Transcript
Page 1: January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLS Undulator BLM PDR Review Nuhn@slac.stanford.edu 1 Undulator BLM PDR Review Heinz-Dieter Nuhn, SLAC / LCLS

1January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLSUndulator BLM PDR Review [email protected]

Undulator BLM PDR ReviewHeinz-Dieter Nuhn, SLAC / LCLS

January 24, 2008

Available Damage Data Requirements [System Overview] Charge to the Committee

Available Damage Data Requirements [System Overview] Charge to the Committee

Page 2: January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLS Undulator BLM PDR Review Nuhn@slac.stanford.edu 1 Undulator BLM PDR Review Heinz-Dieter Nuhn, SLAC / LCLS

2January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLSUndulator BLM PDR Review [email protected]

Beam Loss Monitors (BLMs)

Radiation protection of the permanent magnet blocks is very important.

Funds are limited and efforts need to be focused to minimize costs.

A Physics Requirement Document, PRD 1.4-005 has been completed, defining the minimum requirements for the Beam Loss Monitors.

The damage estimates are based on published measurement results and a in-house simulations.

Radiation protection of the permanent magnet blocks is very important.

Funds are limited and efforts need to be focused to minimize costs.

A Physics Requirement Document, PRD 1.4-005 has been completed, defining the minimum requirements for the Beam Loss Monitors.

The damage estimates are based on published measurement results and a in-house simulations.

Page 3: January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLS Undulator BLM PDR Review Nuhn@slac.stanford.edu 1 Undulator BLM PDR Review Heinz-Dieter Nuhn, SLAC / LCLS

3January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLSUndulator BLM PDR Review [email protected]

Estimated Radiation-Based Magnet Damage

The loss of magnetization caused by a given amount of deposited radiation has been estimated by Alderman et al. [i] in 2000. Their results imply that a 0.01% loss in magnetization occurs after absorption of a total fast-neutron fluence of 1011 n/cm2 has been absorbed.A more recent report by Sasaki et al. [ii] challenges fast neutron fluence as damaging factor and, instead, proposes photons and electrons but does not provide a relation between integrated dose and damage.

[i] J. Alderman, et. A., Radiation Induced Demagnetization of Nd-Fe-B Permanent Magnets, Advanced Photon Source Report LS-290 (2001)

[ii] S. Sasaki, et al, Radiation Damage to Advanced Photon Source Undulators, Proceedings PAC2005.

The loss of magnetization caused by a given amount of deposited radiation has been estimated by Alderman et al. [i] in 2000. Their results imply that a 0.01% loss in magnetization occurs after absorption of a total fast-neutron fluence of 1011 n/cm2 has been absorbed.A more recent report by Sasaki et al. [ii] challenges fast neutron fluence as damaging factor and, instead, proposes photons and electrons but does not provide a relation between integrated dose and damage.

[i] J. Alderman, et. A., Radiation Induced Demagnetization of Nd-Fe-B Permanent Magnets, Advanced Photon Source Report LS-290 (2001)

[ii] S. Sasaki, et al, Radiation Damage to Advanced Photon Source Undulators, Proceedings PAC2005.

Page 4: January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLS Undulator BLM PDR Review Nuhn@slac.stanford.edu 1 Undulator BLM PDR Review Heinz-Dieter Nuhn, SLAC / LCLS

4January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLSUndulator BLM PDR Review [email protected]

Estimate of Neutron Fluences from LCLS e- Beam

The radiation deposited in the permanent magnets blocks of the LCLS undulator, when a single electron (e-) strikes a 100-µm carbon foil upstream of the first undulator, has been simulated by A. Fasso [iii].The results are a peak total dose of 1.0×10-9 rad/e- including a neutron (n) fluence of 1.8×10-4 n/cm2/e-, which translates into 1.8×105 n/cm2 for each rad of absorbed energy.These numbers are based on peak damage results and should therefore be considered as worst case estimates.

[iii] A. Fasso, Dose Absorbed in LCLS Undulator Magnets, I. Effect of a 100 µm Diamond Profile Monitor, RP-05-05, May 2005.

The radiation deposited in the permanent magnets blocks of the LCLS undulator, when a single electron (e-) strikes a 100-µm carbon foil upstream of the first undulator, has been simulated by A. Fasso [iii].The results are a peak total dose of 1.0×10-9 rad/e- including a neutron (n) fluence of 1.8×10-4 n/cm2/e-, which translates into 1.8×105 n/cm2 for each rad of absorbed energy.These numbers are based on peak damage results and should therefore be considered as worst case estimates.

[iii] A. Fasso, Dose Absorbed in LCLS Undulator Magnets, I. Effect of a 100 µm Diamond Profile Monitor, RP-05-05, May 2005.

Page 5: January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLS Undulator BLM PDR Review Nuhn@slac.stanford.edu 1 Undulator BLM PDR Review Heinz-Dieter Nuhn, SLAC / LCLS

5January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLSUndulator BLM PDR Review [email protected]

Simulated Neutron Fluences for LCLS e- Beam on C Foil

Simulated neutron fluences in the LCLS undulator magnets (upper jaw) from a single electron hitting a 100-µm-thick carbon foil upstream of the first undulator.

Maximum Level is

1.8×10-4 n/cm2/e-

Simulated neutron fluences in the LCLS undulator magnets (upper jaw) from a single electron hitting a 100-µm-thick carbon foil upstream of the first undulator.

Maximum Level is

1.8×10-4 n/cm2/e-

Page 6: January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLS Undulator BLM PDR Review Nuhn@slac.stanford.edu 1 Undulator BLM PDR Review Heinz-Dieter Nuhn, SLAC / LCLS

6January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLSUndulator BLM PDR Review [email protected]

Total Dose from LCLS e- Beam on C Foil

Corresponding maximum deposited dose.

Maximum Level is

1.0×10-9 rad/e-

Corresponding maximum deposited dose.

Maximum Level is

1.0×10-9 rad/e-

Page 7: January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLS Undulator BLM PDR Review Nuhn@slac.stanford.edu 1 Undulator BLM PDR Review Heinz-Dieter Nuhn, SLAC / LCLS

7January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLSUndulator BLM PDR Review [email protected]

Radiation Limit Estimates

Neutron Fluence for 0.01 % magnet damage from Alderman et al. 1011 n/cm2

Maximum neutron fluence in LCLS magnets from hit on 100 micron C foil from Fasso 1.8×10-4 n/cm2/e-

Maximum total dose in LCLS magnets from hit on 100 micron C foil from Fasso 1.0×10-9 rad/e-

Ratio of neutron fluence per total dose 1.8×105 n/cm2/rad

Maximum total dose in LCLS magnets for 0.01 % damage 5.5×105 rad

Nominal LCLS lifetime 20 years

Number of seconds in 20 years 6.3×108 s

Maximum average permissible energy deposit per magnet 0.88 mrad/s

Corresponding per pulse dose limit during 120 Hz operation 7.3 µrad/pulse

~0.01 mrad/pulse @ 120 Hz; ~1 mrad/s

Page 8: January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLS Undulator BLM PDR Review Nuhn@slac.stanford.edu 1 Undulator BLM PDR Review Heinz-Dieter Nuhn, SLAC / LCLS

8January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLSUndulator BLM PDR Review [email protected]

Maximum Estimated Radiation Dose from BFW Operation

Maximum neutron fluence in magnets of last undulator due to BFW hit;

based on Fasso simulations; scaled to

Total Charge: 1 nC; Wire Material: C; Wire Diameter 40 µm; RMS Beam radius 37 µm;

1.5×105 n/cm2/pulse

Corresponding radiation dose 1 rad/pulse

Ratio of peak BFW dose to maximum average dose limit 105

Radiation dose received by last undulator by 33 full x and y scans 100 rad

Maximum number of full BFW scans to reach 20 % a maximum dose budget 103

All

Un

du

lato

rs R

oll

ed

-In

Maximum neutron fluence in magnets of undulator on same girder due to BFW hit;

based on Fasso simulations; scaled to

Total Charge: 1 nC; Wire Material: C; Wire Diameter 40 µm; RMS Beam radius 37 µm;

1.5×103 n/cm2/pulse

Corresponding radiation dose 10 mrad/pulse

Ratio of peak BFW dose to maximum average dose limit 103

Radiation dose received by last undulator by 33 full x and y scans 1 rad

Maximum number of full BFW scans to reach 20 % a maximum dose budget 105

Un

du

lato

rs o

n D

S G

ird

ers

Ro

lle

d-O

ut

(

1/1

00

)

Small amount of scans expected can be ignored for damage purposes; but might require MPS exception.

Page 9: January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLS Undulator BLM PDR Review Nuhn@slac.stanford.edu 1 Undulator BLM PDR Review Heinz-Dieter Nuhn, SLAC / LCLS

9January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLSUndulator BLM PDR Review [email protected]

Radiation Sources

Possible reasons for generating elevated levels of radiation areElectron Beam Steering Errors

Will be caught and will lead to beam abort.Unintentional Insertion of Material into Beam Path

Will be caught and will lead to beam abort.Intentional Insertion of Material into Beam Path

BFW operationIs expected to produce the highest levels. May only be allowable when all down-stream undulators are rolled-out and beam charge is reduced to minimum.

Screen insertionMay only be allowable when all undulators are rolled-out and beam charge is reduced to minimum.

Background Radiation from Upstream Sources including Tune-Up DumpExpected to be sufficiently suppressed through PCMUON collimator.

Beam HaloExpected to be sufficiently suppressed through upstream collimation system.May require halo detection system.

Page 10: January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLS Undulator BLM PDR Review Nuhn@slac.stanford.edu 1 Undulator BLM PDR Review Heinz-Dieter Nuhn, SLAC / LCLS

10January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLSUndulator BLM PDR Review [email protected]

General Requirements

One BLM device will be mounted upstream of each Undulator Segment The BLM will provide a digital value proportional to the amount of energy deposited in the device for each electron bunch.The monitor shall be able to detect and measure (with a precision of better than 25%) radiation levels corresponding to magnet dose levels as low as 10 µrad/pulse [0.1 µGy/pulse] and up to the maximum expected level of 10 mrad/pulse [100 µGy/pulse].The monitor needs to be designed to withstand the highest expected radiation levels of 1 rad/pulse without damage. The radiation level received from each individual electron bunch needs to be reported after the passage of that bunch to allow the MPS to trip the beam before the next bunch at 120 Hz.

Page 11: January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLS Undulator BLM PDR Review Nuhn@slac.stanford.edu 1 Undulator BLM PDR Review Heinz-Dieter Nuhn, SLAC / LCLS

11January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLSUndulator BLM PDR Review [email protected]

Monitor Requirements

Each BLM device will be able to measure the total amount of absorbed dose covering the full area in front of the undulator magnets.

The magnet cross section seen by the beam is 56.5 mm wide by 66 mm high. In their home position, the magnets are located between 6.8 mm and (6.8+66)  mm= 72.8 mm both, above and below the beam axis. Their horizontal extend is ±28.25 mm. They are expected to be moved during operations by 80 mm in positive x-direction and by 6 mm in the opposite direction, which sets the limits horizontal coverage range to +108.25 mm to -34.25 mm. The detector material thus needs to cover an area of about 145×145 mm2 ([2×72.8]×[108.25+34.25] mm2), but is allowed a horizontal cut-out of 7 mm so that it can be mounted without the need for breaking vacuum.

Each BLM device will be calibrated based on the radiation generated by the interaction of a well known beam with the BFW devices.

The calibration geometry will be simulated using FLUKA and MARS to obtain the calibration factors, i.e., the ratio between the maximum estimated damage in a magnet and the voltage produced by each BLM device.

Page 12: January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLS Undulator BLM PDR Review Nuhn@slac.stanford.edu 1 Undulator BLM PDR Review Heinz-Dieter Nuhn, SLAC / LCLS

12January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLSUndulator BLM PDR Review [email protected]

Beam Loss Monitor Area Coverage

Main purpose of BLM is the protection of undulator magnet blocks. Less damage expected when segments are rolled-out.One BLM will be positioned in front of each segment.Its active area will be able to cover the full horizontal width of the magnet blocksTwo options for BLM x positions will be implemented to be activated by a local hardware switch:

(a) The BLM will be moved with the segment to keep the active BLM area at a fixed relation to the magnet blocks.(b) The BLM will stay centered on the beam axis to allow radiation level estimates in roll-out position.

Main purpose of BLM is the protection of undulator magnet blocks. Less damage expected when segments are rolled-out.One BLM will be positioned in front of each segment.Its active area will be able to cover the full horizontal width of the magnet blocksTwo options for BLM x positions will be implemented to be activated by a local hardware switch:

(a) The BLM will be moved with the segment to keep the active BLM area at a fixed relation to the magnet blocks.(b) The BLM will stay centered on the beam axis to allow radiation level estimates in roll-out position.

Page 13: January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLS Undulator BLM PDR Review Nuhn@slac.stanford.edu 1 Undulator BLM PDR Review Heinz-Dieter Nuhn, SLAC / LCLS

13January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLSUndulator BLM PDR Review [email protected]

BLM Purpose

The BLM will be used for two purposesA: Inhibit bunches following an “above-threshold” radiation event.

B: Keep track of the accumulated exposure of the magnets in each undulator.

Purpose A is of highest priority. It will be integrated into the Machine Protection System (MPS) and requires only limited dynamic range from the detectors.

Purpose B is desirable for understanding long-term magnet damage in combination with the undulator exchange program but requires a large dynamic range for the radiation detectors (order 106) and much more sophisticated diagnostics hard and software.

The BLM will be used for two purposesA: Inhibit bunches following an “above-threshold” radiation event.

B: Keep track of the accumulated exposure of the magnets in each undulator.

Purpose A is of highest priority. It will be integrated into the Machine Protection System (MPS) and requires only limited dynamic range from the detectors.

Purpose B is desirable for understanding long-term magnet damage in combination with the undulator exchange program but requires a large dynamic range for the radiation detectors (order 106) and much more sophisticated diagnostics hard and software.

Page 14: January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLS Undulator BLM PDR Review Nuhn@slac.stanford.edu 1 Undulator BLM PDR Review Heinz-Dieter Nuhn, SLAC / LCLS

14January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLSUndulator BLM PDR Review [email protected]

Additional Loss Monitors

Other Radiation Monitoring DevicesDosimeters

Located at each undulator. Routinely replaced and evaluated.

Segmented Long Ion ChambersInvestigated

(Quartz)-FibersInvestigated

Non-Radiative Loss DetectorsPair of Charge Monitors (Toroids)

One upstream and one downstream of the undulator lineUsed in comparator arrangement to detect losses of a few percent

Electron Beam Position Monitors (BPMs)Continuously calculate trajectory and detect out-of-range situations

Quadrupole Positions and Corrector Power Supply ReadbacksUse deviation from setpointsEstimate accumulated kicks to backup calculations based on BPMs.

Page 15: January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLS Undulator BLM PDR Review Nuhn@slac.stanford.edu 1 Undulator BLM PDR Review Heinz-Dieter Nuhn, SLAC / LCLS

15January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLSUndulator BLM PDR Review [email protected]

Other Considerations

Vacuum SystemThe BLM will not be part of the LCLS Undulator vacuum system.

AlignmentThe active volume of each BLM needs only rough alignment to cover the downstream magnet blocks in all roll-in/out locations.

Page 16: January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLS Undulator BLM PDR Review Nuhn@slac.stanford.edu 1 Undulator BLM PDR Review Heinz-Dieter Nuhn, SLAC / LCLS

16January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLSUndulator BLM PDR Review [email protected]

Other Radiation Monitoring Devices

In addition to the BLMs, the use of

TLD monitor

segmented Long Ion Chambers(segmented LIONs), and

Fibers

shall be investigated.

Page 17: January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLS Undulator BLM PDR Review Nuhn@slac.stanford.edu 1 Undulator BLM PDR Review Heinz-Dieter Nuhn, SLAC / LCLS

17January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLSUndulator BLM PDR Review [email protected]

Charge to the Committee

The LCLS ANL and SLAC BLM support groups have developed a Beam Loss Monitor System to support purpose A, i.e., protect the undulator magnets from above-threshold radiation events.The committee is charged with determining that the Beam Loss Monitor System is ready to enter the final design stage.

The committee is asked to evaluate the following:

1. Is the Beam Loss Monitor System sufficient for the operational needs of the Undulator System?

2. Have safety hazards been appropriately identified and mitigated?3. Is the interface to the rest of the Undulator system understood and controlled? Are

interfaces to other neighboring systems understood and controlled?4. Is there a plan in place for assembly, checkout, startup, commissioning, and

maintenance?5. Are the budget and schedule for fabrication, installation and commissioning of the BLM

complete and adequate?

The committee is asked to report on its findings in a written report within a reasonable time following the review. All suggestions and comments are welcome.

Page 18: January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLS Undulator BLM PDR Review Nuhn@slac.stanford.edu 1 Undulator BLM PDR Review Heinz-Dieter Nuhn, SLAC / LCLS

18January 24, 2008 Heinz-Dieter Nuhn, SLAC / LCLSUndulator BLM PDR Review [email protected]

End of Presentation


Recommended