Transcript
Page 1: Lecture 12: Parametric Signal Modeling XILIANG LUO 2014/11 1

1

Lecture 12: Parametric Signal ModelingXILIANG LUO2014/11

Page 2: Lecture 12: Parametric Signal Modeling XILIANG LUO 2014/11 1

Discrete Time Signals Mathematically, discrete-time signals can be expressed as a sequence of numbers

In practice, we obtain a discrete-time signal by sampling a continuous-time signal as:

where T is the sampling period and the sampling frequency is defined as 1/T

Page 3: Lecture 12: Parametric Signal Modeling XILIANG LUO 2014/11 1

Representation of Sequences by FT Many sequences can be represented by a Fourier integral as follows:

x[n] can be represented as a superposition of infinitesimally small complex exponentials

Fourier transform is to determine how much of each frequency component is used to synthesize the sequence

π‘₯ [𝑛 ]= 12πœ‹ ∫

βˆ’πœ‹

πœ‹

𝑋 (𝑒 𝑗 πœ” )𝑒 π‘—πœ”π‘›π‘‘πœ”

𝑋 (𝑒 π‘—πœ” )=βˆ‘π‘›

❑

π‘₯[𝑛]π‘’βˆ’ π‘—πœ”π‘›

Page 4: Lecture 12: Parametric Signal Modeling XILIANG LUO 2014/11 1

Z-Transform

a function of the complex variable: z

If we replace the complex variable z by , we have the Fourier Transform!

Page 5: Lecture 12: Parametric Signal Modeling XILIANG LUO 2014/11 1

Periodic Sequence Discrete Fourier Series

For a sequence with period N, we only need N DFS coefs

Page 6: Lecture 12: Parametric Signal Modeling XILIANG LUO 2014/11 1

Discrete Fourier Transform

DFT is just sampling the unit-circle of the DTFT of x[n]

Page 7: Lecture 12: Parametric Signal Modeling XILIANG LUO 2014/11 1

7

Parametric Signal Modeling

A signal is represented by a mathematical model which has a Predefined structure involving a limited number of parameters.

A given signal is represented by choosing the specific set ofparameters that results in the model output being as closeas possible in some prescribed sense to the given signal.

Page 8: Lecture 12: Parametric Signal Modeling XILIANG LUO 2014/11 1

8

Parametric Signal Modeling

LTIH(z)

v[n] s’[n]

Page 9: Lecture 12: Parametric Signal Modeling XILIANG LUO 2014/11 1

9

All-Pole Modeling𝐻 (𝑧 )= 𝐺

1βˆ’βˆ‘π‘˜=1

𝑝

π‘Žπ‘˜ π‘§βˆ’π‘˜

οΏ½Μ‚οΏ½ [𝑛 ]=βˆ‘π‘˜=1

𝑝

π‘Žπ‘˜ οΏ½Μ‚οΏ½ [π‘›βˆ’π‘˜ ]+𝐺𝑣 [𝑛]

All-pole model assumes the signal can be approximated as a linearcombination of its previous values!

this modeling is also called: linear prediction

Page 10: Lecture 12: Parametric Signal Modeling XILIANG LUO 2014/11 1

10

All-Pole Modeling Least Squares Approximation

οΏ½Μ‚οΏ½ [𝑛 ]=βˆ‘π‘˜=1

𝑝

π‘Žπ‘˜ οΏ½Μ‚οΏ½ [π‘›βˆ’π‘˜ ]+𝐺𝑣 [𝑛]

min βˆ‘π‘›=βˆ’βˆž

∞

(𝑠 [𝑛 ]βˆ’ οΏ½Μ‚οΏ½[𝑛] )2

Page 11: Lecture 12: Parametric Signal Modeling XILIANG LUO 2014/11 1

11

All-Pole Modeling Least Squares Inverse Model

𝐻 (𝑧 )= 𝐺

1βˆ’βˆ‘π‘˜=1

𝑝

π‘Žπ‘˜ π‘§βˆ’π‘˜ 𝐴 (𝑧 )=1βˆ’βˆ‘

π‘˜=1

𝑝

π‘Žπ‘˜π‘§βˆ’π‘˜

LTIA(z)

s[n] g[n]

Page 12: Lecture 12: Parametric Signal Modeling XILIANG LUO 2014/11 1

12

All-Pole Modeling Least Squares Inverse Model

LTIA(z)

s[n] g[n]

𝑔 [𝑛 ]=𝑠 [𝑛 ]βˆ’βˆ‘π‘˜=1

𝑝

π‘Žπ‘˜π‘  [π‘›βˆ’π‘˜ ]

οΏ½Μ‚οΏ½ [𝑛 ]=𝑔 [𝑛 ]βˆ’πΊπ‘£ [𝑛]

Page 13: Lecture 12: Parametric Signal Modeling XILIANG LUO 2014/11 1

13

All-Pole Modeling Least Squares Inverse Model

min β„°=⟨|οΏ½Μ‚οΏ½ [𝑛 ]|2 ⟩

οΏ½Μ‚οΏ½ [𝑛 ]=𝑔 [𝑛]βˆ’πΊπ‘£ [𝑛]

β„°=βŸ¨π‘’2[𝑛 ]⟩+𝐺2 βŸ¨π‘£2[𝑛] βŸ©βˆ’2G βŸ¨π‘£ [𝑛 ]𝑒[𝑛] ⟩

βˆ‘π‘˜=1

𝑝

π‘Žπ‘˜ βŸ¨π‘  [π‘›βˆ’π‘– ] 𝑠[π‘›βˆ’π‘˜] ⟩=βŸ¨π‘  [π‘›βˆ’ 𝑖 ] 𝑠 [𝑛]⟩

Yule-Walker equations

Page 14: Lecture 12: Parametric Signal Modeling XILIANG LUO 2014/11 1

14

Linear Predictor𝑒 [𝑛 ]=𝑠 [𝑛 ]βˆ’βˆ‘

π‘˜=1

𝑝

π‘Žπ‘˜π‘  [π‘›βˆ’π‘˜]

1. if input v[n] is impulse, the prediction error is zero2. if input v[n] is white, the prediction error is white

Linear Predictor

+s[n]

s’[n]

e[n]

-

Page 15: Lecture 12: Parametric Signal Modeling XILIANG LUO 2014/11 1

15

Deterministic Signal

Minimize total error energy will render the following definitions:

min β„°=⟨|οΏ½Μ‚οΏ½ [𝑛 ]|2 ⟩

βˆ‘π‘˜=1

𝑝

π‘Žπ‘˜ βŸ¨π‘  [π‘›βˆ’π‘– ] 𝑠[π‘›βˆ’π‘˜] ⟩=βŸ¨π‘  [π‘›βˆ’ 𝑖 ] 𝑠 [𝑛]⟩

πœ™π‘ π‘  [𝑖 ,π‘˜ ] :=βˆ‘π‘›

❑

𝑠 [𝑛 ] ΒΏΒΏ

βˆ‘π‘˜=1

𝑝

π‘Žπ‘˜π‘Ÿπ‘ π‘  [ π‘–βˆ’π‘˜ ]=π‘Ÿπ‘ π‘  [𝑖 ]

Page 16: Lecture 12: Parametric Signal Modeling XILIANG LUO 2014/11 1

16

Random Signal

Minimize expected error energy will render the following definitions:

min β„°=⟨|οΏ½Μ‚οΏ½ [𝑛 ]|2 ⟩

βˆ‘π‘˜=1

𝑝

π‘Žπ‘˜ βŸ¨π‘  [π‘›βˆ’π‘– ] 𝑠[π‘›βˆ’π‘˜] ⟩=βŸ¨π‘  [π‘›βˆ’ 𝑖 ] 𝑠 [𝑛]⟩

πœ™π‘ π‘  [𝑖 ,π‘˜ ]≔𝐸 {𝑠 [𝑛 ]ΒΏ

βˆ‘π‘˜=1

𝑝

π‘Žπ‘˜π‘Ÿπ‘ π‘  [ π‘–βˆ’π‘˜ ]=π‘Ÿπ‘ π‘  [𝑖 ]

Page 17: Lecture 12: Parametric Signal Modeling XILIANG LUO 2014/11 1

17

All-Pole SpectrumAll-pole method gives a method of obtaining high-resolution estimates ofa signal’s spectrum from truncated or windowed data!

Spectrum Estimate ¿| 𝐺

1βˆ’βˆ‘π‘˜=1

𝑝

π‘Žπ‘˜π‘’βˆ’ 𝑗 πœ”π‘˜|

2

Page 18: Lecture 12: Parametric Signal Modeling XILIANG LUO 2014/11 1

18

All-Pole SpectrumSpectrum Estimate ¿| 𝐺

1βˆ’βˆ‘π‘˜=1

𝑝

π‘Žπ‘˜π‘’βˆ’ 𝑗 πœ”π‘˜|

2

For deterministic signal, we have the following DTFT:

𝑆 (𝑒 𝑗 πœ”)=βˆ‘π‘›=0

𝑀

𝑠 [𝑛 ]π‘’βˆ’ π‘—πœ”π‘›

π‘Ÿ 𝑠𝑠 [π‘š ]= βˆ‘π‘›=0

π‘€βˆ’βˆ¨π‘šβˆ¨ΒΏπ‘  [𝑛 ] 𝑠¿ ΒΏΒΏ

ΒΏ

𝑅𝑠𝑠 (𝑒 𝑗 πœ” )=|𝑆 (𝑒 π‘—πœ” )|2

Page 19: Lecture 12: Parametric Signal Modeling XILIANG LUO 2014/11 1

19

All-Pole Analysis of Speech

Page 20: Lecture 12: Parametric Signal Modeling XILIANG LUO 2014/11 1

20

Solution to Yule-Walker Eq.

Ξ¦ π‘Ž=Ξ¨

Page 21: Lecture 12: Parametric Signal Modeling XILIANG LUO 2014/11 1

21

Solution to Yule-Walker Eq.

Page 22: Lecture 12: Parametric Signal Modeling XILIANG LUO 2014/11 1

22

All-Zero ModelMoving-Average Model:

𝑒 (𝑛)=𝑣 [𝑛 ]+βˆ‘π‘˜=1

𝐾

π‘π‘˜π‘£ [π‘›βˆ’π‘˜]

𝐻 (𝑧 )=1+βˆ‘π‘˜=1

𝐾

π‘π‘˜π‘§βˆ’π‘˜

Page 23: Lecture 12: Parametric Signal Modeling XILIANG LUO 2014/11 1

23

ARMA Model𝑒 (𝑛)+βˆ‘

π‘˜=1

𝑀

π‘Žπ‘˜π‘’[π‘›βˆ’π‘š]=𝑣 [𝑛 ]+βˆ‘π‘˜=1

𝐾

π‘π‘˜π‘£ [π‘›βˆ’π‘˜]

𝐻 (𝑧 )=1+βˆ‘

π‘˜=1

𝐾

π‘π‘˜π‘§βˆ’π‘˜

1+βˆ‘π‘˜=1

𝑀

π‘Žπ‘˜π‘§βˆ’π‘˜

Page 24: Lecture 12: Parametric Signal Modeling XILIANG LUO 2014/11 1

24

Wold DecompositionWold (1938) proved a fundamental theorem: any stationary discretetime stochastic process may be decomposed into the sum of a generallinear process and a predictable process, with these two processesbeing uncorrelated with each other.

π‘₯ [𝑛 ]=𝑒[𝑛]+𝑠 [𝑛]

𝑒 [𝑛 ]=βˆ‘π‘˜=0

∞

π‘π‘˜π‘£ [π‘›βˆ’π‘˜]

𝑣 [𝑛 ]=βˆ‘π‘˜=1

∞

π‘Žπ‘˜π‘£ [π‘›βˆ’π‘˜ ]


Recommended