= ⎨ βŽ¬βˆ’βŽͺ βŽͺβŽͺ βŽͺβŽͺ βŽͺ⎩ ⎭

433314

34

PL

⎧ ⎫βŽͺ βŽͺβŽͺ βŽͺβˆ’

=βŽͺ βŽͺ⎨ βŽ¬βˆ’βŽͺ βŽͺβŽͺ βŽͺβŽͺ βŽͺ⎩ ⎭

Member end actions

Page 78: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

78

[ ]0.2 0.0 0.00.0 0.2 0.00.0 0.0 0.2

MS⎑ ⎀⎒ βŽ₯= ⎒ βŽ₯⎒ βŽ₯⎣ ⎦

Unassembled stiffness matrix

β€’Problem 6:

1

2

3

50 kN

80 kN

5 m

5 m5 m

4 m 4 m

3 m

3 m

Page 79: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

[ ]MFC =

0.8 -0.6-0.8 0.60.8 0.6

⎑ ⎀⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎣ ⎦

1cos 3

6.87=0.8

36.87

1

23

0.8

10.6

53.13

cos 53.13=0.6

DF1 DF2=1 =1

Page 80: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

80

{ } [ ] { } [ ]{ }1F FF F FR RD S A S Dβˆ’= βˆ’βŽ‘ ⎀⎣ ⎦

{ }2.930 1.302 -501.302 5.208 -80FD ⎧ ⎫⎑ ⎀

= ⎨ ⎬⎒ βŽ₯⎩ ⎭⎣ ⎦

{ } [ ] { }1F FF FD S Aβˆ’= , since there are no support displacements.

-250.651-481.771⎧

=⎫

⎨ ⎬⎩ ⎭

Joint displacements

[ ] [ ] [ ][ ]TFF MF M MFS C S C= 0.384 -0.096

-0.096 0.216⎑ ⎀

= ⎒ βŽ₯⎣ ⎦

Page 81: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

0.2 0.0 0.0 0.8 -0.6250.651

0.0 0.2 0.0 -0.8 0.6481.771

0.0 0.0 0.2 0.8 0.6

⎑ ⎀⎑ βŽ€βˆ’βŽ§ ⎫⎒ βŽ₯⎒ βŽ₯= ⎨ ⎬⎒ βŽ₯⎒ βŽ₯ βˆ’βŽ© ⎭⎒ βŽ₯⎒ βŽ₯⎣ ⎦⎣ ⎦

{ } { } [ ] [ ]{ } [ ]{ }( )M ML M MF F MR RA A S C D C D= + +

[ ][ ]{ }M MF FS C D=

17.70817.70897.917

⎧ ⎫βŽͺ βŽͺβŽ¨βˆ’βŽͺ⎩

= βŽ¬βˆ’ βŽͺ⎭

Member Forces:

Page 82: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

82

β€’Problem 7:

[ ]0.2 0.0 0.00.0 0.5 0.00.0 0.0 0.2

MS⎑ ⎀⎒ βŽ₯= ⎒ βŽ₯⎒ βŽ₯⎣ ⎦

Unassembled stiffness matrix

1

2

3

Page 83: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

[ ]MFC =

0.600 0.8000.000 -1.000-0.600 0.800

⎑ ⎀⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎣ ⎦

1

53.13

5 m

cos 5

3.13=

0.6

0.6

1

053.13

5 m

036.87

cos 36.87=0.8

cos 36.87=0.8 0.8

DF1 DF2=1 =1

Page 84: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN84

{ } [ ] { } [ ]{ }1F FF F FR RD S A S Dβˆ’= βˆ’βŽ‘ ⎀⎣ ⎦

{ }6.944 0.000 15.0000.000 1.323 -10.000FD ⎑ ⎀ ⎧ ⎫

= ⎨ ⎬⎒ βŽ₯⎣ ⎦ ⎩ ⎭

{ } [ ] { }1F FF FD S Aβˆ’= , since there are no support displacements.

104.167-13.228⎧

=⎫

⎨ ⎬⎩ ⎭

Joint displacements

[ ] [ ] [ ][ ]TFF MF M MFS C S C= 0.144 0.000

0.000 0.756⎑ ⎀

=⎒ βŽ₯⎣ ⎦

Page 85: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

{ }0.2 0.0 0.0 0.600 0.800

104.1670.0 0.5 0.0 0.000 -1.000

-13.2280.0 0.0 0.2 -0.600 0.800

MA⎑ ⎀⎑ ⎀

⎧ ⎫⎒ βŽ₯⎒ βŽ₯= ⎨ ⎬⎒ βŽ₯⎒ βŽ₯⎩ ⎭⎒ βŽ₯⎒ βŽ₯⎣ ⎦⎣ ⎦

{ } { } [ ] [ ]{ } [ ]{ }( )M ML M MF F MR RA A S C D C D= + +

{ } [ ][ ]{ }M M MF FA S C D=

10.46.6-14.6

⎧ ⎫βŽͺ βŽͺ⎨ ⎬βŽͺ

=βŽͺ⎩ ⎭

Member Forces:

Page 86: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

[ ] 0.866 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.500

MS⎑ ⎀⎒ βŽ₯= ⎒ βŽ₯⎒ βŽ₯⎣ ⎦

Unassembled stiffness matrix

β€’Problem 8 (Homework 3):

Page 87: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

1

0.8660.51

0.8660.5

[ ]MFC =

0.866 0.500 1.000 0.0000.500 -0.866

⎑ ⎀⎒ βŽ₯⎒ βŽ₯⎒ βŽ₯⎣ ⎦

DF1 DF2=1 =1

Page 88: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

88

{ } [ ] { } [ ]{ }1F FF F FR RD S A S Dβˆ’= βˆ’βŽ‘ ⎀⎣ ⎦

{ }0.577 -0.155 5-0.155 1.732 0FD⎑ ⎀ ⎧ ⎫

= ⎨ ⎬⎒ βŽ₯⎣ ⎦ ⎩ ⎭

{ } [ ] { }1F FF FD S Aβˆ’= , since there are no support displacements.

2.887-0.773⎧ ⎫⎨⎩

= ⎬⎭

Joint displacements

[ ] [ ] [ ][ ]TFF MF M MFS C S C= 1.774 0.158

0.158 0.591⎑ ⎀

= ⎒ βŽ₯⎣ ⎦

Page 89: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

{ } 0.866 0.000 0.000 0.866 0.500

2.887 0.000 1.000 0.000 1.000 0.000

-0.773 0.000 0.000 0.500 0.500 -0.866

MA⎑ ⎀⎑ ⎀

⎧ ⎫⎒ βŽ₯⎒ βŽ₯= ⎨ ⎬⎒ βŽ₯⎒ βŽ₯⎩ ⎭⎒ βŽ₯⎒ βŽ₯⎣ ⎦⎣ ⎦

{ } { } [ ] [ ]{ } [ ]{ }( )M ML M MF F MR RA A S C D C D= + +

{ } [ ][ ]{ }M M MF FA S C D=

1.8302.8871.057

⎧ ⎫βŽͺ βŽͺ⎨ ⎬βŽͺ βŽͺ⎩ ⎭

=

Member Forces:

Page 90: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

90

β€’Homework 4:

AE is constant.

20 kN

1 2 3

600

450

A B C

D

1m

Page 91: Module2 stiffness- rajesh sir

Dept. of CE, GCE Kannur Dr.RajeshKN

91

β€’ Development of stiffness matrices by physical approach –stiffness matrices for truss, beam and frame elements –displacement transformation matrix – development of total stiffness matrix - analysis of simple structures – plane truss beam and plane frame- nodal loads and element loads – lack of fit and temperature effects.

Stiffness method

Summary