Transcript
Page 1: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

Mark Acton (grad)Kathy-Anne Brickman (grad)Louis Deslauriers (grad)Patricia Lee (grad)Martin Madsen (grad)David Moehring (grad)Steve Olmschenk (grad)Daniel Stick (grad)

http://iontrap.physics.lsa.umich.edu/

US Advanced Researchand Development Activity

US Army Research Office

US National Security Agency

National ScienceFoundation

FOCUS FOCUS Center

Boris Blinov (postdoc)Paul Haljan (postdoc)Winfried Hensinger (postdoc)Chitra Rangan (postdoc/theory – to U. Windsor)

Luming Duan (Prof., UM)Jim Rabchuk (Visiting Prof., West. Illinois Univ.)

David Hucul (undergrad)Rudy Kohn (undergrad)Mark Yeo (undergrad)

NSF

Page 2: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

Trapped Atomic Ions IQuantum computing and motional quantum gates

Christopher MonroeFOCUS Center & Department of PhysicsUniversity of Michigan

Page 3: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

“When we get to the very, very small world – say circuits of seven atoms - we have a lot of new things that would happen that represent completely new opportunities for design. Atoms on a small scale behave like nothing on a large scale, for they satisfy the laws of quantum mechanics…”

“There's Plenty of Room at the Bottom”(1959 APS annual meeting)

Richard Feynman

Page 4: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

A quantum computer hosts quantum bits that can store superpositions of 0 and 1

classical bit: 0 or 1 quantum bit: |0 + |1

Benioff (1980)Feynman (1982)

examples of “qubits”:

N

S

N

Sh

V

H

atomsparticlespins

photons

Page 5: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

GOOD NEWS…quantum parallel processing on 2N inputs

Example: N=3 qubits

= a 0 |000 + a 1 |001 + a 2 |010 + a 3 |011 a 4 |100 + a 5 |101 + a 6 |110 + a 7 |111

f(x)

…BAD NEWS…Measurement gives random result

e.g., |101 f(x)

Page 6: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

depends on all inputs

quantumlogic gates

|0 |0 |0 |0|0 |1 |0 |1|1 |0 |1 |1|1 |1 |1 |0

e.g., (|0 + |1)|0 |0|0 + |1|1 quantumXOR gate:

superposition entanglement

|0 |0 + |1|1 |1 |0

quantumNOT gate:

…GOOD NEWS!quantum interference

Page 7: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

Key resource: Quantum Entanglement

• not just a “choice of basis” e.g. vs. |0,0

must be able to access subsystems individually (see Bell )

= ( + )( + ) Contrast = 2|| = 0.5

( i)( i) = or

( i)( i)

Contrast = 2|| = 0.5

= + Contrast = 2|| = 1

• not hard to qualify (entanglement thresholds)

ideal:

Page 8: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

1 = | + |

2 = | + | + | + | + | + |

• very hard to quantify (esp. mixed states)

Classical Information: S(AB) S(A) + S(B)

Quantum Information: S(AB) < S(A) + S(B) possible!

Information Entropy

Page 9: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)
Page 10: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

Quantum computer hardware requirements

1. Must make states like

|000…0 + |111…1

2. Must measure state with high efficiency

•strong coupling to environment

• strong coupling between qubits• weak coupling to environment

xx+

see E. Schrödinger (1935)

Page 11: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

N qubits controlledcoupling

… to >99% accuracy*

* provided things have been done right

Quantum Information and Atomic Physics

N

i

jiN

jiij

ii tgtH

1

)()(

1,

)( ˆˆ)(ˆ)(2

1

Page 12: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

0.3 mm

199Hg+

J. Bergquist, NIST

AarhusBoulder (NIST)Munich (MPQ)HamburgInnsbruck

Los AlamosMcMasterMichiganOxfordTeddington (NPL)

Ion Trap QC Groups:

Trapped Atomic Ions

J. Bergquist (NIST)

|

|

qubit storedinside eachtrapped ion

Page 13: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

2 Cd+ ions

Page 14: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)
Page 15: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

S

P

D

|

|

Ca+, Sr+, Ba+, Yb+

optical(1015 Hz)

1 sec

Energy

Atomic Ion Internal Energy Levels (think: HYDROGEN)

S

P

||

Be+, Mg+, Hg+, Cd+, Zn+

microwave(1010 Hz)

hyperfine qubit levels

Page 16: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

State |

N

S

N

S

Hyperfine Structure: States of relative electron/nuclear spin

State |

S

N

N

S

Page 17: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

111Cd+ atomic structure

1,11,01,-1

0,0

=215nm

2S1/2

2P3/22,22,1

14.53 GHz

|

|

magnetic insensitivequbit (to 2nd order) (400 Hz/G2)·B·B

(1400000 Hz/G)·B

Page 18: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

1,11,01,-1

0,0

=215nm

2S1/2

2P3/22,22,1

14.53 GHz

|

|

/2 = 50 MHz

“bright”

# photons collected in 100 s0 5 10 15 20 25

0

1

Pro

babili

ty111Cd+ qubit measurement

Page 19: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

1,11,01,-1

0,0

=215nm

2S1/2

2P3/22,22,1

14.53 GHz

|

|

/2 = 50 MHz

99.7% detectionefficiency

“dark”

0 5 10 15 20 25

Pro

babili

ty

# photons collected in 100 s

0

1

111Cd+ qubit measurement

Page 20: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

1,11,01,-1

0,0

=215nm

2S1/2

2P3/22,22,1

14.53 GHz

|

|

111Cd+ qubit manipulation: microwaves

microwaves

coupling rate: g

Page 21: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

Time (ms)

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Time (ms)

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

1,11,01,-1

0,0

1,11,01,-1

0,0

Microwave Rabi FloppingP

rob(

10|0

0)P

rob(

11|0

0)

prepare00

wavesmeasure

fluorescence(bright or dark)

: :

sweep g 10100kHz

Page 22: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

(s)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

prepare00

wavesmeasure

fluorescence(bright or dark)

: :increment

“Single shot” Rabi Flopping

Pro

b(10

|00)

Page 23: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

Time (ms)

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Time (ms)

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

1,11,01,-1

0,0

1,11,01,-1

0,0

Microwave Ramsey InteferometryP

rob(|)

Pro

b(|)

prepare00

waves measurefluorescence

: :

sweep

/2 /2

Page 24: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

1,11,01,-1

0,0

=215nm

2S1/2

2P3/22,22,1

14.53 GHz

|

|

/2 = 50 MHz

111Cd+ qubit manipulation: optical Raman transitions

/2 0.1-1 THz

coherent coupling rate (good):gR = g1g2/

direct coupling to P (bad): Rdec = g1g2/

want small (but <FS!)

Page 25: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

0.3 mm J. Bergquist, NIST

Page 26: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

Thanks: R. Blatt, Univ. Innsbruck

40Ca+

Page 27: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

logical |0m

logical |1m

Another Qubit: The quantized motion of a single mode of oscillation

harmonic motion of a collective single mode described byquantum states |nm = |0m, |1m, |2m,..., where E = ħ(n+½)PHONONS: FORMALLY EQUIVALENT TO PHOTONS

motional “data-bus” quantum bit spans |nm = |0m and |1m

•••

01

2

Page 28: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

Coupling (internal) qubits to (external) bus qubit

radiation tuned to 0

| | | | |

| | | | |

|

|

|1m

|0m

|1m

|0m

Page 29: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

•••

01

2

•••

01

2S1/2

P3/2

|

|

excitation on 1st lower (“red”) motional sideband (n=0)

~ few MHz

Page 30: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

•••

01

2

•••

01

2S1/2

P3/2

|

|

excitation on 1st lower (“red”) motional sideband (n=0)

Page 31: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

Mapping: (| + |) |0m | (|0m + |1m)

•••

01

2

•••

01

2S1/2

P3/2

|

|

•••

01

2

•••

01

2S1/2

P3/2

|

|

Page 32: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

Mapping: (| + |) |0m | (|0m + |1m)

•••

01

2

•••

01

2S1/2

P3/2

|

|

•••

01

2

•••

01

2S1/2

P3/2

|

|

Page 33: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

Spin-motion coupling: some math

)21( aa

)ˆ(ˆˆ2

1

2

ˆˆ 22

2

0 xExmm

pH z

interaction frame; “rotating wave approximation”

)ˆˆ( ˆˆ tixiktixik eegH

= L 0 = detuningk = 2 = wavenumber

)(ˆ 0titi eaaexx

mx

20

x0

))(ˆˆ(2

ˆˆ00

tixiktixik LL eeE

frequency ofapplied radiation

Page 34: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

tieaaeikxtieaaeikx titititi

eegH

)()( 00 ˆˆ

stationary terms arise in H at particular values of

“Lamb-Dicke Limit”110 nkx

,n|H0|,n = ħg)ˆˆ(0 gH = 0

“CARRIER”

110 nkx

,n1|H0|,n = ħg n)ˆˆ)(( 01

aakxgH = +

“1ST BLUE SIDEBAND”

110 nkx

,n1|H+1|,n = ħg 1n)ˆˆ)(( 01 aakxgH

= “1ST RED SIDEBAND”

110 nkx

Page 35: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

DopplerCooling

Raman spectrum of single 111Cd+ ion (start in |)

|

|

n=0

0.0

0.5

1.0

P

“Red”Sideband

|,n |,n+1

“Blue”sideband

|,n |,n-1

-3.6 +3.6 (MHz)

nnblue

nnred

ngtPI

ngtPI

)(sin

)1(sin

2

2

sideband strengths:

n

n n

nP

1

thermaloccupationdistribution

Thermometry: 1

n

n

I

I

red

blue

n 6

Page 36: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

n

|

|

Raman Sideband Laser-Cooling

.

n1

. n1

|

|

n1

stimulated Raman ~-pulse on blue sideband

spontaneous Ramanrecycling

.

.

n=-1 n recoil/trap << 1

Page 37: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

DopplerCooling

Raman spectrum of single 111Cd+ ion (3.6 MHz trap)

|

|

n=0

L. Deslauriers et al., Phys. Rev. A 70, 043408 (2004)

Doppler+ Raman Cooling

|

|

n=0

P

0.5

0.0

1.0

n < 0.05

0.0

0.5

1.0

P

“Red”Sideband

|,n |,n+1

“Blue”sideband

|,n |,n-1

n 6

-3.6 +3.6

-3.6 +3.6

(MHz)

(MHz)

x0 ~3 nm

Page 38: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

Heating of asingle Cd+ ion from n0

Delay Time (msec)

0 10 20 30 40 500.0

0.5

1.0

1.5

n

Trap Frequency (MHz)

Heating rate dn/dt(quanta/msec)

1 2 3 4 5 60.01

0.1

1

10

Quadrupole Trap (160 m to nearest electrode)

Linear Trap (100 m to nearest electrode)

Heating Ratedn/dt

(quanta/msec)

Decoherence of Trapped Ion Motion

Page 39: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

40Ca+

199Hg+

111Cd+

Heating history in 3-6 MHz traps

9Be+

Distance to nearest trap electrode [mm]

0.04 0.1 0.2 0.3 0.610-3

10-2

10-1

100

101

102

137Ba+

heating rate (quanta/msec)

137Ba+ IBM-Almaden (2002)

40Ca+ Innsbruck (1999)

199Hg+ NIST (1989)9Be+ NIST (1995-)

111Cd+ Michigan (2003)

Q. Turchette, et. al., Phys. Rev. A 61, 063418-8 (2000)L. Deslauriers et al., Phys. Rev. A 70, 043408 (2004)

Page 40: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

Trap dimension [mm]

0.04 0.1 0.2 0.3 0.610-2

10-1

100

101

102

SE() 10-12 (V/m)2/Hz

40Ca+

199Hg+111Cd+

137Ba+9Be+

1/d4 guide-to-eye

Electric Field Noise History in 3-6 MHz traps

~ 1/d 4

Heating due tofluctuating patch potentials (?)

)(4

2

ES

m

q

d

est. thermal noise

Page 41: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

Quantum Gate Schemes for Trapped Ions

1. Cirac-Zoller2. Mølmer-Sørensen3. Fast Impulsive Gates

Page 42: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

Universal Quantum Logic Gateswith Trapped Ions

Step 1 Laser cool collective motion to rest

Cirac and Zoller, Phys. Rev. Lett. 74, 4091 (1995)

n=0

Page 43: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

Universal Quantum Logic Gateswith Trapped Ions

laser

j k

Step 2 Map jth qubit to collective motion

Cirac and Zoller, Phys. Rev. Lett. 74, 4091 (1995)

Page 44: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

Universal Quantum Logic Gateswith Trapped Ions

laser

j k

Step 3 Flip kth qubit depending upon motion

Cirac and Zoller, Phys. Rev. Lett. 74, 4091 (1995)

|

|10

10

10

10

/2, 2, /2

sign flip ||n=1 only !

2/2

Page 45: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

Universal Quantum Logic Gateswith Trapped Ions

laser

j k

Step 4 Remap collective motion to jth qubit (reverse of Step 1)

Cirac and Zoller, Phys. Rev. Lett. 74, 4091 (1995)

Net result: [|j + |j] |k |j |k + |j|k

n=0

Page 46: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

• CNOT between motion and spin (1 ion): F=85%C.M., et. al., Phys. Rev. Lett. 75, 4714 (1995)

• CNOT between spins of 2 ions: F=71%F. Schmidt-Kaler, et. al., Nature 422, 408-411 (2003).  

Demonstrations of Cirac-Zoller CNOT Gate

Page 47: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

= m + m

During the gate (at some point), the state of an ion qubit and motional bus state is:

Decoherence Kills the Cat

Page 48: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

Direct coupling between | and | with bichromatic excitation ?

uniformillumination

| + ei|2

|

|

g 2

+ = Rabi Freq =

= 0

g 2

Page 49: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

Bichromatic coupling to sidebands

uniformillumination

|, |

|

|

n1n

n+1

n

n

Mølmer/SørensenMilburn/Schneider/James

(1999)

kx0gn+1) 2

kx0gn) 2

+ = Rabi Freq =

=kx0g) 2

as long as kx0n+1<< 1: “Lamb-Dicke regime”)

independentof motion !

1n n

1n n

2ˆ xH

Page 50: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

i

i

e

eMS

MS

i

i

Mølmer/Sørensen 2-ion entangling quantum gate – a “super” /2-pulse

Big improvement –• no focussing required• no n=0 cooling required• less sensitive to heating

|

|

|

|

n1n

n+1

n n

n1n

n+1

Page 51: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

Can scalable to arbitrary N!

|··· |··· + |···

2

e.g., 6 ions

|3,-3 = |

|3,3 = |

|3,-1 = | + ···

|3,1 = | + ···

| J,Jz

Coupling: H = Jx2

flips all pairs of spins

Entangling rate N-1/2

Page 52: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

Four-qubit quantum logic gate

Sackett, et al., Nature 404, 256 (2000)

| | + ei|

Page 53: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

x

p

N=1 ion: Force = F0|| (spin-dependent force)

Same idea in a different basis

ei

( enclosed area)

laser

N=2 ions ei ei

e.g., force on stretch mode only

= /2: -phase gateNIST (2003): 97% Fidelity

2ˆ zH

Page 54: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

Strong Field Impulsive Gates

2S1/2

2P1/2

|

|

+

0,0

1,11,01,-1

0,01,1

1,0

1,-1

e.g. 111Cd+

14.5 GHz

strong coupling: Rabi>> and Rabi~ 1

(a) off-resonant laser pulse; differential AC Stark shift provides qubit-state-dependent impulse

Page 55: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

| | = |’’= linear shift = nonlinear shift = 2Udd/ħ

++

++

“dipole engineering”: Udd = 12/r3 = (e)2/r3

r

| e+i-i/2 | = |’’| e-i-i/2 | = |’’| | = ei|’’

quantum phase gate

(t)

t

sub s

Cirac & Zoller (2000)

Page 56: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

Poyatos, Cirac, Blatt & Zoller, PRA 54, 1532 (1996)Garcia-Ripoll, Zoller, & Cirac, PRL 91, 157901 (2003)

p = 2ħk

| ||e |e

U = ||e2iaa †

| |

|e

| |

|e

-pulseup

-pulsedown

two sequential -pulses

spin-dependent impulse

(b) resonant ultrafast kicks

Page 57: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

The trajectory of a normal motional mode of two ions in phase space under the influence of four photon kicks. Gray curve: free evolution. Black curve: four impulses kick the trajectory in phase space, with an ultimate return to the free trajectory after ~1.08 revolutions.

Page 58: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

2S1/2

2P1/2

| |

+

0,0

1,11,01,-1

=226.5 nm10 psec no

kick

2P3/2

1/(15 fsec) = FS splittinge 3nsec|e

Fast version of z phase gate

does not require Lamb-Dicke regime!

e.g. 111Cd+

require FS << pulse << e

Page 59: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

Summary

Trapped Ions satisfy all “DiVincenzo requirements” for quantum computing:

1. identifiable qubits2. efficient initialization3. efficient measurement4. universal gates5. small decoherence

SO WHAT’S THE PROBLEM?!

Page 60: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)
Page 61: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)
Page 62: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

ENIAC(1946)

Page 63: Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)

Next: Ion Traps and how to scale them!


Recommended