Transcript
Page 1: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

Lecture 7 and 8: Extensional Rheology

Ole Hassager and Qian Huang

Nanjing, August , 2018

Page 2: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

2 DTU Chemical Engineering, Technical University of Denmark

Experimentalscience is the

foundation of all natural science.

National Museum of China, Beijing

A Chinese Nobel laureate:

Page 3: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

Do you know this feeling?

Page 4: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

4 DTU Chemical Engineering, Technical University of Denmark

Page 5: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

5 DTU Chemical Engineering, Technical University of Denmark

Page 6: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

6 DTU Chemical Engineering, Technical University of Denmark

Page 7: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

Perkins, Smith and Chu, Science, 27 June 1997, Volume 276, pp.2016-2021

Page 8: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

8 DTU Chemical Engineering, Technical University of Denmark

Injection Moulding:

Why study extensional rheology?

Page 9: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

9 DTU Chemical Engineering, Technical University of Denmark

Other Polymer processing operations with Extension:

Fibre spinning:

(draw down ratio)

Film blowing:

Page 10: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

10 DTU Chemical Engineering, Technical University of Denmark

"The World's Strongest FibreTM"

Dyneema® is an UHMwPE (Ultra High Molecular weight Polyethylene) fibredeveloped by DSM in the Netherlands

High Strength: On a weight for weight basis, Dyneema® is 15 times stronger than steel wire

Water resistant: Dyneema® is hydrophobic and does not absorb water.

Chemical resistance: Dyneema® is chemically inert.DSM Dyneema’s patent: EP1699954B1.

Page 11: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

Historical:Extensional Rheometer Designs

Meissner and Hostettler (1994), conveyor belt

Meissner (1969), (1971), rotary clamp

Sentmanat (2004): SER

TA: EVF

Münstedt and Laun (1979)

Page 12: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

12 DTU Chemical Engineering, Technical University of Denmark

All materials:

Mass: 𝛻𝛻 � 𝑣𝑣 = 0

Force: 𝜌𝜌 𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝑣𝑣 � 𝛻𝛻 𝑣𝑣 = −𝛻𝛻𝑝𝑝 + 𝛻𝛻 � 𝜎𝜎

Newtonian liquids:

True Stress: 𝜎𝜎 𝑡𝑡 = 𝜇𝜇�̇�𝛾 𝑡𝑡

Viscosity: 𝜇𝜇

Rate-of-deformation tensor: �̇�𝛾 = [𝛻𝛻𝑣𝑣 + 𝛻𝛻𝑣𝑣 † ]

Polymeric liquids:

True Stress: 𝜎𝜎 𝑡𝑡 = 𝜎𝜎{𝑣𝑣 𝑡𝑡′ , 𝑡𝑡′ ∈ −∞; 𝑡𝑡 }

Page 13: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

13 DTU Chemical Engineering, Technical University of Denmark

Shear Flow:

𝑥𝑥1

𝑥𝑥2

Uniaxial Extensional flow:𝑣𝑣1 = − ̇𝜖𝜖𝑥𝑥1/2 𝜎𝜎33 − 𝜎𝜎11 = 𝜂𝜂𝐸𝐸( ̇𝜖𝜖) ̇𝜖𝜖𝑣𝑣2 = − ̇𝜖𝜖𝑥𝑥2/2 ̇𝜖𝜖 ≥ 0𝑣𝑣3 = ̇𝜖𝜖𝑥𝑥3

Shear rate 𝜅𝜅 [1/s]

Hencky strain rate ̇𝜖𝜖 [1/s]

Problem:In general no connection betweenrheometric functions in shear and extension

𝑥𝑥1

𝑥𝑥3

Two basic frequently studied classes of flow:

Page 14: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

14 DTU Chemical Engineering, Technical University of Denmark

Except in small deformations:

𝜎𝜎𝑖𝑖𝑖𝑖 𝑡𝑡 = �𝜕𝜕′=−∞

𝜕𝜕𝐺𝐺 𝑡𝑡 − 𝑡𝑡′ �̇�𝛾𝑖𝑖𝑖𝑖 𝑡𝑡′ 𝑑𝑑𝑡𝑡𝑑

𝐺𝐺(𝑡𝑡 − 𝑡𝑡𝑑): Linear Viscoelastic Relaxation modulus

But polymer processing operations does not involve small deformations!

Page 15: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

15 DTU Chemical Engineering, Technical University of Denmark

Fibre spinning:

(draw down ratio)

Find pressure, velocity, polymer conformation, crystallinity…

Mainlyextensional flow

Mainly shear flow

Rheometry: Determine rheometric functions 𝜂𝜂𝐸𝐸( ̇𝜖𝜖)…

If we can control flow locally and measure stress locally the flow field needs not be homogeneousglobally.

Page 16: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

16 DTU Chemical Engineering, Technical University of Denmark

Homogeneous Extensional Flow

For incompressible liquids, the local Hencky strain of a filament may be calculated from the diameter:

L0

D0

L(t)

D(t)

Hencky Strain:

0

( )L tL

λ =

Stretch Ratio:

Hencky Strain Rate:

Page 17: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

17 DTU Chemical Engineering, Technical University of Denmark

Sentmanat Extensional Rheomter (SER)

Filament Stretching Rheomter (FSR)

0

( )lnzL tL

ε =

0

( )2 ln D tD

ε = −

FSR locally homogeneousin mid-plane

Commercially available extensional rheometers

do not provide globally homogeneous flow :

Extensional Viscosity Fixture (EVF)

Page 18: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

18 DTU Chemical Engineering, Technical University of Denmark

Filament Stretching Rheomter (FSR)

Determination of stress:

𝐷𝐷0 𝐷𝐷0

𝐹𝐹(𝑡𝑡)

𝐹𝐹(𝑡𝑡)

Engineering stress at t: 𝜎𝜎𝐸𝐸 = 𝐹𝐹(𝑡𝑡)/(𝜋𝜋(𝐷𝐷02

)2)

(True) stress in yellow material at t: 𝜎𝜎 = 𝐹𝐹(𝑡𝑡)/(𝜋𝜋 𝐷𝐷 𝜕𝜕2

2)

Page 19: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

Force measured at bottom plate. (correction for gravity may be needed)

www.rheofilament.com

Versatile Accurate Deformation Extensional Rheometer (VADER) provides:

• Local diameter measurement by laser micrometer

• Fast feedback loop for controlled deformation

Page 20: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

20 DTU Chemical Engineering, Technical University of Denmark

Available protocols:

• Constant rate (start-up)

• True Stress Relaxation ̇𝜀𝜀 = 0

• Constant stress (creep)

• Small Amplitude Oscillation

Page 21: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

21 DTU Chemical Engineering, Technical University of Denmark

Filament Stretching

0

( )lnzL tL

ε =

0

( )2 ln D tD

ε = −

Page 22: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

22 DTU Chemical Engineering, Technical University of Denmark

𝜎𝜎(𝑡𝑡) = �−∞

𝜕𝜕𝑀𝑀 𝑡𝑡 − 𝑡𝑡′ 𝜙𝜙 𝐼𝐼1, 𝐼𝐼2 𝐵𝐵 𝑡𝑡, 𝑡𝑡′ 𝑑𝑑𝑡𝑡𝑑

𝜙𝜙 𝐼𝐼1, 𝐼𝐼2 =𝛼𝛼

𝛼𝛼 − 3 + 𝛽𝛽𝑖𝑖1 + (1 − 𝛽𝛽)𝐼𝐼2

What happens at constant stretch rate no feed-back control?

Hassager, Kolte and Renardy

J. Non-Newtonain Fluid Mech., 76, 137-151 (1998)

Page 23: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

23 DTU Chemical Engineering, Technical University of Denmark

What happens at constant stretch rate no feed-back control?

Hassager, Kolte and Renardy

J. Non-Newtonain Fluid Mech., 76, 137-151 (1998)

Hencky strain at failuredecreases with increasing rate

𝑅𝑅𝑠𝑠𝑅𝑅0

Material near plates recoils

𝜀𝜀𝑁𝑁 𝜀𝜀𝑁𝑁

𝐿𝐿 𝑡𝑡 − 𝐿𝐿𝑐𝑐(𝑡𝑡)𝐿𝐿 0 − 𝐿𝐿𝑐𝑐(𝑡𝑡)

Page 24: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

24 DTU Chemical Engineering, Technical University of Denmark

No feedback loop: Viscoelastic InstabilityBoth FSR and SER:

Zhu et al., J. Rheol. (2013) 57: 223

See also Malkin et al., Prog. Poly. Sci. (2014) 39: 959-978

Zhu et al., J. Rheol. (2013) 57: 223

Simulations by e.g. Hassager, Kolte Renardy

Molecularstretching.

Page 25: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

25 DTU Chemical Engineering, Technical University of Denmark

With feed-back control:Steady-state Extensional Flow

Bach et al., Macromolecules (2003) 34: 5174-6179

Nielsen et al., J. Rheol. (2006) 50: 453-476

Bhattacharjee et al., Macromolecules (2002) 35: 10131-10148

PS melts and solutions

Rolie-Poly and Doi-Edwards without stretch:𝜂𝜂𝐸𝐸~ ̇𝜀𝜀−1

Type equation here.

UCM and Gaussian dumbbells:

𝜂𝜂𝐸𝐸 → ∞ for ̇𝜀𝜀 → ∞

Wiest model: 𝜂𝜂𝐸𝐸~ ̇𝜀𝜀−1/2 for ̇𝜀𝜀 → ∞

Page 26: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

26 DTU Chemical Engineering, Technical University of Denmark

• Elongational viscosity of model linear polymers

• Elongational viscosity at processing (PE-A and PE-B)

• Elongational viscosity of model branched polymers

• Stress maximum in branched polymers (creep)

• Stress maximum in branched polymers (SAXS)

• Challenges of Stress Relaxation

• True stress relaxation (SANS)

• Transient free surface viscoelastic flow (FEM)

Page 27: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

27 DTU Chemical Engineering, Technical University of Denmark

Steady-state Extensional Flow

Tube model parameters:Number of entanglements per chain: Z

Number of Kuhn steps per entanglement: Ne

Entanglement Relaxation time: τe

Page 28: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

28 DTU Chemical Engineering, Technical University of Denmark

Steady-state Extensional Flow

10-5 10-4 10-3 10-2 10-1103

104

105

.

PS-285k (Z=21.4) PS-545k/4k-52 (Z=21.6) PS-900k/4k-33 (Z=22.5) PS-1760k/4k-18 (Z=22.8) PS-3280k/4k-13 (Z=22.2)

η E / (G

0 N τc)

ετc

Bhattacharjee et al.(2002)

Bach et al.(2003)

Wid = 1 WiR = 1

Number of entanglements per chain: Z

Entanglement Relaxation time: τe

Number of Kuhn steps per entanglement: Ne

0 1 2 3 4 5 6 7104

105

106

107

WiR=6.10

WiR=2.03

WiR=0.61

WiR=0.20

<σzz

−σrr>

[Pa]

ε

PS-285k, Z=21

0 1 2 3 4 5 6 7103

104

105

106

107PS-1760k/4k-17, Z=21

ε

<σzz

−σrr>

[Pa]

WiR=10.31

WiR=3.43

WiR=1.03

WiR=0.34

WiR=0.21

Page 29: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

29 DTU Chemical Engineering, Technical University of Denmark

Steady-state Extensional Flow

Number of entanglements per chain: Z

Entanglement Relaxation time: τe

Number of Kuhn steps per entanglement: Ne

Reduction of monomeric frictionIanniruberto et al.(2012) & Yaoita et al.(2012):

10-1 100 101100

101

102

Solution-4k Solution-2k Solution-1k

/ (G

0 N τ R)

− η stea

dy

τR

Page 30: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

30 DTU Chemical Engineering, Technical University of Denmark

Steady-state Extensional Flow

PS melts & PMMA solutions

Z

Ne

τe

Page 31: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

31 DTU Chemical Engineering, Technical University of Denmark

Steady-state Extensional Flow

PS melts & PMMA solutions

Z

Ne

τe

Similar monomeric friction

Page 32: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

32 DTU Chemical Engineering, Technical University of Denmark

Steady-state Fracture

Fracture occurs on a fast time scale to make direct visual observations impossible

10-1 100 101100

101

102

Solution-4k Solution-2k Solution-1k

/ (G

0 N τ R)

− η stea

dy

τR0 1 2 3 4 5 6

103

104

105

106

107

WiR=32.4 WiR=11.3

WiR=6.5

WiR=3.2

WiR=1.1

ε

<σzz

−σrr>

[Pa]

PS-900k/4k-33, Z=22

Page 33: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

33 DTU Chemical Engineering, Technical University of Denmark

• Elongational viscosity of model linear polymers

• Elongational viscosity at processing (PE-A and PE-B)

• Elongational viscosity of model branched polymers

• Stress maximum in branched polymers (creep)

• Stress maximum in branched polymers (SAXS)

• Challenges of Stress Relaxation

• True stress relaxation (SANS)

• Transient free surface viscoelastic flow (FEM)

Page 34: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

34 DTU Chemical Engineering, Technical University of Denmark

Q. Huang et al., Rheol. Acta (2016)

Comparison of two commercial polyethylene samples

(PE-A and PE-C) both at 150C.

Extensional stress growth coefficient as function of time. Strain rate (from left to right): 1.0, 0.6, 0.4, 0.25, 0.15, 0.1, 0.06, 0.04, 0.025, and 0.01 (1/s).

Page 35: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

35 DTU Chemical Engineering, Technical University of Denmark

Extensional stress as function of strain. Strain rate (top to bottom): 1.0, 0.6, 0.4, 0.25, 0.15, 0.1, 0.06, 0.04, 0.025, and 0.01 (1/s).

Q. Huang et al., Rheol. Acta (2016)

Comparison of two commercial polyethylene samples

(PE-A and PE-C) both at 150C.

Page 36: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

36 DTU Chemical Engineering, Technical University of Denmark

Q. Huang et al., Rheol. Acta (2016)

Steady extensional viscosity (𝜂𝜂𝐸𝐸) as function of strain rate ̇𝜖𝜖.

Comparison of two commercial polyethylene samples

(PE-A and PE-C) both at 150C.

Page 37: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

37 DTU Chemical Engineering, Technical University of Denmark

• Elongational viscosity of model linear polymers

• Elongational viscosity at processing (PE-A and PE-B)

• Elongational viscosity of model branched polymers

• Stress maximum in branched polymers (creep)

• Stress maximum in branched polymers (SAXS)

• Challenges of Stress Relaxation

• True stress relaxation (SANS)

• Transient free surface viscoelastic flow (FEM)

Page 38: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

38 DTU Chemical Engineering, Technical University of Denmark

Comparison of model branchedpolymers:

Lin180180k

90k 90k 90k 90k

90k20k

Star20 Star90

Agostini et al., European Polymer Journal 49, 2769-2784(2013)

Rouse time: 85s at 130

Page 39: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

39 DTU Chemical Engineering, Technical University of Denmark

Linear Viscoelasticity

180k

90k 90k

90k

10-4 10-3 10-2 10-1 100 101 102

103

104

105

106

PS-Lin180

PS-Star90

TTS at 130°C

G', G

'' [Pa

]

ω [rad/s]

Page 40: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

40 DTU Chemical Engineering, Technical University of Denmark

Linear Viscoelasticity

180k

90k 90k

20k

10-4 10-3 10-2 10-1 100 101 102

103

104

105

106

PS-Lin180 PS-Star20

TTS at 130°C

G', G

'' [Pa

]

ω [rad/s]

Page 41: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

41 DTU Chemical Engineering, Technical University of Denmark

Extensional Flow

100 101 102 103 104

106

107

108

109

0.2s-1

Uniaxial extension at 130°C

0.0003s-1

0.003s-1

0.01s-1

0.03s-1

Star90 LVE envelope

− η+ [Pa.

s]

t [s]

0.1s-1

11/ 0.012sRτ −≈

Page 42: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

42 DTU Chemical Engineering, Technical University of Denmark

Extensional Flow

100 101 102 103 104

106

107

108

109

0.2s-1

Uniaxial extension at 130°C

0.0003s-1

0.003s-1

0.01s-1

0.03s-1

Star20 Star90 LVE envelope

− η+ [Pa.

s]

t [s]

0.1s-1

11/ 0.012sRτ −≈

Page 43: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

43 DTU Chemical Engineering, Technical University of Denmark

Extensional Flow

100 101 102 103 104

106

107

108

109

0.2s-1

Uniaxial extension at 130°C

0.0003s-1

0.003s-1

0.01s-1

0.03s-1

Lin180

Star90 LVE envelope

− η+ [Pa.

s]

t [s]

0.1s-1

11/ 0.012sRτ −≈

Page 44: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

44 DTU Chemical Engineering, Technical University of Denmark

Steady state

10-3 10-2 10-1 100 101 102

108

109

3η0 of Star90

3η0 of Star20

− η stea

dy [P

a.s]

Lin180 Star20 Star90

τR

3η0 of Lin180

-0.5

Entangled star PS behave like linear PS in the steady state of fast elongational flow

Page 45: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

45 DTU Chemical Engineering, Technical University of Denmark

• Elongational viscosity of model linear polymers

• Elongational viscosity at processing (PE-A and PE-B)

• Elongational viscosity of model branched polymers

• Stress maximum in branched polymers (creep)

• Stress maximum in branched polymers (SAXS)

• Challenges of Stress Relaxation

• True stress relaxation (SANS)

• Transient free surface viscoelastic flow (FEM)

Page 46: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

46 DTU Chemical Engineering, Technical University of Denmark

Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene melts, by H.K. Rasmussen, Nielsen, Bach and Hassager, J. Rheol. (2005)

Stress growth coefficient for BASF Lupolen 1840D and 3020D observed with first feedback loop on plate motion:

Page 47: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

47 DTU Chemical Engineering, Technical University of Denmark

Page 48: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

48 DTU Chemical Engineering, Technical University of Denmark

Creep compliance: J(t) = є(t)/ơ

Page 49: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

49 DTU Chemical Engineering, Technical University of Denmark

Compliance: Comparison shear vs. extension:

Page 50: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

50 DTU Chemical Engineering, Technical University of Denmark

Comparison constant stress (creep) vs. constant strain rate:

Page 51: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

51 DTU Chemical Engineering, Technical University of Denmark

Comparison constant stress (creep) vs. constant strain rate:

Alvarez et al., Physical Review Letters, (2013).

Page 52: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

52 DTU Chemical Engineering, Technical University of Denmark

• Elongational viscosity of model linear polymers

• Elongational viscosity at processing (PE-A and PE-B)

• Elongational viscosity of model branched polymers

• Stress maximum in branched polymers (creep)

• Stress maximum in branched polymers (SAXS)

• Challenges of Stress Relaxation

• True stress relaxation (SANS)

• Transient free surface viscoelastic flow (FEM)

Page 53: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

53 DTU Chemical Engineering, Technical University of Denmark

www.rheofilament.com

Oven surroundingsample can be lifted up for rapid quenching of

sample

Knob for lifting oven

VADER 1000

Page 54: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

54 DTU Chemical Engineering, Technical University of Denmark

SAXS (top) and WAXD (bottom) patterns of LDPE filaments quenched at various stress (a) 30, (b) 126, (c) 262, and (d) 518 kPa. All filaments have been elongated at T = 130C, and flow direction is vertical.

Wingstrand et al., Macromolecules (2017)

Ex-Situ X-ray Measurements on quenched filaments:

Aligned lamellaeplanes perpendicular to flow (vertical) direction (kebabs) with some variation in spacing.

Page 55: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

55 DTU Chemical Engineering, Technical University of Denmark

Wingstrand et al., Macromolecules (2017)

Visual appearance of SAXS patterns suggest correlation with stress (before and after maximum).

The X-ray wavelength was 1.54 Å for both WAXD and SAXS while the distance to the detector was ∼118 mm for the WAXD measurements and either ∼1020 or ∼2240 mm for the SAXS measurements.

Page 56: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

56 DTU Chemical Engineering, Technical University of Denmark

Herman’s orientation factor vs stress at quench. All samples have been stretched at T = 130C except (green) which have been stretched at varying T from 110 to 130C.

Herman’s orientation factor vs average stretch of the backbone for the two highest Maxwell models. Vertical lines indicate regions of different morphologies.

Herman’s orientation factor for SAXS patterns confirm uniquerelation between stress before quench and crystalline orientation.

Wingstrand et al., Macromolecules (2017)

Page 57: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

57 DTU Chemical Engineering, Technical University of Denmark

• Elongational viscosity of model linear polymers

• Elongational viscosity at processing (PE-A and PE-B)

• Elongational viscosity of model branched polymers

• Stress maximum in branched polymers (creep)

• Stress maximum in branched polymers (SAXS)

• Challenges of Stress Relaxation

• True stress relaxation (SANS)

• Transient free surface viscoelastic flow (FEM)

Page 58: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

58 DTU Chemical Engineering, Technical University of Denmark

Evolution of filament diameter, D(t), and plate separation, L(t), for an elongationalrate of 0.03 s−1 at 120C, stretched for 100 s and then relaxed. D0=3.40 mm and L0=8.82 mm.

Failure by necking after about 60 s relaxation.

Nielsen et al., J. Rheol. (2008)

Sample: NMMD polystyrene

Mw = 145 kg/mol, 120C.

The incorrect stress relaxation experiment: ̇𝜖𝜖𝑁𝑁 = 0

No feed-back control

Page 59: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

59 DTU Chemical Engineering, Technical University of Denmark

Note: The true stress actually increases with time in (some) uncontrolledstress relaxation experiments!

How do you report stress in uncontrolled stress relaxation experiments?

• True stress?

• Engineering stress?

J. Rheol. 524, 885-899 July/August 2008 0148-6055

Stress relaxation after 𝜖𝜖 = 3

Total time 14400 s = 4 h

The incorrect stress relaxation experiment: ̇𝜖𝜖𝑁𝑁 = 0

Page 60: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

60 DTU Chemical Engineering, Technical University of Denmark

• Elongational viscosity of model linear polymers

• Elongational viscosity at processing (PE-A and PE-B)

• Elongational viscosity of model branched polymers

• Stress maximum in branched polymers (creep)

• Stress maximum in branched polymers (SAXS)

• Challenges of Stress Relaxation

• True stress relaxation (SANS)

• Transient free surface viscoelastic flow (FEM)

Page 61: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

61 DTU Chemical Engineering, Technical University of Denmark

Evolution of plate separation L(t) and mid-filament diameter D(t).

145 kg/mol polystyrene at 120 C.

Elongation rate 0.03 s-1 for 0 < t < 100 s.

For t > 100 s the plates are either held fixed (left) or controlled to keepmid-filament diameter constant (right)

D0=3.40 mm, L0=8.82mm

The correct stress relaxation experiment: ̇𝜖𝜖 = 0

Page 62: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

62 DTU Chemical Engineering, Technical University of Denmark

145 kg/mol polystyrene at 120 C. Elongation rate 0.03 s-1 for 100 s.

Samples quenched after [0, 7, 47, 126, 350, 3000, 7000] s of relaxation

Page 63: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

K.Mortensen, Q.Huang, O. Hassager, J. Kirkensgaard, K. Almdal, C. Garvey

Anine Borger, PhD student, Niels Bohr Institute.AERC 2018, Sorrento, April 18th

Star polymer relaxation after fast extensional flow using neutrons

Page 64: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

64 DTU Chemical Engineering, Technical University of Denmark

Filament stretch rheometer

Hencky strain

Control scheme:•Stretch at constant Hencky strain rate

•Stress relaxation at constant Hencky strain

21/08/201864

A. Bach et al, J. Rheol., 47(2), 429-441 (2003)

Page 65: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

65 DTU Chemical Engineering, Technical University of Denmark

Branched polymers behave like linear in steady state of fast extensional flow

21/08/201865

Q. Huang et al. Macromolecules 2016, 49, 6694-6699

Page 66: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

66 DTU Chemical Engineering, Technical University of Denmark

The relaxation of star and linear polymers differ at long time scales

21/08/201866

Q. Huang et al. Macromolecules 2016, 49, 6694-6699

I : < 15 sII: 15-500 s

III: >500 s

Page 67: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

67 DTU Chemical Engineering, Technical University of Denmark

Two model sample series for neutron scattering

21/08/201867

Random deuterated End-deuteratedArm length 100 kWiR 27Relaxation times (s) 0, 10, 100, 1000,

fully0, 5, 200, 4000, fully

I : < 15 sII: 15-500 s

III: >500 s

Page 68: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

68 DTU Chemical Engineering, Technical University of Denmark

Neutron scattering data: Setup

21/08/201868

Page 69: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

69 DTU Chemical Engineering, Technical University of Denmark

Neutron scattering: Correlations and sizes

21/08/201869

Page 70: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

70 DTU Chemical Engineering, Technical University of Denmark

Neutron scattering: Correlations and sizes

21/08/201870

Page 71: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

71 DTU Chemical Engineering, Technical University of Denmark

Neutron scattering: Correlations and sizes

21/08/201871

•Characteristic distances in the sample give peaks in intensity

•Scattering maps reciprocal space

Page 72: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

72 DTU Chemical Engineering, Technical University of Denmark

Neutron scattering: Correlations and sizes

21/08/201872

•Characteristic distances in the sample give peaks in intensity

•Scattering maps reciprocal space

•Scattering vector

Page 73: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

73 DTU Chemical Engineering, Technical University of Denmark

Random-deuterated stars

21/08/201873

0 s 10 s

100 s 1000 s

Fully relaxed

PSI: SANS-I

Page 74: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

74 DTU Chemical Engineering, Technical University of Denmark

End-deuterated stars: Expectation

21/08/201874

Page 75: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

75 DTU Chemical Engineering, Technical University of Denmark

End-deuterated stars

21/08/201875

0 s 5 s

200 s 4000 s

Fully relaxed

0s and fully relaxed: K. Mortensen et al., accepted for publication(2018) ANSTO: QUOKKA

Page 76: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

76 DTU Chemical Engineering, Technical University of Denmark

Polystyrene: 𝑎𝑎 = 85 Å

Total length: 2 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏 = 4960 Å

Length of oriented tubes: 2 𝑍𝑍𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 = 1040 Å

Measured axial diatance: 1300 Å

Measured transverse distance: 100 Å

Conclusions:

Oriented tube elements with small stretching.

Arms more or less inside one tube section.

Page 77: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

77 DTU Chemical Engineering, Technical University of Denmark

• Elongational viscosity at processing (PE-A and PE-B)

• Molecular extensional rheology (model polymers)

• Stress maximum in branched polymers (creep)

• Stress maximum in branched polymers (SAXS)

• Challenges of Stress Relaxation

• True stress relaxation (SANS)

• Transient free surface viscoelastic flow (FEM)

Page 78: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

78 DTU Chemical Engineering, Technical University of Denmark

All materials:

Mass: 𝛻𝛻 � 𝑣𝑣 = 0

Force: 𝜌𝜌 𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝑣𝑣 � 𝛻𝛻 𝑣𝑣 = −𝛻𝛻𝑝𝑝 + 𝛻𝛻 � 𝜎𝜎

Newtonian liquids:

True Stress: 𝜎𝜎 𝑡𝑡 = 𝜇𝜇�̇�𝛾 𝑡𝑡

Viscosity: 𝜇𝜇

Rate-of-deformation tensor: �̇�𝛾 = [𝛻𝛻𝑣𝑣 + 𝛻𝛻𝑣𝑣 † ]

Polymeric liquids:

True Stress: 𝜎𝜎 𝑡𝑡 = 𝜎𝜎{𝑣𝑣 𝑡𝑡′ , 𝑡𝑡′ ∈ −∞; 𝑡𝑡 }

Page 79: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

79 DTU Chemical Engineering, Technical University of Denmark

All materials:

Mass: 𝛻𝛻 � 𝑣𝑣 = 0

Force: 𝜌𝜌 𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝑣𝑣 � 𝛻𝛻 𝑣𝑣 = −𝛻𝛻𝑝𝑝 + 𝛻𝛻 � 𝜎𝜎

Polymeric liquids:

True Stress: 𝜎𝜎 𝑡𝑡 = 𝜎𝜎{𝑣𝑣 𝑡𝑡′ , 𝑡𝑡′ ∈ −∞; 𝑡𝑡 }

Simulations of transient viscoelastic flow:

Lagrangian finite element method.

Yu, Marin, Rasmussen and Hassager,

J. Non-Newtonian Fluid Mech. 165 (2010)

Page 80: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

80 DTU Chemical Engineering, Technical University of Denmark

Page 81: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

Wang, Boukani, Wang and Wang, PRL 99, 237801 (2007)SER fixture coupled to an Anton Paar MCR 301 rotational rheometer.

Relaxation with ̇𝜖𝜖𝑁𝑁 = 0 constant nominal Hencky strain mayresult in highly inhomogeneous flow and necking.

2D planar simulation by

Lyhne, Rasmussen and Hassager

PRL 102, 138301 (2009)

Necking close to cylinder:

Page 82: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

82 DTU Chemical Engineering, Technical University of Denmark

3D simulation of inhomogeneous ”stress reaxation” by Yu, Marin, Rasmussen and Hassager, J. Non-Newtonian Fluid Mech. (2010).

Page 83: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

83 DTU Chemical Engineering, Technical University of Denmark

Yu, Marin, Rasmussen

3D simulation of inhomogeneous ”stress reaxation” by Yu, Marin, Rasmussen and Hassager, J. Non-Newtonian Fluid Mech. (2010).

Page 84: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

84 DTU Chemical Engineering, Technical University of Denmark

Influence of non-linear material behavior on inhomogeneous deformation in dual-drum wind-up apparatus.

Left: neo-Hookeanrubber material

Right: Doi-Edwards (independent alignment) tube model.

Page 85: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

85 DTU Chemical Engineering, Technical University of Denmark

The Danish Council for Independent Research

The Aage and Johanne Louis-Hansen Foundation

The European Science Foundation

The Otto Mønsted Foundation

The work was funded by:

Page 86: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

86 DTU Chemical Engineering, Technical University of Denmark

Nominal Hencky strain as function of true Henckystrain for constant rate experiment with LDPE.

Nominal Hencky strain as function of true Henckystrain for constant rate experiment with polystyrenesolution.

Nominal Hencky strain: 𝜀𝜀𝑧𝑧 = ln(𝐿𝐿(𝑡𝑡)/𝐿𝐿0)

True Hencky strain: 𝜖𝜖 = 2 ln 𝐷𝐷0/𝐷𝐷(𝑡𝑡)

(Similar difference between Engineering stress vs. true stress.)

Page 87: Lecture 7 and 8: Extensional Rheology · DTU Chemical Engineering, Technical University of Denmark. Steady-state Extensional Flow. 10-5. 10-4. 10-3. 10-2. 10-1. 10. 3. 10. 4. 10

Historical:Extensional Rheometer Designs

Meissner and Hostettler (1994), conveyor belt

Meissner (1969), (1971), rotary clamp

Sentmanat (2004): SER

TA: EVF

Münstedt and Laun (1979)


Recommended