Transcript
Page 1: IGS Analysis Center Workshop, 2-6 June 2008, Florida, USA GPS in the ITRF Combination D. Angermann, H. Drewes, M. Krügel, B. Meisel Deutsches Geodätisches

IGS Analysis Center Workshop, 2-6 June 2008, Florida, USA

GPS in the ITRF Combination

D. Angermann, H. Drewes, M. Krügel, B. Meisel

Deutsches Geodätisches Forschungsinstitut, MünchenE-Mail: [email protected]

Page 2: IGS Analysis Center Workshop, 2-6 June 2008, Florida, USA GPS in the ITRF Combination D. Angermann, H. Drewes, M. Krügel, B. Meisel Deutsches Geodätisches

OutlineOutline

ITRS Combination Center at DGFI

Input data for TRF computations

Analysis and accumulation of GPS time series

GPS in the inter-technique combination

Contribution of GPS to the datum realization

Conclusions and outlook

Page 3: IGS Analysis Center Workshop, 2-6 June 2008, Florida, USA GPS in the ITRF Combination D. Angermann, H. Drewes, M. Krügel, B. Meisel Deutsches Geodätisches

ITRS Combination Center at DGFIITRS Combination Center at DGFI

General concept: Combination on the normal equation level

Software: DGFI Orbit and Geodetic Parameter Estimation Software (DOGS)

Geodeticdatum

Page 4: IGS Analysis Center Workshop, 2-6 June 2008, Florida, USA GPS in the ITRF Combination D. Angermann, H. Drewes, M. Krügel, B. Meisel Deutsches Geodätisches

Input data sets for TRF computations (1/2)Input data sets for TRF computations (1/2)

Techn. Service / AC Data Time Period

GPS IGS / NRCan weekly solutions 1996 - 2005

VLBI IVS / IGG 24 h session NEQ 1984 - 2005

SLR ILRS / ASI weekly solutions 1993 - 2005

DORIS IGN - JPL/LCA weekly solutions 1993 - 2005

ITRF2005: Time series of station positions and EOP

ITRF2005 data sets are not fully consistent, the standards andmodels were not completely unified among analysis centers

Shortcomings concerning GPS:- IGS solutions are not reprocessed (e.g., model and software changes)- Relative antenna phase center corrections were applied

Page 5: IGS Analysis Center Workshop, 2-6 June 2008, Florida, USA GPS in the ITRF Combination D. Angermann, H. Drewes, M. Krügel, B. Meisel Deutsches Geodätisches

Input data sets for TRF computations (2/2)Input data sets for TRF computations (2/2)

Techn. Institutions Data Time Period

GPS GFZ daily NEQ 1994 - 2007

VLBI IGG / DGFI 24 h session NEQ 1984 - 2007

SLR DGFI / GFZ weekly NEQ 1993 - 2007

GGOS-D: Time series of station positions and EOP

Improvements of GGOS-D data compared to ITRF2005: Homogeneously processed data sets - Identical standards, conventions, models, parameters - GPS: PDR (Steigenberger et al. 2006, Rülke et al. 2008) Improved modelling - for GPS: absolute instead of relative phase centre corr. - for VLBI: pole tide model was changed

GGOS-D: German project of BKG, DGFI, GFZ and IGG funded by BMBF

Page 6: IGS Analysis Center Workshop, 2-6 June 2008, Florida, USA GPS in the ITRF Combination D. Angermann, H. Drewes, M. Krügel, B. Meisel Deutsches Geodätisches

TRF computation strategyTRF computation strategy

First step: Analysis of station coordinate time series and computation of a reference frame per technique

Modelling time dependent station coordinates by

- epoch positions- linear velocities - (seasonal signals)- discontinuities

Second step: Combination of different techniques by

- relative weighting- selection of terrestrial difference vectors (local ties)- combination of station velocities and EOP- realization of the geodetic datum

Page 7: IGS Analysis Center Workshop, 2-6 June 2008, Florida, USA GPS in the ITRF Combination D. Angermann, H. Drewes, M. Krügel, B. Meisel Deutsches Geodätisches

TRF per technique (1/4)TRF per technique (1/4)

Instrumentation changes Earthquakes Seasonal variations

Analysis of GPS station position time series

ITRF2005. 221 discontinuities in 332 GPS stations (1996 - 2005)

GGOS-D: 95 discontinuities in 240 GPS stations (1994 - 2007)

Page 8: IGS Analysis Center Workshop, 2-6 June 2008, Florida, USA GPS in the ITRF Combination D. Angermann, H. Drewes, M. Krügel, B. Meisel Deutsches Geodätisches

TRF per technique (2/4)TRF per technique (2/4)

Effect of annual signals ? Equating of station velocities ?

SolutionID

Velocities[mm/yr]

Sol. ID 1Sol. ID 2

4.5 ± 0.98.7 ± 0.7

Δ (2 – 1) 4.2 ± 1.2

Sol. ID 1 Sol. ID 2

obs time span

[yrs]

0.5 1.0 2.0 3.0

velocities

[mm/yr]

-37.5

3.2

-3.7

2.3

2.7

0.8

-0.3

0.5

Velocity differences w.r.t. a linear model

GPS station Irkutsk (Siberia)

GPS station Hofn (Iceland)

1997 2000 2003 20061997 2000 2003 2006

Page 9: IGS Analysis Center Workshop, 2-6 June 2008, Florida, USA GPS in the ITRF Combination D. Angermann, H. Drewes, M. Krügel, B. Meisel Deutsches Geodätisches

TRF per technique (3/4)TRF per technique (3/4)

Seasonal signals - Comparison with geophysical data

Models consideratmospheric,oceanic and hydrologic mass loads:

NCEP, ECCO,GLDAS

Potsdam

Krasnoyarsk

Bahrain

Correlation coefficient = 0,50

Correlation coefficient = 0,79

Correlation coefficient = 0,73

1997 1999 2 001 2003 2005

[cm]

2

0

-2

2

0

-2

2

0

-2

Page 10: IGS Analysis Center Workshop, 2-6 June 2008, Florida, USA GPS in the ITRF Combination D. Angermann, H. Drewes, M. Krügel, B. Meisel Deutsches Geodätisches

TRF per technique (4/4)TRF per technique (4/4)

Shape of seasonal signals can be approximated by sine/cosine annual and semi-annual functions

Brasilia Ankara

Estimation of annual signals in addition to velocities ?

Advantages:- Improved velocity estimation- Better alignment of epoch solutions

Disadvantages / open questions:- More parameters (stability) ?- Seasonal signal geophysically meaningful ?- How to parameterize seasonal signals ?

Page 11: IGS Analysis Center Workshop, 2-6 June 2008, Florida, USA GPS in the ITRF Combination D. Angermann, H. Drewes, M. Krügel, B. Meisel Deutsches Geodätisches

Computation of the TRF (1/3)Computation of the TRF (1/3)

Selection of local ties at co-location sites

SLR-VLBI (9)

SLR-GPS (25)

VLBI-GPS (27)

Page 12: IGS Analysis Center Workshop, 2-6 June 2008, Florida, USA GPS in the ITRF Combination D. Angermann, H. Drewes, M. Krügel, B. Meisel Deutsches Geodätisches

Computation of the TRF (2/3)Computation of the TRF (2/3)

ITRF2005GGOS-D

Selection of terrestrial difference vectors (1)

Three-dimensional differences between space geodetic solutions (GPS and VLBI) and terrestrial difference vectors [mm]

= stations in southern hemisphere

Krügel et al. 2007: Poster presented at AGU Fall Meeting 2007

Page 13: IGS Analysis Center Workshop, 2-6 June 2008, Florida, USA GPS in the ITRF Combination D. Angermann, H. Drewes, M. Krügel, B. Meisel Deutsches Geodätisches

Computation of the TRF (3/3)Computation of the TRF (3/3)

Selection of terrestrial difference vectors (2)

Mean pole difference

Network deformation

Mean pole difference: 35 as (≈1 mm)

Network deformation:≤ 0.3 mm

Number of co-locations: 19

ITRF2005:

Pole difference: 41 as

Deformation: 1.0 mm

No. co-locations: 13

Page 14: IGS Analysis Center Workshop, 2-6 June 2008, Florida, USA GPS in the ITRF Combination D. Angermann, H. Drewes, M. Krügel, B. Meisel Deutsches Geodätisches

Realization of the geodetic datum (1/4)Realization of the geodetic datum (1/4)

ITRF2005D(DGFI Solution)

GGOS-D

Origin SLR SLR

Scale SLR + VLBI SLR + VLBI + GPS

Orientation NNR conditionsw.r.t. ITRF2000

NNR conditionsw.r.t. ITRF2005

Orientationtime evolution

NNR conditions w.r.t. horizontal motions by using the Actual Plate Kinematic andDeformation Model (APKIM)

Page 15: IGS Analysis Center Workshop, 2-6 June 2008, Florida, USA GPS in the ITRF Combination D. Angermann, H. Drewes, M. Krügel, B. Meisel Deutsches Geodätisches

Realization of the geodetic datum (2/4)Realization of the geodetic datum (2/4)

Station velocity residuals for 56 core stations used to realize the kinematic datum of the ITRF2005D solution w.r.t. APKIM

Page 16: IGS Analysis Center Workshop, 2-6 June 2008, Florida, USA GPS in the ITRF Combination D. Angermann, H. Drewes, M. Krügel, B. Meisel Deutsches Geodätisches

Realization of the geodetic datum (3/4)Realization of the geodetic datum (3/4)

Translation and scale estimates of similarity transformations between combined PDR05 and weekly solutions (Rülke et al., JGR 2008)

Page 17: IGS Analysis Center Workshop, 2-6 June 2008, Florida, USA GPS in the ITRF Combination D. Angermann, H. Drewes, M. Krügel, B. Meisel Deutsches Geodätisches

Realization of the geodetic datum (4/4)Realization of the geodetic datum (4/4)

Cdatum = (GT CGPS-1 G)-1Method:

CGPS: Covariance matrix of GPS solution (loose constrained)

G: Coefficients of 7 parameter similarity transformation matrix

Cdatum: Covariance matrix of datum parameters

Datum information of GPS observations (compared to SLR)

Standard deviations for datum parameters [mm]

tx ty tz scale

GPS 0.7 0.7 1.1 0.2

SLR 1.0 0.9 2.7 2.9

Page 18: IGS Analysis Center Workshop, 2-6 June 2008, Florida, USA GPS in the ITRF Combination D. Angermann, H. Drewes, M. Krügel, B. Meisel Deutsches Geodätisches

Conclusions and outlookConclusions and outlook

Discontinuities: Number of jumps reduced due to homogeneous re-

processing; discontinuity tables among techniques should be adjusted.

Annual signals: Treatment of seasonal variations in station positions

(e.g., by estimating sine/cosine functions) should be investigated.

Co-locations: Discontinuities are critical; at least two GPS instruments

should be operated at each co-location site.

Geodetic datum: GPS reprocessing provides stable results for the

scale and for the x- and y-component of the origin, the z-component

shows large seasonal variations which should be investigated.

GPS reprocessing is essential for the next ITRF (unified standards

and models should be applied for different techniques).


Recommended