Transcript
Page 1: Highrise Workshop 2012 _ Climate Design

.AA Brendan Bakker Dion JansenAnastasios Kokkos Kelly Schraauwers Apostolina Karapanou

Climate Engineer: Anastasios Kokkos 4182634

CLIMATE DESIGN - GROUP 1

Page 2: Highrise Workshop 2012 _ Climate Design

[2-38]

Page 3: Highrise Workshop 2012 _ Climate Design

High rise workshopClimate Design26 October 2012

_Design group 1

A. Karapanou { structural designerD. Jansen { structural designerB. Bakker { architectA. Kokkos { climate engineerK. Schrauwers { facade engineer

_Consultants

Ir. T. Merkeley { architectureIr. D. Ronald { architectureIr. K.C. Terwel { structural designIr. A. Bergsma { facade designIr. L. de Ruijscher { building services and sustainabilityIng. P. de Jong { management

Page 4: Highrise Workshop 2012 _ Climate Design

[4-38]

Page 5: Highrise Workshop 2012 _ Climate Design

[5-38]

1. CONTENT 8

2. Comfort to the surroundings and the inhabitants of the area 9

3. Comfort to the users 11 3.1. Vertical Transportation 11 3.2. HVAC Systems 13 3.2.1. Installation floors 13 3.2.2. System Selection 14 3.2.3. Ventilation 15 3.2.4. Heating and Cooling 16 3.2.5. The Tube exchanger 18 3.2.6. Ventilation and duct demands 19

4. Eliminate the environmental impact 20 4.1. Vertical transportation 20 4.2. HVAC and tube exchanger 20 4.3. Air filtration 21 4.4. Interior Lighting 22 4.5. Water drainage and re-use 22 4.6. Integrated PV Panels 24

5. Design for the future 24 5.1. EU Policies 24 5.2. Energy Efficiency 25 5.3. Closed biogas cycle 27

6. Firesafety 28

7. APPENDIX 29 7.1. ELEVATE CALCULATIONS 29 7.2. Air demands per section 31 7.3. Total energy consumption 37 7.4. Water demands per section 38

Contents

Page 6: Highrise Workshop 2012 _ Climate Design

[6-38]

Page 7: Highrise Workshop 2012 _ Climate Design

[7-38]

INTRODUCTION

As a participant in the workshop of highrise 2012 of TUDelft I worked along with people from other engineering to fulfill the purpose of the workshop, to design an icon building for the European Union that will host the headquarters of the organisation and became the highest building in Europe (exceeding 218m) acting as the new Icon of Europe to the world. Under this goal me and my teammates in Group 1 we decided to head for a design that will projects European Unions modern face, state the organisation’s status and act as leader for new technologies and approach of what a building can be and what europe can achieve towards a new environmental friendly era.In return our design fullfils some goals that will provide a comfort environment for the surroundings and for its users while in the same time it will not harm the environment but it will enhance it.

A

B

C

In the following report the labelling showed in fig 1 will be followed for the easier communication between the author and the reader

Figure 1. Labelling of the buildings

Page 8: Highrise Workshop 2012 _ Climate Design

[8-38]

1. CONTENT As the climate engineer in my group I had to design all the mechanical support and systems that the building will be using during its lifecycle and will ensure the functionality and quality of it’s inner climate. In order to achieve this goal it was obligatory to design a combination of systems that will cooperate efficiently and not a number of efficient systems that will work separately without any interconnection. It was also crucial to have in mind the goals that our team set for a healthy, environmetaly consious and efficient design and cooperate with all the other disciplines to meet them. So in order to create a clear design path that would lead us succesfully to an attractive proposal for the purpose of this competition we made a list of goals that we want to achieve and we were constantly checking in every design milestone if our progress steps are on the right direction to meet them. Climate design had a major role on this process as it was critical to proceed hand to hand with the architectural and structural design and changes and cooperate closely with the facade engineer in order to match our systems and ensure that they work complementary in order to achieve maximum efficiency and integra-tion. So the goals that we set as a team and monitored in every step of our design process are described as followed.

We wanted a design that will be:

So in the following report I will go through the steps followed and the systems that were chosen in order to meet these requirements. In every system design we tried to be simple and innovative in order to propose ideas and new approaches and not just to fullfill the purpose of designing a building that meets the requirements of proper function, efficiency and low energy consumption as these goals are already undertaken by existing designs and being sustainable is a prerequisite constant for new building designs. So having in mind the academic aproach of this workshop we tried to implement new ideas that might not be tested yet but can enhance the effort for sustain-able designs and zero-energy buildings of the future.

• Provide Comfort for the users

• Provide Comfort to the surroundings and the inhabitants of the area

• Eliminate its environmental impact

• Act as a leader in sustainable strategies

• Be designed for the future

• Be Energy Efficient

• Enclose and project European Union’s mentality and vision

Figure 1. Labelling of the buildings

Page 9: Highrise Workshop 2012 _ Climate Design

[9-38]

2. Comfort to the surroundings and the inhabitants of the areaIn order to create a 300m tall building right in the middle of the buisness district of Brussels we had to take into account the effect of this design to the surround-ings. The fact that Rue de la Loi, the street where the building will be placed is crossing two district of low, on the South side and very low, on the North side, buildings and the high density of the area made this task quite a challenge. We had to find a proper shape and placement for our design in order to eliminate its shadow effect and provide if possible a wind shellter for the public that wants to use its public areas on the ground level.

The elimination the effect of shadow on the northern neighbourhood behind our structure was achieved by shaping the building in a triangular form in order to allow sun rays pass around it. Also the division of the total volume in three smaller masses allowed us to experiment with the proper positioning of these masses into the block in order to find the most effective one in order to eliminate their shadow effect. Finally the inclination of the roof was chosen after the results of the shadow research that we completed as a team that addressed the optimum angle of cut pane in the area in accordance with the climate and geographical data of the area.

Figure 2. The generated optimum cut-off face of a similar solid volume placed in the existing area and the existing clock in order to eliminate its shadow effect

Figure 3. the area distribution

North

North South

North

North Low-rise area South Mid-rise area Our building plot Rue de la Loi

Figure 4. The reduced building’s shadow range through the year following the pro-posed cut-off of the roofs and optimum distribution of the masses into the block T

Page 10: Highrise Workshop 2012 _ Climate Design

[10-38]

The same principal and approach was followed in order to find the optimum way to create a wind shellter for the pedestrians on the ground level and avoid the wind tunnel effect on the adjacent streets due to the big mass of the building. As one can see in fig 5 wind speeds of 0-0,2 m/s are represented with the blue color where at the street levels in between the three masses of our design the wind is totaly blocked and a wind shelter is provided for the public. In the same figure one can also see that there is no major wind speed in the adjacent roads that may cause an uncomfortable environment for the inhabitants of the area.

Figure 5. The wind effect in the area

0 - 0,7

0,8 - 1,6

3,2 - 3,8

2,4 - 3,1

1,7 - 2,4

4,6 - 5

m/s

3,9 - 4,5

Page 11: Highrise Workshop 2012 _ Climate Design

[11-38]

3. Comfort to the users3.1. Vertical Transportation

For the vertical transportation we had to design a system that will serve the us-ers efficiently without occupying significant amount of the net floor are of each floor. The geometry of the building’s core gave use a hard problem to solve as the strictly square shaft geometry was resulting to major space losses in between the shafts.

The solution to this problem came not by the rearranging the shafts but by pro-viding a two level entrance for each elevator in every installation floor and on the ground level. Our buildings are served by 5 installation floors, a ground floor and an installation floor placed on level -3 in the building. The fact that in every transi-tion floor the users, both public and employees, can reach any of the elevator en-trances and use the elevator to reach their destination or another transition zone gave us the opportunity to install TWIN elevator systems that can work indepen-dently and serve twice as fast the users. Also the double levels in every transition zone make the TWIN system even more efficient as it can choose automatically which of the two levels is more efficient for reduction of the travel time and reach that floor without influencing the travel of the user as he/she will be able to take the next elevator to reach his/her destination directly without being influenced of the floor he/she landed at.

In order to calculate the amount and type of elevators we needed to serve the needs of our buildings effectively the program ELEVATE1 was used. The goal was to create a set of elevators that each of them will have an Average Waiting Time between 25-35sec and an average time to destination between 100-120sec for the Up peak scenarios. Due to the fact that ELEVATE does not yet have a simula-tion method for the TWIN system elevators we simulated a double decker eleva-tor system that gave adequate results. These results ensure that the TWIN system will be more than efficient to serve the transportation need of our building. Fi-nally the core includes 3 stair cases that act as fire escape routes as shown in fig 7.

In fig 7 and fig 8 one can see the set up of the elevators by groups and the way they drive the users by sections depending on their destination.

Figure 6. Core complex geometry

Figure 7. douple story transition zone

1 In the appendix the corresponding ELEVATE calculation are shown

Page 12: Highrise Workshop 2012 _ Climate Design

[12-38]

So the set up that is follow is as follows:

4 double decker shuttle elevators that serve every section of the inner zone sepa-rately. 4 win and one conventional elevator that serve the inner zone traffic and are displayed in every section in order to create transition zones. 2 fire safety and freight elevators that serve all the floors of the building. 2 twin sky shuttle eleva-tors that drive the public directly to the skylloby of the building in order to ensure safety for the building from the public. 4 conventional elevators that will serve the inner traffic of the skylobby and 4 parking elevators that serve those who use the parking but is separately placed from the upper set of elevators for fire safety protection reasons. So with this scheme we manage to install in the core of Building C a total of 54 elevator cars in 22 shafts.

All the three buildings are following the same elevator scheme with the same amount of elevators except from the fact that building A and B have 1 twin sets elevators less in every inner transition zone. So building A and B have each 46 cars and 18 shafts.

Figure 8. installation floors.png

4Twins + 1conventional office elevator

4Twins + 1conventional office elevator

2 Firesafety and freight elevators

2 Twin sky shuttle eleva-tors

4 conventional Skylobby elevators

3 Firesafety escalators

4 conventional Parking elevators

4 double decker shuttle elevators

4  elevator  group  for  access  from  the  parking  to  the  entrance  level

Set  4  elevator  group  (4  Twins  +  1  

conventional  elevator  of  1600  Kg  each)

 firesafety  and  freight  elevators  (2  of  1250  Kg  

each)

2  SKY  Shuttle  Elevators

Shuttle  elevators              (4  double  decker  

elevators  of  2000Kg)

Set  1  elevator  group  (4  Twins  +  1  conventional  

elevator  of  1600  Kg  each)

Set  2  elevator  group  (4  Twins  +  1  

conventional  elevator  of  1600  Kg  each)

Set  3  elevator  group  (4  Twins  +  1  

conventional  elevator  of  1600  Kg  each)

4  elevator  group  for  access  from  the  parking  to  the  entrance  level

Set  4  elevator  group  (4  Twins  +  1  

conventional  elevator  of  1600  Kg  each)

 firesafety  and  freight  elevators  (2  of  1250  Kg  

each)

2  SKY  Shuttle  Elevators

Shuttle  elevators              (4  double  decker  

elevators  of  2000Kg)

Set  1  elevator  group  (4  Twins  +  1  conventional  

elevator  of  1600  Kg  each)

Set  2  elevator  group  (4  Twins  +  1  

conventional  elevator  of  1600  Kg  each)

Set  3  elevator  group  (4  Twins  +  1  

conventional  elevator  of  1600  Kg  each)

Skylobby  group  (4  conventional  elevators  of  1600  Kg  each)

So building’s A scheme is as folllows:

Page 13: Highrise Workshop 2012 _ Climate Design

[13-38]

3.2. HVAC Systems

3.2.1. Installation floors

In order to ensure the proper and efficient function of the installation and in return of the building itself we compartmentalize our design in sections that are constituted from a specific amount of floors for every building that are served from a double storey installation floor as shown and described in fig 9. So in total we have 5 installation floor for each building that are serving 7, 10 and 13 floors for building A, B and C respectively. This set up was chosen in order to cover all the need of the building for heating, cooling and ventilation with a reasonable amount of installation that are repeated in every installation floor and are of a size that can be carried and fitted easily once the construction is completed.

1 Installation floor per 10 floors

1 Installation floor per 13 floors

1 Installation floor per 7 floors

Figure 9. Installation floors distribution

Page 14: Highrise Workshop 2012 _ Climate Design

[14-38]

3.2.2. System Selection

Our building hosts 5 different functions with different needs for ventilation heating and cooling. So in order to create an efficient design to cover these needs we decided to install three different but yet similar HVAC systems. The systems were chosen firstly in order to serve in the best possible way the needs of every function and secondly they were chosen to function with the same principal and with similar capacities in order to provide the maximum level of flexibility for the building so in the future changing functions will not take any more effort than taking the decision to do so. The final choice was to install in every function a plenum ventilation system with raised floors and lowered ceilings in order to be able to achieve a reversible ventilation process as it will be explained in the next chapter. Offices, sky lobbies, library and hotel are served by a centralized ventilation system that is placed in every installa-tion floor while conference centres are served by local HVAC systems as they function sporadically and for short periods of time. Finally offices use a floor heating and a chilled ceiling system to cover their need for heating cool, while skly lobbies, libraries and hotel use floor heating and chilled floor beams and conference centres use only four-way chilled floor beams. So the different set ups for every function in our design is shown in fig. 10.

Centralized Plenum Ventilation with floor heating and chilled ceilings

Centralized Plenum Ventilation with floor heating and chilled floor beams

De - Centralized Ventilation with individual HVAC units for maximum efficiency and chilled floor beams

Offices

Skylobbies, library and hotel

Conference center

Figure 10. HVAC systems for different functions

Page 15: Highrise Workshop 2012 _ Climate Design

[15-38]

3.2.3. VentilationIn order to ensure maximum efficiency for our ventilation scheme with the least amount of energy demands per square meter we wanted to create a system that will simulate the natural air flow and will work hand by hand with the envelope of the building that will enhance its efficiency but again is not crucial for its success-ful function. So the idea was to create a set up where during winter the air will be pre-tempered and will flow in the space following the natural flow of hot air that always flows from down up and during summer to reverse the procedure and let the cold air flow from the ceiling down following again the natural flow of cold air that being heavier makes it go from up down.

This scheme shown in fig 11 and fig 12 has three major advantages. The first one is that by following the natural air flow we do not need to install any fans on the exhaust and inlet diffusers (see fig 15) on the floor and the ceiling as by creat-ing an overpressure in the plenum zones the air will flow naturally in the proper direction. So this fact save an enormous amount of energy that would be used from the fans in order to distribute and exhaust the air and also as shown in fig 13 it provides the possibility to the user to actually place the diffusers of the floor wherever he/she needs to depending on the space needed for the office. It is also completely controllable as the user may switch the diffusers by hand depending on weather he/she wants extra air flow while working. The second advantage of this system is that due to floor heating and chilled ceil-ing the air is pre-tempered in a very efficient way so it enters the room almost in the proper temperature without using any excess energy but the energy used from the floor and ceiling in order to reach the target temperatures respectively. Finally this system reduces significantly the amount of ducts that we need to in-stall in every floor as all the ducting for every different space is saved due to the plenum principal that is followed. This also give the users the opportunity to sep-arate, distribute or divide their space as they want without being influenced from any mechanical restriction in the building as shown in fig16. Finally the curved shaped chilled ceiling placed in the offices provide a bigger surface that act as a radiator and can reach an efficiency up to 130w/m2.

Figure 11. winter ventilation and heating scheme

Figure 12. summer ventilation and cooling scheme

Figure 13. heating cooling and ventilation system for office spaces Figure 14. heating, cooling and ventilation systems for hotel, skylobbies and library

chilled ceiling

simple low-ered instead of chilled ceiling

inlet/exhaust ducts

floor diffusers

ceiling diffusers

raised floor heating

chilled floor beams for heating and cooling support

climate facade

Page 16: Highrise Workshop 2012 _ Climate Design

[16-38]

3.2.4. Heating and Cooling

3.2.4.1 General Design Parameters

Total building surface: 205.918 m2

Desired summer temp. indoor/atrium: 24oC / 25oCDesired winter temp. indoor/atrium: 22oC / 18oCTotal cooling demand and heating demand per function:Facade U-value: 0,88 W/m2KChilled ceiling capacity: 130 W/m2

Floor heating capacity: 80W/m2

4-way Chilled beams(Heating/cooling): 70 W/m2 / 95 W/m2

More detailed calculation are shown in the appendix at the end of the report.

Function Sq.meter Heating Cooling Total  Consumption(w/m2) Total  Consumption  (kwh/m2-­‐year) Total  Consumption  (mw/day)OFFICES 95.781,15 40 55 95 273,6 9,10CON  CENTER 21.015,95 60 90 150 432 3,15HOTEL 16.983,36 30 40 70 201,6 1,19LIBRARY 3510 180 94 274 789,12 0,96ATRIAS 2296 769 285 285 3035,52 2,42

Average  demand 215,8 112,8 174,8 Total  consumption  Kwh/year Total  consumption  (MW/year)4731,84 5495,64

Consumption/sq.m

Figure 15. Swirl floor and ceilling diffusers

Figure 16. cooling and heating demands per function

Figure 17. Raised floor heating scheme

Figure 18. Raised floor heating section

Page 17: Highrise Workshop 2012 _ Climate Design

[17-38]

steel enclosure

Chilled/hot wa-ter supply and

return

Anodized alu-minium grill

Row Fin coil

Figure 19. section of a typical office space with a raised floor heating and a lowered chilled ceiling adjusted to the climate facade

Finally as one can see in fig 11, 12 and 20 the whole system is cooperating with the climate facade element in two ways. During winter the grill of the facade are open and due to the heat that is produces in the facade’s cavity (21cm) the facade enhances the air circulation by driving hot air on the plenum ceiling from where it is extracted following the air flowing from the ceiling diffusers. During sum-mer the function changes, the grilles are shutting down the connection with the interior and an operable part from the outside layer is operating in order to allow the excess heat that is created in the facade’s cavity to escape creating this way a buffer zone for the office in order to reduce the temperature difference from the outside air. Finally this opening are used both in summer and winter to provide night cooling during night hours and refresh the air of the building.

lowered ceiling

Climate facade element

raised floor

Figure 20. 4-way Floor chilled beam

Page 18: Highrise Workshop 2012 _ Climate Design

[18-38]

The system we propose for the ventilation, heating and cooling of our building is somehow a new suggestion as in a research that was carried out for existing HVAC schemes there wasn’t anything similar found. So during the design pro-cess we faced some problems especially regarding the duct distribution and function as there is no system yet in the market to allow the designer to re-verse the inlet and exhaust function of an Air Handling Unit (AHU). So in order to solve this problem and avoid installing two times the ducts that were finally needed (once for inlet and once for exhaust for every season) we propose a new component that can be adapted just before a Twin coil AHU and reverse the air direction when needed.

This component named “tube exchanger” is composed by a reversion box of 3m length and width accordng to the ducts needed. The ducts used for this design are flexible circular ducts designed for high pressure loads in order to serve the air quantity needed in every floor without occupying big space in the shafts. The scheme and the function of the tube exchanger can be seen in fig 21.

So as our initial goal is to provide during winter air from the floor and exhaust it through the ceiling and during summer to provide air from the ceiling and exhaust through the floors the tube exchanger will be connected with a sensor that will automatically reverse its function once the temperature levels exceed a specific limit witch for the winter function will be 24oC and for the summer function will be 18oC. In order though to avoid high mechanical fatigue of the system we will adjust the sensor to allow a two degree divergence within which only the floor heating or the chilled ceiling will take over balancing the tem-perature without reversing the air flow direction.

3.2.5. The Tube exchanger

Twin coil AHU

Twin coil AHU

Twin coil AHU

Twin coil AHU

Figure 21. tube exchanger function

3m

Figure 22. Typical floor duct distribution plan

Page 19: Highrise Workshop 2012 _ Climate Design

[19-38]

Every floor has some air demands per hour depending on the number of people that are occupying it and its function. All the detailed calculations for this pur-pose can be found it the Appendix. From this air demands per hour we calcu-lated the amount of ducts needed to transfer the air needed to ensure a healthy and functional environment.

In order to avoid though occupying a lot of space in the shafts area we decided to drive the air all the way up or down in the shafts with a design speed of 9m/s through high pressure insulated ducts in order to avoid noise pollution and for the distribution of the air along the corridors of every floor as shown in figure 22 we designed the distribution ducts with an air flow of 3,5 m/s.

3.2.6. Ventilation and duct demands

Air Inlet

tube exchanger

AHU

water ponds

Ducts distribution with an opening of 0,8 m2 each

(1,6X0,5m) rectangular section

Figure 23. Typical installation floor and duct distribution scheme

Figure 24. Auditorium ventilation scheme

Page 20: Highrise Workshop 2012 _ Climate Design

[20-38]

A lot of new technologies are oriented to material savings and reuse and to energy recapturing. The initial goal for these developments is, far from the fi-nancial profit, the reduction of CO2 emissions that are produced either during material production or from energy production procedures.

So this new European iconic building must put a lot of effort in order to elimi-nate its environmental impact by addressing new technologies in every step and stage of its design and construction. In this chapter we will go through the measures, systems and approaches that were adopted through the design phase in order to achieve this goal.

Due to the fact that our buildings have a total of 148 elevator cars and the same amount of engines, one for each elevator car, the amount of energy used per year only for the vertical transportation of the users is significantly large and equal to 281.5 MWh per year. So instead of producing this amount of energy from scratch we install a Regen@ system in every engine that captures and re-turns to the building’s grid more than 70% of the energy used by them so a total of 197MWh per year or o.5 MWh per day for re-use.

4. Eliminate the environmental impact

4.1. Vertical transportation

4.2. HVAC and tube exchanger

Figure 25. Regen# system installed in every car engine

The tube exchanger and ventilation system as described in chapter 3 allow us to install half of the ducts that we would install without the tube exchanger and the plenum ventilation design allow us to install a total of 47% less duct running meters than a conventional system due to the fact that we do not need to install distribution ducts in the are of the offices or hotel rooms or conferences. This fact reduces the total amount of CO2 produced for the ducting of our building by 6,13 tonnesCO2.

Figure 26. Ducts distribution reduction from plenum ventilation scheme

Page 21: Highrise Workshop 2012 _ Climate Design

[21-38]

4.3. Air filtrationBrussels has a constantly improved air quality from 2004 and on but yet the par-ticles concentration in the air especially those coming from traffic pollution like PM10 and PM2.5 meet high concentration levels in the atmosphere. This fact forced us to abandon the idea of natural ventilation as we wanted to ensure a healthy Indoor Air Quality (IAQ). Part from that we wanted to design our build-ing in a way that will return more than it takes from the adjacent environment. For this purpose a highly efficient HEPA filter was chosen to be used in the air inlet of every AHU. This kind of filter can clean up to 97% of the air’s particles reaching capturing a minimum size up to o.3 microns in order to ensure that the air that will insert the occupied spaces is clean and will not harm the users in long term.

Part from that we decided to not reuse the air among departments of the build-ing as this would raise a lot of risk for disease transmissions through the air and would lower significantly the air quality. Instead we drive the used air to the atrias providing this way both the air quantity that they require and also a tem-perature balance without using any excess energy to pre-temper the air in order to achieve this balance as the air will already be preheated from the circulation in the offices and other functions. This saves a total of 1,77MW/day of use as the atrias have a huge volume of 19400m2 as they are 16m high each and they have a total 320m2 exposed glass surface that raises the amount of energy needed to preserve a constant temperature through the whole day as they function in a 24 hour basis.

After the air enters the Atrias there are five operable windows in each atria fa-cade that operate automatically in order to let air exhaust naturally back to the atmosphere. The amount of air that will insert the atrias is 6,98m3/s and with the assumption that the air will be driven out with an average speed of 1m/s we need a total of 8mw of openings to ensure the proper air exhaust. Every opening though has 1,54m2 so by operating 5 openings in each atrium we achieve to have an overpressure in the space, a fact that ensures that no polluted air from outside will enter the atria and that the ventilation flow will function properly through the whole operation time.

Finally this scheme allows us to return the air back to the atmosphere cleaner than we inserted it into the building turning the building to big lung for the city of Brussels.

Figure 27. The buildings acting as a lung for the city of Brussels

Figure 28. Exhaust air scheme from the installation space - to the atria - to outside

Atria space

Page 22: Highrise Workshop 2012 _ Climate Design

[22-38]

4.4. Interior Lighting

4.5. Water drainage and re-use

The interior lighting of the building is also very important factor that contrib-utes to a sustainable and comfort inner climate. It is also though a great factor in the total energy consumption of the buildings as every space needs to have artificial lighting to an adequate level. For this purpose and as office spaces and conference centers with a total of 116.797 m2 we decided to install the curved chilled ceiling for another reason part from the cooling purposes. This kind of geometry of the ceiling distributes the light evenly in the space by reflec-tion and can save up to 30% of the total energy demand for lighting through the whole year. So in numbers this kind of lighting system can save up to 1023 MWh/year or 282 tonnesCO2 per year as shown in the figure 28.

Our design offers us in total 10..143 m2 of inclined roof whose slope is shouting for water drainage through raining days. With a total amount of 755mm/year of percipitation in the city of Brussels the water drainage can provide us with a total 7.556m3 of fresh water that after filtration can be directly used for second-ary use as flushing, cleaning e.t.c. The toal amount of water used for secondary use like flushing though can exceed 66.879 m2 per year so we decided to reuse the water from primary uses, store it, filter it and then redistributed for second-ary use saving this way a total of 59323m3 per year.

Function Lghting  needs  (w/m2) Sq.meter Total  energy  demands  per  year  (Wh/year) 30%  reduced  en.  Demands  (MWh) difference  (MWh) total  reduction  (MWH)OFFICES 10 95.781,15 2796809609 839,0428828 1957,766726 1023,142605

CON  CENTER 10 21.015,95 613665740 184,099722 429,566018

Figure 29. energy demands and energy savings for lighting

Figure 30. Impression of the interior office space with and without artificial lighting

106 floors8 toil/floor

848 toilets30538 flushes  per  day365 days

11146538 flushes  per  year10179,48641 total  amount  of  people

6 l  per  flush183,2307553 total  m3  per  day66879,22569 m3  per  year

Figure 31. total water use for flushing

Figure 32. A total 10.143m2 of inclined roofs

Page 23: Highrise Workshop 2012 _ Climate Design

[23-38]

Domestic use

Rainwater water from the Grid

Toilets/secondary use

In fig. 33 one can see the water distribution and re-use scheme that is followed through every building from the top to the bottom. In order to ensure the prop-er function and constant distribution of water we install in every istallation floor two circular Pioneer XL05 water tanks of 4,7 m diameter and 3,45 m height of 30m3 total capacity each. One tank will store 1/3 of the total water demands of each section the installation floor is serving in order to fill up during off peak hours and reduce the total energy consumption needed to drive the water in every installation floor during day time and the second will be used on the up-per installation floor to save the water captured during storms and on the other installation floors in order to save and filter the gray water coming from the primary uses so it can be re-used further for secondary uses.

two water tanks per instal-lation floor

Figure 33. installation floor with water tanks

Figure 34. water re-use scheme

Page 24: Highrise Workshop 2012 _ Climate Design

[24-38]

total area A = 1,48 m2

per facade element

with integrated PV panels of 65W/m2

efficiency

A/2

A/2

4.6. Integrated PV Panels

5.1. EU PoliciesDesigning a building for the EU addresses a lot of research in matters of policies and strategies especially in the field of energy management as it is the hottest topic of our era. In this direction EU has solid policies that are leading the effort for a greener future that is depending less on fossil fuels and more on renew-able energy sources. These efforts are encompassed in the memorandum of un-derstanding that EU countries signed back in 2011 related to renewable energy exchanges. This memorandum engages the involved countries like Germany, Denmark, Norway, Sweden, Belgium, France, Luxembourg, and the United King-dom to put an effort in creating a Supergrid that will connect them and every country will be able to input energy stock that comes from their renewable en-ergy sources. Till now the supergrid idea is based on wind farms energy produc-tion but it is about to be extended to any source of renewable energy that a country can produce in stock and exchange it with others. This initiative also is targeted by other countries in the EU that are willing to engage themselves to produce energy from renewable energy sources so to participate in this innova-tive effort.

Part from that the research showed that EU is turning every year in more envi-ronmental friendly energy sources like biogas, residual wastes, wind energy and others as shown in fig 35.

Finally in order to take advantage of the exposure of the south facades of our building to the sun we decided to integrate PV panels in parts of the windows that will be installed. With a total amount 7.500 elements of the facade exposed on the south part of the facade and a total 1,48 m2 of integrated panels in each element of 65 W/m2 efficiency we can produce in total of 1580 MWh/year that equals to 3% of our initial energy needs per year.

Par from that the PV panels are integrated with this pattern in order to hide the raised floors and lowered ceilings behind them and act as shading device for the north part of the building.

Figure 35. Shadow effect from integrated PV Panels in the Rotterdam central station

5. Design for the future

Figure 36. energy production per renewable energy source in EU from 1994-2008

Page 25: Highrise Workshop 2012 _ Climate Design

[25-38]

Taking these parameters into account and trying to find a way to make our building a totaly energy efficient building that will enclose future steps and po-tential improvements we decide to produce our own energy in order to serve the energy demands of the whole design.

For this purpose a CENTAURUS 70 gas turbine generator set of 7.5 MWe daily capacity combined with a Waste heat recovery unit and an absorption chiller are installed in the basement of building C and will produce building’s 70-75% energy demands. The gas turbine will be supplied with natural gas from the grid for the first years but in the future and as biogas production is growing it will be possible to replace natural gas with biogas and generate CO2 free energy with the least envi-ronmental impact. The gas turbine generator has an efficiency of 65% referring to the initial energy source in contrast with the 40% efficiency that the electricity pro-duction has using coal as energy source. Also in Brussels at the moment 1 KWh of energy production from coal produces 0,9kgCO2 and 1 KWh of energy production from natural gas produces 0,43 kgCO2. So the total amount of CO2 reduction that we achieve by installing a gas turbine of this capacity equals to 76957tonnesCO2 per year or 70% reduction referring always to the CO2 that is produced from the initial source of energy and not to the energy used from the building as this is only a percentage of the primary source.

The gas turbine, the heat exchanger and the absorption chiller are connected to a system of 8 heat pumps that are installed under each building in order to provide the hot and cold water needed in order to cover the cooling and heating demands of every building as shown in figures 39 and 40 and the demands for hot water. Dur-ing off peak hours the excess energy that is produced from the gas turbine is used in order to create a balance in the heat pump storage tanks and after that balance is achieved the rest of the energy is returned to the grid.

We calculated that a total amount of 0,903 MWe will be returned every day to the grid and this action can be introduced from the EU as an effort to enhance the ini-tiative for the Supergrid development. Part from that it offers a great business plan to the investor as it is analysed in the financial report of this project.

5.2. Energy Efficiency

Electricity from the Grid

Excess energy during off-peak hours

Building’s energy demands

Absorption Chiller

Waste heat recovery

CO2 extraction outlet

building’s grid

Hot water for domestic use

gas from the grid

Figure 37. Co-generation plant scheme

Gas turbineHeat Exchanger

GeneratorAir Intake CoolerTransporter

Absorption Chiller8 Heat pumps set

Algea harvesterFresh airElectricityNatural gas

Compressor

Figure 38. Co-generation plant installation in -3 storey of building C (figures are place in real scale)

Page 26: Highrise Workshop 2012 _ Climate Design

[26-38]

Figure 39. Energy distribution scheme for the three buildings in combination with heat-pumps

Figure 40. 3D impression of the co-generation set up

MODEL Cooling ca-pacity (kW)

Power input (kW)

Length(mm) Width (mm) Height (mm) Weight (kg) Total Area

(m2)

3500BX 921 193 4567 1500 1895 4719 8,65

Figure 41. The Water to soil heat pump that will be used to form the 8 heatpump set up for every building

Page 27: Highrise Workshop 2012 _ Climate Design

[27-38]

7453384m3 of natural gas per year

Losses 35% Heat Output 35% Algea Pond with a 20cm PCM transparent cover for tempera-ture flaxuation and protection

more than100000kg of algea harvested per year

Black water from the build-ing reused as a source of nutrients for Algea

31500 Euro/yearfrom lipid and meal bioprod-

ucts

5.3. Closed biogas cycleIn order to create an iconic building that will act as a leader for the buildings of the next generation we wanted to show a path that is never followed before. The fact that the gas turbine will consume more than 7453384m3 of natural gas per year that equals to 271130 mmBTU/year or 41.605 tonnesCO2 per year. This amount of CO2 can not be directly exhausted to the atmosphere so we decided to introduce an algae pond on the ground floor level outside our building in order to input part of this amount to the pond and produce algae that later on will be harvested in an algae harvesting system that is also installed in the basement as shown in fig 38. Till lately the use of algae ponds for commercial use and especially in public spaces was not feasible as the pond produces smells and if it is not protected there is serious risk of pollution by people that will lead to the death of the algae and the extrac-tion of CO2 back to the atmosphere. A new technology though that is being held in pilot programs in US showed that the commercialization of algae ponds is now feasible as they use a 20cm thick layer of Phase Changing Material that has a two fold function. The first is to protect the algae from external sources of pollution and to keep the smells that are produced in the algae pond. The second function is to absorb the heat from the sun during daytime and release it in the algae pond once the temperature falls. This protects the algae from cold and enhance the production process as algae needs heat to grow.

The algae pond has a total surface of 2000m2 and a depth of 25cm in order to let the sun reach every level of the pond. The pond will be filled with the black water that will come out of the building and will act as a nutrient source. By this set up a total amount of 1000tonnes of CO2 per year will be captures and the rest will be exhaust-ed through the shafts to the air from the top installation floor in order not to pollute the air of the ground level. The captures CO2 will result in a total of 100tonnes of algae per year and with an average price of 0,315 euros/kg including lipids and meal of algae can return a total 31500 euros per year. The amounts of CO2 captured per year along with the total income that the harvesting can bring are not convincing but the initiative of this action is to show the way for the next generation of design-ers and constructors as a larger scale installation combined with a gas turbine that uses biogas as its primary fuel can return into a completely closed biogas cycle and reduce dramatically the environmental impact of the next generation buildings.

Figure 42. Algea pond and truck entrance for the algea transportation

Figure 43. Algea Harvester

Figure 44. Algea production scheme

Page 28: Highrise Workshop 2012 _ Climate Design

[28-38]

25m2 of evacuation zone in front of firesafety elevators

Firesafety elevators

evacuation rooms for the fireescape escalators

3 fire escape escalators

6. Firesafety Due to the design development and the structural system that was followed en-suring fire safety for our buildings was an easy process. There are no spots in every floor that are exceeding 45 m distance from a fire escape exit as there are three fire escape escalators that can be used and are reachable from every side of a floor plan. Every escalator has an evacuation room with doors of 90min fire safety resistance and a devoted exhaust duct in order to ensure safety for the us-ers and every floor is equipped with umbrella type sprinklers placed every 4.5 m covering an area of 17m2 each. Also there are smoke detectors covering an area of 80m2 each for smoke detection and every 100m2 there are fire extinguishers for emergency use. Finally every floor has access to two fire safety elevators with an evacuation room of 25 m2 .

Figure 45. Firesafety routes

Page 29: Highrise Workshop 2012 _ Climate Design

[29-38]

7. APPENDIX

7.1. ELEVATE CALCULATIONS

ELEVATOR  DATA 0-­‐10floors  (4double  dekkers_elevators_2000kg PASSENGER  DATACar  1 Car  2 Car  3 Car  4 Arrangement Double  Deck  with  no  odd  to  even  floor  traffic

Capacity  (kg) 2000 2000 2000 2000 Template Constant  traffic  (%  building  pop  per  5  mins)Speed  (m/s) 3,5 3,5 3,5 3,5 Total  HC  (%  pop  per  5  mins) 15.00Acceleration  (m/s²) 0,8 0,8 0,8 0,8 Incoming  (%)   100.00Jerk  (m/s³) 1,6 1,6 1,6 1,6 Outgoing  (%)   0.00Home  Floor Level Level Level Level Interfloor  (%)   0.00Start  Delay  (s) 0,5 0,5 0,5 0,5 Start  Time  (hrs:mins) 08:00Door  Pre-­‐opening  Time  (s) 0 0 0 0 End  Time  (hrs:mins) 11:00Door  Open  Time  (s) 1,8 1,8 1,8 1,8 Passenger  Mass  (kg) 75Door  Close  Time  (s) 2,9 2,9 2,9 2,9 Loading  Time  (s) 1,2Door  Dwell  1  (s) 3 3 3 3 Unloading  Time  (s) 1,2Door  Dwell  2  (s) 2 2 2 2 Stair  Factor  (%) 0

Capacity  Factor  (%) 80

ELEVATOR  DATA 10-­‐24  floors  (4doubledekkers_elevators_1600kg) PASSENGER  DATACar  1 Car  2 Car  3 Car  4 Arrangement Double  Deck  with  no  odd  to  even  floor  traffic

Capacity  (kg) 1600 1600 1600 1600 Template Constant  traffic  (%  building  pop  per  5  mins)Speed  (m/s) 5 5 5 5 Total  HC  (%  pop  per  5  mins) 15.00Acceleration  (m/s²) 0,8 0,8 0,8 0,8 Incoming  (%)   100.00Jerk  (m/s³) 1,6 1,6 1,6 1,6 Outgoing  (%)   0.00Home  Floor level  0 level  0 level  0 level  0 Interfloor  (%)   0.00Start  Delay  (s) 0,5 0,5 0,5 0,5 Start  Time  (hrs:mins) 08:00Door  Pre-­‐opening  Time  (s) 0 0 0 0 End  Time  (hrs:mins) 11:00Door  Open  Time  (s) 1,8 1,8 1,8 1,8 Passenger  Mass  (kg) 75Door  Close  Time  (s) 2,9 2,9 2,9 2,9 Loading  Time  (s) 1,2Door  Dwell  1  (s) 3 3 3 3 Unloading  Time  (s) 1,2Door  Dwell  2  (s) 2 2 2 2 Stair  Factor  (%) 0

Capacity  Factor  (%) 80

The tables shown in this section are part of the results that were produced in ELEVATE. The fact that the program cannot simulate the TWIN systems forced us to calculate all the TWIN systems as double deckers , a fact that did not allow us to go into more detail with the calculations

Page 30: Highrise Workshop 2012 _ Climate Design

[30-38]

ELEVATOR  DATA 38-­‐51  floors  (4double  dekkers_elevators_1600kg) PASSENGER  DATACar  1 Car  2 Car  3 Car  4 Arrangement Double  Deck  with  no  odd  to  even  floor  traffic

Capacity  (kg) 1600 1600 1600 1600 Template Constant  traffic  (%  building  pop  per  5  mins)Speed  (m/s) 5 5 5 5 Total  HC  (%  pop  per  5  mins) 15.00Acceleration  (m/s²) 0,8 0,8 0,8 0,8 Incoming  (%)   100.00Jerk  (m/s³) 1,6 1,6 1,6 1,6 Outgoing  (%)   0.00Home  Floor level    0 level    0 level    0 level    0 Interfloor  (%)   0.00Start  Delay  (s) 0,5 0,5 0,5 0,5 Start  Time  (hrs:mins) 08:00Door  Pre-­‐opening  Time  (s) 0 0 0 0 End  Time  (hrs:mins) 11:00Door  Open  Time  (s) 1,8 1,8 1,8 1,8 Passenger  Mass  (kg) 75Door  Close  Time  (s) 2,9 2,9 2,9 2,9 Loading  Time  (s) 1,2Door  Dwell  1  (s) 3 3 3 3 Unloading  Time  (s) 1,2Door  Dwell  2  (s) 2 2 2 2 Stair  Factor  (%) 0

Capacity  Factor  (%) 80

ELEVATOR  DATA PASSENGER  DATACar  1 Car  2 Arrangement Double  Deck  with  no  odd  to  even  floor  traffic

Capacity  (kg) 2000 2000 Template Constant  traffic  (%  building  pop  per  5  mins)Speed  (m/s) 7 7 Total  HC  (%  pop  per  5  mins) 15.00Acceleration  (m/s²) 0,8 0,8 Incoming  (%)   100.00Jerk  (m/s³) 1,6 1,6 Outgoing  (%)   0.00Home  Floor Level  0 Level  0 Interfloor  (%)   0.00Start  Delay  (s) 0,5 0,5 Start  Time  (hrs:mins) 08:00Door  Pre-­‐opening  Time  (s) 0 0 End  Time  (hrs:mins) 10:00Door  Open  Time  (s) 1,8 1,8 Passenger  Mass  (kg) 75Door  Close  Time  (s) 2,9 2,9 Loading  Time  (s) 1,2Door  Dwell  1  (s) 3 3 Unloading  Time  (s) 1,2Door  Dwell  2  (s) 2 2 Stair  Factor  (%) 0

Capacity  Factor  (%) 80

shuttle_skylobby_2doubledeckelevators_2000kg.

Page 31: Highrise Workshop 2012 _ Climate Design

[31-38]

7.2. Air demands per section

Storey Function corridors m2                            (exl.  Core) height m3 m2/p m3/pp/hr ventilation  rate shaft  flow  velocity  (m/s) corridors  flow  velocity nr.of  ppl

demand/hr  (m3/hr)  dep.  on  air  change  

rate

demand/hr  (m3/s)  dep.  on  air  change  

rate

demand/hr  (m3/hr)  dep.  on  nr.  of  people

demand/hr  (m3/sec)  dep.  On  nr.  Of  people Required  opening  inlet  (m2)

Required  opening  after  reduction  due  to  friction                                                              Q  =  V*Cd*A  (Cd  =  0,8)

Required  opening  inlet  for  corridors    (m2)

-­‐3 Installations  1 1.927,05 4 7708,2 20 50 5 9 3,5 97 38541 10,7 4850,00 1,35 0,150 0,19 0,384920635-­‐2

retail 1.021,28 6 6127,68 2 50 3 9 3,5 511 18383,04 5,1 25550,00 7,10 0,789 0,99 2,027777778civic 182,89 6 1097,34 2 50 3 9 3,5 92 3292,02 0,9 4600,00 1,28 0,142 0,18 0,365079365atria 326,22 6 1957,32 1,5 50 2 9 3,5 218 3914,64 1,1 10900,00 3,03 0,336 0,43 0,865079365

-­‐1 shopping 859,60 4 3438,4 2 50 3 9 3,5 430 10315,2 2,9 21500,00 5,97 0,664 0,83 1,7063492060 Entrance 1.158,76 6 6952,56 1,5 50 2 9 3,5 773 13905,12 3,9 38650,00 10,74 1,193 1,5 3,0674603171 conference 445,1454 1.059,87 4 4239,48 5 50 5 9 3,5 212 21197,4 5,9 10600,00 2,94 0,327 0,41 0,8412698412 conference 475,0452 1.131,06 4 4524,24 5 50 5 9 3,5 227 22621,2 6,3 11350,00 3,15 0,350 0,44 0,9007936513 conference 506,1252 1.205,06 4 4820,24 5 50 5 9 3,5 242 24101,2 6,7 12100,00 3,36 0,373 0,47 0,960317464 conference 541,0818 1.288,29 4 5153,16 5 50 5 9 3,5 258 25765,8 7,2 12900,00 3,58 0,398 0,5 1,0238095245 conference 573,5058 1.365,49 4 5461,96 5 50 5 9 3,5 274 27309,8 7,6 13700,00 3,81 0,423 0,53 1,0873015876 conference 596,7066 1.420,73 4 5682,92 5 50 5 9 3,5 285 28414,6 7,9 14250,00 3,96 0,440 0,55 1,1309523817 conference 618,66 1473 4 5892 5 50 5 9 3,5 295 29460 8,2 14750,00 4,10 0,455 0,57 1,1706349218 conference 622,9188 1.483,14 4 5932,56 5 50 5 9 3,5 297 29662,8 8,2 14850,00 4,13 0,458 0,58 1,1785714299 conference 636,8922 1.516,41 4 6065,64 5 50 5 9 3,5 304 30328,2 8,4 15200,00 4,22 0,469 0,59 1,206349206

10 Installations  2 1524,06 4 6096,24 20 5 4 3,5 77 30481,2 8,5 2,117 2,7Meeting  lobby 762,03 8 6096,24 1,5 50 9 3,5 509 25450,00 7,07 0,785 0,99 2,01984127

11 offices 330,13078 1.521,34 4 6085,36 20 50 1,3 9 3,5 77 7910,968 2,2 3850,00 1,07 0,119 0,15 0,30555555612 offices 328,03673 1.511,69 4 6046,76 20 50 1,3 9 3,5 76 7860,788 2,2 3800,00 1,06 0,117 0,15 0,30158730213 offices 324,6971 1.496,30 4 5985,2 20 50 1,3 9 3,5 75 7780,76 2,2 3750,00 1,04 0,116 0,15 0,29761904814 offices 320,10321 1.475,13 4 5900,52 20 50 1,3 9 3,5 74 7670,676 2,1 3700,00 1,03 0,114 0,15 0,29365079415 offices 269,6876 1.242,80 4 4971,2 20 50 1,3 9 3,5 63 6462,56 1,8 3150,00 0,88 0,097 0,13 0,2516 offices 267,36136 1.232,08 4 4928,32 20 50 1,3 9 3,5 62 6406,816 1,8 3100,00 0,86 0,096 0,12 0,24603174617 offices 264,60763 1.219,39 4 4877,56 20 50 1,3 9 3,5 61 6340,828 1,8 3050,00 0,85 0,094 0,12 0,24206349218 offices 264,46875 1.218,75 4 4875 20 50 1,3 9 3,5 61 6337,5 1,8 3050,00 0,85 0,094 0,12 0,24206349219 offices 258,15188 1189,64 4 4758,56 20 50 1,3 9 3,5 60 6186,128 1,7 3000,00 0,83 0,093 0,12 0,23809523820 offices 258,15188 1.189,64 4 4758,56 20 50 1,3 9 3,5 60 6186,128 1,7 3000,00 0,83 0,093 0,12 0,23809523821 offices 239,3944 1.103,20 4 4412,8 20 50 1,3 9 3,5 56 5736,64 1,6 2800,00 0,78 0,086 0,11 0,22222222222 offices 230,03519 1.060,07 4 4240,28 20 50 1,3 9 3,5 54 5512,364 1,5 2700,00 0,75 0,083 0,11 0,21428571423 offices 221,40076 1.020,28 4 4081,12 20 50 1,3 9 3,5 52 5305,456 1,5 2600,00 0,72 0,080 0,11 0,20634920624 Installations  3 1.022,00 4 4088 20 5 9 3,5 52 20440 5,7 0,631 0,8

Meeting  lobby 511,00 8 4088 1,5 50 9 3,5 341 17050,00 4,74 0,526 0,66 1,35317460325 offices 220,40907 1.015,71 4 4062,84 20 50 1,3 9 3,5 51 5281,692 1,5 2550,00 0,71 0,079 0,1 0,20238095226 offices 217,00868 1.000,04 4 4000,16 20 50 1,3 9 3,5 51 5200,208 1,4 2550,00 0,71 0,079 0,1 0,20238095227 offices 230,90319 1.064,07 4 4256,28 20 50 1,3 9 3,5 54 5533,164 1,5 2700,00 0,75 0,083 0,11 0,21428571428 offices 245,59409 1.131,77 4 4527,08 20 50 1,3 9 3,5 57 5885,204 1,6 2850,00 0,79 0,088 0,11 0,22619047629 offices 251,2643 1.157,90 4 4631,6 20 50 1,3 9 3,5 58 6021,08 1,7 2900,00 0,81 0,090 0,12 0,2301587330 offices 257,31643 1.185,79 4 4743,16 20 50 1,3 9 3,5 60 6166,108 1,7 3000,00 0,83 0,093 0,12 0,23809523831 offices 260,99675 1.202,75 4 4811 20 50 1,3 9 3,5 61 6254,3 1,7 3050,00 0,85 0,094 0,12 0,24206349232 offices 262,787 1.211,00 4 4844 20 50 1,3 9 3,5 61 6297,2 1,7 3050,00 0,85 0,094 0,12 0,24206349233 offices 316,02795 1.456,35 4 5825,4 20 50 1,3 9 3,5 73 7573,02 2,1 3650,00 1,01 0,113 0,15 0,2896825434 offices 320,35059 1.476,27 4 5905,08 20 50 1,3 9 3,5 74 7676,604 2,1 3700,00 1,03 0,114 0,15 0,29365079435 offices 325,30687 1.499,11 4 5996,44 20 50 1,3 9 3,5 75 7795,372 2,2 3750,00 1,04 0,116 0,15 0,29761904836 offices 328,14089 1.512,17 4 6048,68 20 50 1,3 9 3,5 76 7863,284 2,2 3800,00 1,06 0,117 0,15 0,30158730237 offices 330,08304 1.521,12 4 6084,48 20 50 1,3 9 3,5 77 7909,824 2,2 3850,00 1,07 0,119 0,15 0,30555555638 Installations  4 1.524,06 4 6096,24 20 5 9 3,5 77 30481,2 8,5 0,941 1,2

Meeting  lobby 762,03 8 6096,24 1,5 50 9 3,5 509 25450,00 7,07 0,785 0,99 2,0198412739 offices 330,6429 1.523,70 4 6094,8 20 50 1,3 9 3,5 77 7923,24 2,2 3850,00 1,07 0,119 0,15 0,30555555640 offices 330,72102 1.524,06 4 6096,24 20 50 1,3 9 3,5 77 7925,112 2,2 3850,00 1,07 0,119 0,15 0,30555555641 offices 331,76262 1.528,86 4 6115,44 20 50 1,3 9 3,5 77 7950,072 2,2 3850,00 1,07 0,119 0,15 0,30555555642 offices 330,72102 1.524,06 4 6096,24 20 50 1,3 9 3,5 77 7925,112 2,2 3850,00 1,07 0,119 0,15 0,30555555643 offices 330,72102 1.524,06 4 6096,24 20 50 1,3 9 3,5 77 7925,112 2,2 3850,00 1,07 0,119 0,15 0,30555555644 offices 330,72102 1.524,06 4 6096,24 20 50 1,3 9 3,5 77 7925,112 2,2 3850,00 1,07 0,119 0,15 0,30555555645 offices 330,72102 1.524,06 4 6096,24 20 50 1,3 9 3,5 77 7925,112 2,2 3850,00 1,07 0,119 0,15 0,30555555646 offices 330,72102 1.524,06 4 6096,24 20 50 1,3 9 3,5 77 7925,112 2,2 3850,00 1,07 0,119 0,15 0,30555555647 offices 330,72102 1.524,06 4 6096,24 20 50 1,3 9 3,5 77 7925,112 2,2 3850,00 1,07 0,119 0,15 0,30555555648 offices 330,72102 1.524,06 4 6096,24 20 50 1,3 9 3,5 77 7925,112 2,2 3850,00 1,07 0,119 0,15 0,30555555649 offices 330,72102 1.524,06 4 6096,24 20 50 1,3 9 3,5 77 7925,112 2,2 3850,00 1,07 0,119 0,15 0,30555555650 offices 330,72102 1.524,06 4 6096,24 20 50 1,3 9 3,5 77 7925,112 2,2 3850,00 1,07 0,119 0,15 0,30555555651 offices 331,76045 1.528,85 4 6115,4 20 50 1,3 9 3,5 77 7950,02 2,2 3850,00 1,07 0,119 0,15 0,30555555652 Installations  4 1.924,37 4 7697,48 20 5 9 3,5 97 38487,4 10,7 1,188 1,5

Meeting  lobby 962,19 8 7697,48 1,5 50 9 3,5 642 32100,00 8,92 0,991 1,24 2,54761904853 Sky  lobby 1.624,37 8 12994,96 5 50 2 9 3,5 325 25989,92 7,2 16250,00 4,51 0,502 0,63 1,2896825455 Sky  lobby 1.470,88 8 11767,04 5 50 2 9 3,5 295 23534,08 6,5 14750,00 4,10 0,455 0,57 1,17063492157 Sky  lobby 1321,36 8 10570,88 5 50 2 9 3,5 265 21141,76 5,9 13250,00 3,68 0,409 0,52 1,05158730259 Skylobby 1466,37 8 11730,96 5 50 2 9 3,5 294 23461,92 6,5 14700,00 4,08 0,454 0,57 1,166666667

TOWER C

Page 32: Highrise Workshop 2012 _ Climate Design

[32-38]

Storey Function corridors m2                            (exl.  Core) height m3 m2/p m3/pp/hr ventilation  rate shaft  flow  velocity  (m/s) corridors  flow  velocity nr.of  ppl

demand/hr  (m3/hr)  dep.  on  air  change  

rate

demand/hr  (m3/s)  dep.  on  air  change  

rate

demand/hr  (m3/hr)  dep.  on  nr.  of  people

demand/hr  (m3/sec)  dep.  On  nr.  Of  people Required  opening  inlet  (m2)

Required  opening  after  reduction  due  to  friction                                                              Q  =  V*Cd*A  (Cd  =  0,8)

Required  opening  inlet  for  corridors    (m2)

-­‐3 Installations  1 1.927,05 4 7708,2 20 50 5 9 3,5 97 38541 10,7 4850,00 1,35 0,150 0,19 0,384920635-­‐2

retail 1.021,28 6 6127,68 2 50 3 9 3,5 511 18383,04 5,1 25550,00 7,10 0,789 0,99 2,027777778civic 182,89 6 1097,34 2 50 3 9 3,5 92 3292,02 0,9 4600,00 1,28 0,142 0,18 0,365079365atria 326,22 6 1957,32 1,5 50 2 9 3,5 218 3914,64 1,1 10900,00 3,03 0,336 0,43 0,865079365

-­‐1 shopping 859,60 4 3438,4 2 50 3 9 3,5 430 10315,2 2,9 21500,00 5,97 0,664 0,83 1,7063492060 Entrance 1.158,76 6 6952,56 1,5 50 2 9 3,5 773 13905,12 3,9 38650,00 10,74 1,193 1,5 3,0674603171 conference 445,1454 1.059,87 4 4239,48 5 50 5 9 3,5 212 21197,4 5,9 10600,00 2,94 0,327 0,41 0,8412698412 conference 475,0452 1.131,06 4 4524,24 5 50 5 9 3,5 227 22621,2 6,3 11350,00 3,15 0,350 0,44 0,9007936513 conference 506,1252 1.205,06 4 4820,24 5 50 5 9 3,5 242 24101,2 6,7 12100,00 3,36 0,373 0,47 0,960317464 conference 541,0818 1.288,29 4 5153,16 5 50 5 9 3,5 258 25765,8 7,2 12900,00 3,58 0,398 0,5 1,0238095245 conference 573,5058 1.365,49 4 5461,96 5 50 5 9 3,5 274 27309,8 7,6 13700,00 3,81 0,423 0,53 1,0873015876 conference 596,7066 1.420,73 4 5682,92 5 50 5 9 3,5 285 28414,6 7,9 14250,00 3,96 0,440 0,55 1,1309523817 conference 618,66 1473 4 5892 5 50 5 9 3,5 295 29460 8,2 14750,00 4,10 0,455 0,57 1,1706349218 conference 622,9188 1.483,14 4 5932,56 5 50 5 9 3,5 297 29662,8 8,2 14850,00 4,13 0,458 0,58 1,1785714299 conference 636,8922 1.516,41 4 6065,64 5 50 5 9 3,5 304 30328,2 8,4 15200,00 4,22 0,469 0,59 1,206349206

10 Installations  2 1524,06 4 6096,24 20 5 4 3,5 77 30481,2 8,5 2,117 2,7Meeting  lobby 762,03 8 6096,24 1,5 50 9 3,5 509 25450,00 7,07 0,785 0,99 2,01984127

11 offices 330,13078 1.521,34 4 6085,36 20 50 1,3 9 3,5 77 7910,968 2,2 3850,00 1,07 0,119 0,15 0,30555555612 offices 328,03673 1.511,69 4 6046,76 20 50 1,3 9 3,5 76 7860,788 2,2 3800,00 1,06 0,117 0,15 0,30158730213 offices 324,6971 1.496,30 4 5985,2 20 50 1,3 9 3,5 75 7780,76 2,2 3750,00 1,04 0,116 0,15 0,29761904814 offices 320,10321 1.475,13 4 5900,52 20 50 1,3 9 3,5 74 7670,676 2,1 3700,00 1,03 0,114 0,15 0,29365079415 offices 269,6876 1.242,80 4 4971,2 20 50 1,3 9 3,5 63 6462,56 1,8 3150,00 0,88 0,097 0,13 0,2516 offices 267,36136 1.232,08 4 4928,32 20 50 1,3 9 3,5 62 6406,816 1,8 3100,00 0,86 0,096 0,12 0,24603174617 offices 264,60763 1.219,39 4 4877,56 20 50 1,3 9 3,5 61 6340,828 1,8 3050,00 0,85 0,094 0,12 0,24206349218 offices 264,46875 1.218,75 4 4875 20 50 1,3 9 3,5 61 6337,5 1,8 3050,00 0,85 0,094 0,12 0,24206349219 offices 258,15188 1189,64 4 4758,56 20 50 1,3 9 3,5 60 6186,128 1,7 3000,00 0,83 0,093 0,12 0,23809523820 offices 258,15188 1.189,64 4 4758,56 20 50 1,3 9 3,5 60 6186,128 1,7 3000,00 0,83 0,093 0,12 0,23809523821 offices 239,3944 1.103,20 4 4412,8 20 50 1,3 9 3,5 56 5736,64 1,6 2800,00 0,78 0,086 0,11 0,22222222222 offices 230,03519 1.060,07 4 4240,28 20 50 1,3 9 3,5 54 5512,364 1,5 2700,00 0,75 0,083 0,11 0,21428571423 offices 221,40076 1.020,28 4 4081,12 20 50 1,3 9 3,5 52 5305,456 1,5 2600,00 0,72 0,080 0,11 0,20634920624 Installations  3 1.022,00 4 4088 20 5 9 3,5 52 20440 5,7 0,631 0,8

Meeting  lobby 511,00 8 4088 1,5 50 9 3,5 341 17050,00 4,74 0,526 0,66 1,35317460325 offices 220,40907 1.015,71 4 4062,84 20 50 1,3 9 3,5 51 5281,692 1,5 2550,00 0,71 0,079 0,1 0,20238095226 offices 217,00868 1.000,04 4 4000,16 20 50 1,3 9 3,5 51 5200,208 1,4 2550,00 0,71 0,079 0,1 0,20238095227 offices 230,90319 1.064,07 4 4256,28 20 50 1,3 9 3,5 54 5533,164 1,5 2700,00 0,75 0,083 0,11 0,21428571428 offices 245,59409 1.131,77 4 4527,08 20 50 1,3 9 3,5 57 5885,204 1,6 2850,00 0,79 0,088 0,11 0,22619047629 offices 251,2643 1.157,90 4 4631,6 20 50 1,3 9 3,5 58 6021,08 1,7 2900,00 0,81 0,090 0,12 0,2301587330 offices 257,31643 1.185,79 4 4743,16 20 50 1,3 9 3,5 60 6166,108 1,7 3000,00 0,83 0,093 0,12 0,23809523831 offices 260,99675 1.202,75 4 4811 20 50 1,3 9 3,5 61 6254,3 1,7 3050,00 0,85 0,094 0,12 0,24206349232 offices 262,787 1.211,00 4 4844 20 50 1,3 9 3,5 61 6297,2 1,7 3050,00 0,85 0,094 0,12 0,24206349233 offices 316,02795 1.456,35 4 5825,4 20 50 1,3 9 3,5 73 7573,02 2,1 3650,00 1,01 0,113 0,15 0,2896825434 offices 320,35059 1.476,27 4 5905,08 20 50 1,3 9 3,5 74 7676,604 2,1 3700,00 1,03 0,114 0,15 0,29365079435 offices 325,30687 1.499,11 4 5996,44 20 50 1,3 9 3,5 75 7795,372 2,2 3750,00 1,04 0,116 0,15 0,29761904836 offices 328,14089 1.512,17 4 6048,68 20 50 1,3 9 3,5 76 7863,284 2,2 3800,00 1,06 0,117 0,15 0,30158730237 offices 330,08304 1.521,12 4 6084,48 20 50 1,3 9 3,5 77 7909,824 2,2 3850,00 1,07 0,119 0,15 0,30555555638 Installations  4 1.524,06 4 6096,24 20 5 9 3,5 77 30481,2 8,5 0,941 1,2

Meeting  lobby 762,03 8 6096,24 1,5 50 9 3,5 509 25450,00 7,07 0,785 0,99 2,0198412739 offices 330,6429 1.523,70 4 6094,8 20 50 1,3 9 3,5 77 7923,24 2,2 3850,00 1,07 0,119 0,15 0,30555555640 offices 330,72102 1.524,06 4 6096,24 20 50 1,3 9 3,5 77 7925,112 2,2 3850,00 1,07 0,119 0,15 0,30555555641 offices 331,76262 1.528,86 4 6115,44 20 50 1,3 9 3,5 77 7950,072 2,2 3850,00 1,07 0,119 0,15 0,30555555642 offices 330,72102 1.524,06 4 6096,24 20 50 1,3 9 3,5 77 7925,112 2,2 3850,00 1,07 0,119 0,15 0,30555555643 offices 330,72102 1.524,06 4 6096,24 20 50 1,3 9 3,5 77 7925,112 2,2 3850,00 1,07 0,119 0,15 0,30555555644 offices 330,72102 1.524,06 4 6096,24 20 50 1,3 9 3,5 77 7925,112 2,2 3850,00 1,07 0,119 0,15 0,30555555645 offices 330,72102 1.524,06 4 6096,24 20 50 1,3 9 3,5 77 7925,112 2,2 3850,00 1,07 0,119 0,15 0,30555555646 offices 330,72102 1.524,06 4 6096,24 20 50 1,3 9 3,5 77 7925,112 2,2 3850,00 1,07 0,119 0,15 0,30555555647 offices 330,72102 1.524,06 4 6096,24 20 50 1,3 9 3,5 77 7925,112 2,2 3850,00 1,07 0,119 0,15 0,30555555648 offices 330,72102 1.524,06 4 6096,24 20 50 1,3 9 3,5 77 7925,112 2,2 3850,00 1,07 0,119 0,15 0,30555555649 offices 330,72102 1.524,06 4 6096,24 20 50 1,3 9 3,5 77 7925,112 2,2 3850,00 1,07 0,119 0,15 0,30555555650 offices 330,72102 1.524,06 4 6096,24 20 50 1,3 9 3,5 77 7925,112 2,2 3850,00 1,07 0,119 0,15 0,30555555651 offices 331,76045 1.528,85 4 6115,4 20 50 1,3 9 3,5 77 7950,02 2,2 3850,00 1,07 0,119 0,15 0,30555555652 Installations  4 1.924,37 4 7697,48 20 5 9 3,5 97 38487,4 10,7 1,188 1,5

Meeting  lobby 962,19 8 7697,48 1,5 50 9 3,5 642 32100,00 8,92 0,991 1,24 2,54761904853 Sky  lobby 1.624,37 8 12994,96 5 50 2 9 3,5 325 25989,92 7,2 16250,00 4,51 0,502 0,63 1,2896825455 Sky  lobby 1.470,88 8 11767,04 5 50 2 9 3,5 295 23534,08 6,5 14750,00 4,10 0,455 0,57 1,17063492157 Sky  lobby 1321,36 8 10570,88 5 50 2 9 3,5 265 21141,76 5,9 13250,00 3,68 0,409 0,52 1,05158730259 Skylobby 1466,37 8 11730,96 5 50 2 9 3,5 294 23461,92 6,5 14700,00 4,08 0,454 0,57 1,166666667

Page 33: Highrise Workshop 2012 _ Climate Design

[33-38]

Storey Function corridors m2                            (exl.  Core) height m3 m2/p m3/pp/hr ventilation  rate shaft  flow  velocity  (m/s) corridors  flow  velocity nr.of  ppl

demand/hr  (m3/hr)  dep.  on  air  change  

rate

demand/hr  (m3/s)  dep.  on  air  change  

rate

demand/hr  (m3/hr)  dep.  on  nr.  of  people

demand/hr  (m3/sec)  dep.  On  nr.  Of  people Required  opening  inlet  (m2)

Required  opening  after  reduction  due  to  friction                                                              Q  =  V*Cd*A  (Cd  =  0,8)

-­‐3 Installations 1.996,79 4 7987,16 20 50 5 9 3,5 100 39935,8 11,1 5000,00 1,39 0,154 0,2-­‐2 Retail 1.377,00-­‐1 ATRIAS 835,00 4 3340 2 50 3 9 3,5 418 10020 2,8 20900,00 5,81 0,645 0,810 Entrance 936,23 6 5617,38 1,5 50 2 9 3,5 625 11234,76 3,1 31250,00 8,68 0,965 1,211 CON.  CENTER   472,5 1125 4 4500 5 50 5 9 3,5 225 22500 6,3 11250,00 3,13 0,347 0,442 CON.  CENTER   512,4 1.220,00 4 4880 5 50 5 9 3,5 244 24400 6,8 12200,00 3,39 0,377 0,483 CON.  CENTER   551,88 1.314,00 4 5256 5 50 5 9 3,5 263 26280 7,3 13150,00 3,65 0,406 0,514 CON.  CENTER   589,68 1.404,00 4 5616 5 50 5 9 3,5 281 28080 7,8 14050,00 3,90 0,434 0,555 CON.  CENTER   617,82 1.471,00 4 5884 5 50 5 9 3,5 295 29420 8,2 14750,00 4,10 0,455 0,576 CON.  CENTER   636,552 1515,6 4 6062,4 5 50 5 9 3,5 304 30312 8,4 15200,00 4,22 0,469 0,597 Installations 1.536,00 4 6144 5 5 9 3,5 308 30720 8,5 0,00 8,53 0,948 1,198 MEETING  PLACE 683,20 4 2732,8 5 50 5 9 3,5 137 13664 3,8 6850,00 1,90 0,211 0,279 offices 333,312 1.536,00 4 6144 5 50 5 9 3,5 308 30720 8,5 15400,00 4,28 0,475 0,610 offices 332,227 1.531,00 4 6124 20 5 4 3,5 77 30620 8,5 0,00 2,126 2,711 offices 328,104 1512 8 12096 1,5 50 9 3,5 1008 0 50400,00 14,00 1,556 1,9512 offices 323,113 1.489,00 4 5956 20 50 1,3 9 3,5 75 7742,8 2,2 3750,00 1,04 0,116 0,1513 offices 261,6586 1.205,80 4 4823,2 20 50 1,3 9 3,5 61 6270,16 1,7 3050,00 0,85 0,094 0,1214 offices 249,55 1.150,00 4 4600 20 50 1,3 9 3,5 58 5980 1,7 2900,00 0,81 0,090 0,1215 offices 290,29175 1.337,75 4 5351 20 50 1,3 9 3,5 67 6956,3 1,9 3350,00 0,93 0,103 0,1316 offices 275,807 1.271,00 4 5084 20 50 1,3 9 3,5 64 6609,2 1,8 3200,00 0,89 0,099 0,1317 offices 236,747 1.091,00 4 4364 20 50 1,3 9 3,5 55 5673,2 1,6 2750,00 0,76 0,085 0,1118 offices 220,472 1.016,00 4 4064 20 50 1,3 9 3,5 51 5283,2 1,5 2550,00 0,71 0,079 0,119 Installations 1016 4 4064 20 1,3 9 3,5 51 5283,2 1,5 0,00 1,47 0,163 0,2120 MEETING  PLACE 284,32 4 1137,28 20 50 1,3 9 3,5 15 1478,464 0,4 750,00 0,21 0,023 0,0321 offices 219,604 1.012,00 4 4048 20 50 1,3 9 3,5 51 5262,4 1,5 2550,00 0,71 0,079 0,122 offices 201,159 927,00 4 3708 20 50 1,3 9 3,5 47 4820,4 1,3 2350,00 0,65 0,073 0,123 offices 218,953 1.009,00 4 4036 20 50 1,3 9 3,5 51 5246,8 1,5 2550,00 0,71 0,079 0,124 offices 274,505 1.265,00 4 5060 20 50 1,3 9 3,5 64 6578 1,8 3200,00 0,89 0,099 0,1325 offices 289,261 1.333,00 4 5332 20 50 5 9 3,5 67 26660 7,4 3350,00 0,93 0,823 1,126 offices 226,86048 1.045,44 8 8363,52 1,5 50 9 3,5 697 34850,00 9,68 1,076 1,3527 offices 235,0978 1.083,40 4 4333,6 20 50 1,3 9 3,5 55 5633,68 1,6 2750,00 0,76 0,085 0,1128 offices 321,36615 1.480,95 4 5923,8 20 50 1,3 9 3,5 75 7700,94 2,1 3750,00 1,04 0,116 0,1529 offices 327,5832 1.509,60 4 6038,4 20 50 1,3 9 3,5 76 7849,92 2,2 3800,00 1,06 0,117 0,1530 offices 331,33947 1.526,91 4 6107,64 20 50 1,3 9 3,5 77 7939,932 2,2 3850,00 1,07 0,119 0,1531 Installations 1.536,00 4 6144 20 1,3 9 3,5 77 7987,2 2,2 0,00 0,00 0,000 032 MEETING  PLACE 683,20 4 2732,8 20 50 1,3 9 3,5 35 3552,64 1,0 1750,00 0,49 0,054 0,0733 offices 333,312 1.536,00 4 6144 20 50 1,3 9 3,5 77 7987,2 2,2 3850,00 1,07 0,119 0,1534 offices 333,312 1.536,00 4 6144 20 50 1,3 9 3,5 77 7987,2 2,2 3850,00 1,07 0,119 0,1535 offices 333,312 1.536,00 4 6144 20 50 1,3 9 3,5 77 7987,2 2,2 3850,00 1,07 0,119 0,1536 offices 333,312 1.536,00 4 6144 20 50 1,3 9 3,5 77 7987,2 2,2 3850,00 1,07 0,119 0,1537 offices 333,312 1.536,00 4 6144 20 50 1,3 9 3,5 77 7987,2 2,2 3850,00 1,07 0,119 0,1538 offices 333,312 1.536,00 4 6144 20 50 1,3 9 3,5 77 7987,2 2,2 3850,00 1,07 0,119 0,1539 offices 333,312 1.536,00 4 6144 20 50 1,3 9 3,5 77 7987,2 2,2 3850,00 1,07 0,119 0,1540 offices 333,312 1.536,00 4 6144 20 50 5 9 3,5 77 30720 8,5 3850,00 1,07 0,948 1,241 offices 333,312 1.536,00 8 12288 1,5 50 9 3,5 1024 51200,00 14,22 1,580 1,9842 offices 333,312 1.536,00 4 6144 20 50 1,3 9 3,5 77 7987,2 2,2 3850,00 1,07 0,119 0,1543 Installations 1.536,00 4 6144 20 1,3 9 3,5 77 7987,2 2,2 0,00 0,00 0,000 044 MEETING  PLACE 683,20 4 2732,8 20 50 1,3 9 3,5 35 3552,64 1,0 1750,00 0,49 0,054 0,0745 Sky  lobby 1.913,00 4 7652 20 50 1,3 9 3,5 96 9947,6 2,8 4800,00 1,33 0,148 0,1946 4 0 20 50 1,3 9 3,5 0 0 0,0 0,00 0,00 0,000 047 Sky  lobby 1765 4 7060 20 50 1,3 9 3,5 89 9178 2,5 4450,00 1,24 0,137 0,1848 4 0 20 50 1,3 9 3,5 0 0 0,0 0,00 0,00 0,000 049 Sky  lobby 1737 4 6948 20 50 1,3 9 3,5 87 9032,4 2,5 4350,00 1,21 0,134 0,1750 4 0 20 50 1,3 9 3,5 0 0 0,0 0,00 0,00 0,000 051 Sky  lobby 1483 4 5932 20 50 1,3 9 3,5 75 7711,6 2,1 3750,00 1,04 0,116 0,15

TOWER B

Page 34: Highrise Workshop 2012 _ Climate Design

[34-38]

Storey Function corridors m2                            (exl.  Core) height m3 m2/p m3/pp/hr ventilation  rate shaft  flow  velocity  (m/s) corridors  flow  velocity nr.of  ppl

demand/hr  (m3/hr)  dep.  on  air  change  

rate

demand/hr  (m3/s)  dep.  on  air  change  

rate

demand/hr  (m3/hr)  dep.  on  nr.  of  people

demand/hr  (m3/sec)  dep.  On  nr.  Of  people Required  opening  inlet  (m2)

Required  opening  after  reduction  due  to  friction                                                              Q  =  V*Cd*A  (Cd  =  0,8)

-­‐3 Installations 1.996,79 4 7987,16 20 50 5 9 3,5 100 39935,8 11,1 5000,00 1,39 0,154 0,2-­‐2 Retail 1.377,00-­‐1 ATRIAS 835,00 4 3340 2 50 3 9 3,5 418 10020 2,8 20900,00 5,81 0,645 0,810 Entrance 936,23 6 5617,38 1,5 50 2 9 3,5 625 11234,76 3,1 31250,00 8,68 0,965 1,211 CON.  CENTER   472,5 1125 4 4500 5 50 5 9 3,5 225 22500 6,3 11250,00 3,13 0,347 0,442 CON.  CENTER   512,4 1.220,00 4 4880 5 50 5 9 3,5 244 24400 6,8 12200,00 3,39 0,377 0,483 CON.  CENTER   551,88 1.314,00 4 5256 5 50 5 9 3,5 263 26280 7,3 13150,00 3,65 0,406 0,514 CON.  CENTER   589,68 1.404,00 4 5616 5 50 5 9 3,5 281 28080 7,8 14050,00 3,90 0,434 0,555 CON.  CENTER   617,82 1.471,00 4 5884 5 50 5 9 3,5 295 29420 8,2 14750,00 4,10 0,455 0,576 CON.  CENTER   636,552 1515,6 4 6062,4 5 50 5 9 3,5 304 30312 8,4 15200,00 4,22 0,469 0,597 Installations 1.536,00 4 6144 5 5 9 3,5 308 30720 8,5 0,00 8,53 0,948 1,198 MEETING  PLACE 683,20 4 2732,8 5 50 5 9 3,5 137 13664 3,8 6850,00 1,90 0,211 0,279 offices 333,312 1.536,00 4 6144 5 50 5 9 3,5 308 30720 8,5 15400,00 4,28 0,475 0,610 offices 332,227 1.531,00 4 6124 20 5 4 3,5 77 30620 8,5 0,00 2,126 2,711 offices 328,104 1512 8 12096 1,5 50 9 3,5 1008 0 50400,00 14,00 1,556 1,9512 offices 323,113 1.489,00 4 5956 20 50 1,3 9 3,5 75 7742,8 2,2 3750,00 1,04 0,116 0,1513 offices 261,6586 1.205,80 4 4823,2 20 50 1,3 9 3,5 61 6270,16 1,7 3050,00 0,85 0,094 0,1214 offices 249,55 1.150,00 4 4600 20 50 1,3 9 3,5 58 5980 1,7 2900,00 0,81 0,090 0,1215 offices 290,29175 1.337,75 4 5351 20 50 1,3 9 3,5 67 6956,3 1,9 3350,00 0,93 0,103 0,1316 offices 275,807 1.271,00 4 5084 20 50 1,3 9 3,5 64 6609,2 1,8 3200,00 0,89 0,099 0,1317 offices 236,747 1.091,00 4 4364 20 50 1,3 9 3,5 55 5673,2 1,6 2750,00 0,76 0,085 0,1118 offices 220,472 1.016,00 4 4064 20 50 1,3 9 3,5 51 5283,2 1,5 2550,00 0,71 0,079 0,119 Installations 1016 4 4064 20 1,3 9 3,5 51 5283,2 1,5 0,00 1,47 0,163 0,2120 MEETING  PLACE 284,32 4 1137,28 20 50 1,3 9 3,5 15 1478,464 0,4 750,00 0,21 0,023 0,0321 offices 219,604 1.012,00 4 4048 20 50 1,3 9 3,5 51 5262,4 1,5 2550,00 0,71 0,079 0,122 offices 201,159 927,00 4 3708 20 50 1,3 9 3,5 47 4820,4 1,3 2350,00 0,65 0,073 0,123 offices 218,953 1.009,00 4 4036 20 50 1,3 9 3,5 51 5246,8 1,5 2550,00 0,71 0,079 0,124 offices 274,505 1.265,00 4 5060 20 50 1,3 9 3,5 64 6578 1,8 3200,00 0,89 0,099 0,1325 offices 289,261 1.333,00 4 5332 20 50 5 9 3,5 67 26660 7,4 3350,00 0,93 0,823 1,126 offices 226,86048 1.045,44 8 8363,52 1,5 50 9 3,5 697 34850,00 9,68 1,076 1,3527 offices 235,0978 1.083,40 4 4333,6 20 50 1,3 9 3,5 55 5633,68 1,6 2750,00 0,76 0,085 0,1128 offices 321,36615 1.480,95 4 5923,8 20 50 1,3 9 3,5 75 7700,94 2,1 3750,00 1,04 0,116 0,1529 offices 327,5832 1.509,60 4 6038,4 20 50 1,3 9 3,5 76 7849,92 2,2 3800,00 1,06 0,117 0,1530 offices 331,33947 1.526,91 4 6107,64 20 50 1,3 9 3,5 77 7939,932 2,2 3850,00 1,07 0,119 0,1531 Installations 1.536,00 4 6144 20 1,3 9 3,5 77 7987,2 2,2 0,00 0,00 0,000 032 MEETING  PLACE 683,20 4 2732,8 20 50 1,3 9 3,5 35 3552,64 1,0 1750,00 0,49 0,054 0,0733 offices 333,312 1.536,00 4 6144 20 50 1,3 9 3,5 77 7987,2 2,2 3850,00 1,07 0,119 0,1534 offices 333,312 1.536,00 4 6144 20 50 1,3 9 3,5 77 7987,2 2,2 3850,00 1,07 0,119 0,1535 offices 333,312 1.536,00 4 6144 20 50 1,3 9 3,5 77 7987,2 2,2 3850,00 1,07 0,119 0,1536 offices 333,312 1.536,00 4 6144 20 50 1,3 9 3,5 77 7987,2 2,2 3850,00 1,07 0,119 0,1537 offices 333,312 1.536,00 4 6144 20 50 1,3 9 3,5 77 7987,2 2,2 3850,00 1,07 0,119 0,1538 offices 333,312 1.536,00 4 6144 20 50 1,3 9 3,5 77 7987,2 2,2 3850,00 1,07 0,119 0,1539 offices 333,312 1.536,00 4 6144 20 50 1,3 9 3,5 77 7987,2 2,2 3850,00 1,07 0,119 0,1540 offices 333,312 1.536,00 4 6144 20 50 5 9 3,5 77 30720 8,5 3850,00 1,07 0,948 1,241 offices 333,312 1.536,00 8 12288 1,5 50 9 3,5 1024 51200,00 14,22 1,580 1,9842 offices 333,312 1.536,00 4 6144 20 50 1,3 9 3,5 77 7987,2 2,2 3850,00 1,07 0,119 0,1543 Installations 1.536,00 4 6144 20 1,3 9 3,5 77 7987,2 2,2 0,00 0,00 0,000 044 MEETING  PLACE 683,20 4 2732,8 20 50 1,3 9 3,5 35 3552,64 1,0 1750,00 0,49 0,054 0,0745 Sky  lobby 1.913,00 4 7652 20 50 1,3 9 3,5 96 9947,6 2,8 4800,00 1,33 0,148 0,1946 4 0 20 50 1,3 9 3,5 0 0 0,0 0,00 0,00 0,000 047 Sky  lobby 1765 4 7060 20 50 1,3 9 3,5 89 9178 2,5 4450,00 1,24 0,137 0,1848 4 0 20 50 1,3 9 3,5 0 0 0,0 0,00 0,00 0,000 049 Sky  lobby 1737 4 6948 20 50 1,3 9 3,5 87 9032,4 2,5 4350,00 1,21 0,134 0,1750 4 0 20 50 1,3 9 3,5 0 0 0,0 0,00 0,00 0,000 051 Sky  lobby 1483 4 5932 20 50 1,3 9 3,5 75 7711,6 2,1 3750,00 1,04 0,116 0,15

Page 35: Highrise Workshop 2012 _ Climate Design

[35-38]

Storey Function m2                            (exl.  Core) height m3 m2/p m3/pp/hr ventilation  rate shaft  flow  velocity  (m/s) corridors  flow  velocity nr.of  ppl

demand/hr  (m3/hr)  dep.  on  air  change  

rate

demand/hr  (m3/s)  dep.  on  air  change  

rate

demand/hr  (m3/hr)  dep.  on  nr.  of  people

demand/hr  (m3/sec)  dep.  On  nr.  Of  people Required  opening  inlet  (m2)

Required  opening  after  reduction  due  to  friction                                                              Q  =  V*Cd*A  (Cd  =  0,8)

-­‐3 Installations 1.996,79 4 7987,16 20 50 5 9 3,5 100 39935,8 11,1 5000,00 1,39 0,154 0,2-­‐2 Retail 1.377,00-­‐1 ATRIAS 835,00 4 3340 2 50 3 9 3,5 418 10020 2,8 20900,00 5,81 0,645 0,810 Entrance 936,23 6 5617,38 1,5 50 2 9 3,5 625 11234,76 3,1 31250,00 8,68 0,965 1,211 CON.  CENTER   143,262 341,1 4 1364,4 5 50 5 9 3,5 69 6822 1,9 3450,00 0,96 0,106 0,142 CON.  CENTER   143,262 341,1 4 1364,4 5 50 5 9 3,5 69 6822 1,9 3450,00 0,96 0,106 0,143 CON.  CENTER   143,262 341,1 4 1364,4 5 50 5 9 3,5 69 6822 1,9 3450,00 0,96 0,106 0,144 Installations 1.549,00 4 6196 5 50 5 9 3,5 310 30980 8,6 15500,00 4,31 0,478 0,65 MEETING  PLACE 683,20 4 2732,8 5 50 5 9 3,5 137 13664 3,8 6850,00 1,90 0,211 0,276 HOTEL 336,133 1549 4 6196 5 50 5 9 3,5 310 30980 8,6 15500,00 4,31 0,478 0,67 HOTEL 332,4874 1.532,20 4 6128,8 5 5 9 3,5 307 30644 8,5 0,00 8,51 0,946 1,198 HOTEL 326,9322 1.506,60 4 6026,4 5 50 5 9 3,5 302 30132 8,4 15100,00 4,19 0,466 0,599 HOTEL 271,7708 1.252,40 4 5009,6 5 50 5 9 3,5 251 25048 7,0 12550,00 3,49 0,387 0,4910 HOTEL 256,59165 1.182,45 4 4729,8 20 5 4 3,5 60 23649 6,6 0,00 1,642 2,111 HOTEL 241,54487 1113,11 8 8904,88 1,5 50 9 3,5 743 0 37150,00 10,32 1,147 1,4412 HOTEL 251,84152 1.160,56 4 4642,24 20 50 1,3 9 3,5 59 6034,912 1,7 2950,00 0,82 0,091 0,1213 Installations 1.059,40 4 4237,6 20 50 1,3 9 3,5 53 5508,88 1,5 2650,00 0,74 0,082 0,1114 MEETING  PLACE 483,00 4 1932 20 50 1,3 9 3,5 25 2511,6 0,7 1250,00 0,35 0,039 0,0515 HOTEL 230,888 1.064,00 4 4256 20 50 1,3 9 3,5 54 5532,8 1,5 2700,00 0,75 0,083 0,1116 HOTEL 251,72 1.160,00 4 4640 20 50 1,3 9 3,5 58 6032 1,7 2900,00 0,81 0,090 0,1217 HOTEL 247,2498 1.139,40 4 4557,6 20 50 1,3 9 3,5 57 5924,88 1,6 2850,00 0,79 0,088 0,1118 HOTEL 260,4434 1.200,20 4 4800,8 20 50 1,3 9 3,5 61 6241,04 1,7 3050,00 0,85 0,094 0,1219 HOTEL 271,25 1250 4 5000 20 1,3 9 3,5 63 6500 1,8 0,00 1,81 0,201 0,2620 HOTEL 325,934 1.502,00 4 6008 20 50 1,3 9 3,5 76 7810,4 2,2 3800,00 1,06 0,117 0,1521 HOTEL 332,444 1.532,00 4 6128 20 50 1,3 9 3,5 77 7966,4 2,2 3850,00 1,07 0,119 0,1522 Installations 1.549,00 4 6196 20 50 1,3 9 3,5 78 8054,8 2,2 3900,00 1,08 0,120 0,1623 MEETING  PLACE 683,20 4 2732,8 20 50 1,3 9 3,5 35 3552,64 1,0 1750,00 0,49 0,054 0,0724 offices 336,133 1.549,00 4 6196 20 50 1,3 9 3,5 78 8054,8 2,2 3900,00 1,08 0,120 0,1625 offices 336,133 1.549,00 4 6196 20 50 5 9 3,5 78 30980 8,6 3900,00 1,08 0,956 1,226 offices 336,133 1.549,00 8 12392 1,5 50 9 3,5 1033 51650,00 14,35 1,594 227 offices 336,133 1.549,00 4 6196 20 50 1,3 9 3,5 78 8054,8 2,2 3900,00 1,08 0,120 0,1628 offices 336,133 1.549,00 4 6196 20 50 1,3 9 3,5 78 8054,8 2,2 3900,00 1,08 0,120 0,1629 offices 336,133 1.549,00 4 6196 20 50 1,3 9 3,5 78 8054,8 2,2 3900,00 1,08 0,120 0,1630 offices 336,133 1.549,00 4 6196 20 50 1,3 9 3,5 78 8054,8 2,2 3900,00 1,08 0,120 0,1631 Installations 1.549,00 4 6196 20 1,3 9 3,5 78 8054,8 2,2 0,00 0,00 0,000 032 MEETING  PLACE 683,20 4 2732,8 20 50 1,3 9 3,5 35 3552,64 1,0 1750,00 0,49 0,054 0,0733 CULTURE 1.927,00 4 7708 20 50 1,3 9 3,5 97 10020,4 2,8 4850,00 1,35 0,150 0,193435 CULTURE 1.825,00 4 7300 20 50 1,3 9 3,5 92 9490 2,6 4600,00 1,28 0,142 0,183637 CULTURE 1.559,61 4 6238,44 20 50 1,3 9 3,5 78 8109,972 2,3 3900,00 1,08 0,120 0,163839 CULTURE 1.151,00 4 4604 20 50 1,3 9 3,5 58 5985,2 1,7 2900,00 0,81 0,090 0,124041 offices 747,00 8 5976 1,5 50 9 3,5 498 24900,00 6,92 0,769 0,97

TOWER A

Page 36: Highrise Workshop 2012 _ Climate Design

[36-38]

Storey Function m2                            (exl.  Core) height m3 m2/p m3/pp/hr ventilation  rate shaft  flow  velocity  (m/s) corridors  flow  velocity nr.of  ppl

demand/hr  (m3/hr)  dep.  on  air  change  

rate

demand/hr  (m3/s)  dep.  on  air  change  

rate

demand/hr  (m3/hr)  dep.  on  nr.  of  people

demand/hr  (m3/sec)  dep.  On  nr.  Of  people Required  opening  inlet  (m2)

Required  opening  after  reduction  due  to  friction                                                              Q  =  V*Cd*A  (Cd  =  0,8)

-­‐3 Installations 1.996,79 4 7987,16 20 50 5 9 3,5 100 39935,8 11,1 5000,00 1,39 0,154 0,2-­‐2 Retail 1.377,00-­‐1 ATRIAS 835,00 4 3340 2 50 3 9 3,5 418 10020 2,8 20900,00 5,81 0,645 0,810 Entrance 936,23 6 5617,38 1,5 50 2 9 3,5 625 11234,76 3,1 31250,00 8,68 0,965 1,211 CON.  CENTER   143,262 341,1 4 1364,4 5 50 5 9 3,5 69 6822 1,9 3450,00 0,96 0,106 0,142 CON.  CENTER   143,262 341,1 4 1364,4 5 50 5 9 3,5 69 6822 1,9 3450,00 0,96 0,106 0,143 CON.  CENTER   143,262 341,1 4 1364,4 5 50 5 9 3,5 69 6822 1,9 3450,00 0,96 0,106 0,144 Installations 1.549,00 4 6196 5 50 5 9 3,5 310 30980 8,6 15500,00 4,31 0,478 0,65 MEETING  PLACE 683,20 4 2732,8 5 50 5 9 3,5 137 13664 3,8 6850,00 1,90 0,211 0,276 HOTEL 336,133 1549 4 6196 5 50 5 9 3,5 310 30980 8,6 15500,00 4,31 0,478 0,67 HOTEL 332,4874 1.532,20 4 6128,8 5 5 9 3,5 307 30644 8,5 0,00 8,51 0,946 1,198 HOTEL 326,9322 1.506,60 4 6026,4 5 50 5 9 3,5 302 30132 8,4 15100,00 4,19 0,466 0,599 HOTEL 271,7708 1.252,40 4 5009,6 5 50 5 9 3,5 251 25048 7,0 12550,00 3,49 0,387 0,4910 HOTEL 256,59165 1.182,45 4 4729,8 20 5 4 3,5 60 23649 6,6 0,00 1,642 2,111 HOTEL 241,54487 1113,11 8 8904,88 1,5 50 9 3,5 743 0 37150,00 10,32 1,147 1,4412 HOTEL 251,84152 1.160,56 4 4642,24 20 50 1,3 9 3,5 59 6034,912 1,7 2950,00 0,82 0,091 0,1213 Installations 1.059,40 4 4237,6 20 50 1,3 9 3,5 53 5508,88 1,5 2650,00 0,74 0,082 0,1114 MEETING  PLACE 483,00 4 1932 20 50 1,3 9 3,5 25 2511,6 0,7 1250,00 0,35 0,039 0,0515 HOTEL 230,888 1.064,00 4 4256 20 50 1,3 9 3,5 54 5532,8 1,5 2700,00 0,75 0,083 0,1116 HOTEL 251,72 1.160,00 4 4640 20 50 1,3 9 3,5 58 6032 1,7 2900,00 0,81 0,090 0,1217 HOTEL 247,2498 1.139,40 4 4557,6 20 50 1,3 9 3,5 57 5924,88 1,6 2850,00 0,79 0,088 0,1118 HOTEL 260,4434 1.200,20 4 4800,8 20 50 1,3 9 3,5 61 6241,04 1,7 3050,00 0,85 0,094 0,1219 HOTEL 271,25 1250 4 5000 20 1,3 9 3,5 63 6500 1,8 0,00 1,81 0,201 0,2620 HOTEL 325,934 1.502,00 4 6008 20 50 1,3 9 3,5 76 7810,4 2,2 3800,00 1,06 0,117 0,1521 HOTEL 332,444 1.532,00 4 6128 20 50 1,3 9 3,5 77 7966,4 2,2 3850,00 1,07 0,119 0,1522 Installations 1.549,00 4 6196 20 50 1,3 9 3,5 78 8054,8 2,2 3900,00 1,08 0,120 0,1623 MEETING  PLACE 683,20 4 2732,8 20 50 1,3 9 3,5 35 3552,64 1,0 1750,00 0,49 0,054 0,0724 offices 336,133 1.549,00 4 6196 20 50 1,3 9 3,5 78 8054,8 2,2 3900,00 1,08 0,120 0,1625 offices 336,133 1.549,00 4 6196 20 50 5 9 3,5 78 30980 8,6 3900,00 1,08 0,956 1,226 offices 336,133 1.549,00 8 12392 1,5 50 9 3,5 1033 51650,00 14,35 1,594 227 offices 336,133 1.549,00 4 6196 20 50 1,3 9 3,5 78 8054,8 2,2 3900,00 1,08 0,120 0,1628 offices 336,133 1.549,00 4 6196 20 50 1,3 9 3,5 78 8054,8 2,2 3900,00 1,08 0,120 0,1629 offices 336,133 1.549,00 4 6196 20 50 1,3 9 3,5 78 8054,8 2,2 3900,00 1,08 0,120 0,1630 offices 336,133 1.549,00 4 6196 20 50 1,3 9 3,5 78 8054,8 2,2 3900,00 1,08 0,120 0,1631 Installations 1.549,00 4 6196 20 1,3 9 3,5 78 8054,8 2,2 0,00 0,00 0,000 032 MEETING  PLACE 683,20 4 2732,8 20 50 1,3 9 3,5 35 3552,64 1,0 1750,00 0,49 0,054 0,0733 CULTURE 1.927,00 4 7708 20 50 1,3 9 3,5 97 10020,4 2,8 4850,00 1,35 0,150 0,193435 CULTURE 1.825,00 4 7300 20 50 1,3 9 3,5 92 9490 2,6 4600,00 1,28 0,142 0,183637 CULTURE 1.559,61 4 6238,44 20 50 1,3 9 3,5 78 8109,972 2,3 3900,00 1,08 0,120 0,163839 CULTURE 1.151,00 4 4604 20 50 1,3 9 3,5 58 5985,2 1,7 2900,00 0,81 0,090 0,124041 offices 747,00 8 5976 1,5 50 9 3,5 498 24900,00 6,92 0,769 0,97

Page 37: Highrise Workshop 2012 _ Climate Design

[37-38]

7.3. Total energy consumption

Function Sq.meter Heating Cooling Total  Consumption(w/m2) Total  Consumption  (kwh/m2-­‐year) Total  Consumption  (mw/day)OFFICES 95.781,15 40 55 95 273,6 9,10CON  CENTER 21.015,95 60 90 150 432 3,15HOTEL 16.983,36 30 40 70 201,6 1,19LIBRARY 3510 180 94 274 789,12 0,96ATRIAS 2296 769 285 285 3035,52 2,42

Average  demand 215,8 112,8 174,8 Total  consumption  Kwh/year Total  consumption  (MW/year)970027200 5495,64

Consumption/sq.m

Page 38: Highrise Workshop 2012 _ Climate Design

[38-38]

7.4. Water demands per section

Storey Function m2                            (exl.  Core) height m3 m2/p nr.of  ppl Water  demands  (l/d) Peak  flow  rate

average peak-­‐3 Installations  1 1.927,05 4 7708,2 20-­‐2

retail 1.021,28 6 6127,68 2 511 306,384 765,96 0,567377778 1,418444444civic 182,89 6 1097,34 2 92 54,867 137,1675 0,101605556 0,254013889atria 326,22 6 1957,32 1,5 218 0 0 0

-­‐1 shopping 859,60 4 3438,4 2 430 257,88 644,7 0,477555556 1,1938888890 Entrance 1.158,76 6 6952,56 1,5 773 0 0 01 conference 1.059,87 4 4239,48 5 212 20140 50350 37,2962963 93,240740742 conference 1.131,06 4 4524,24 5 227 21565 53912,5 39,93518519 99,837962963 conference 1.205,06 4 4820,24 5 242 22990 57475 42,57407407 106,43518524 conference 1.288,29 4 5153,16 5 258 24510 61275 45,38888889 113,47222225 conference 1.365,49 4 5461,96 5 274 26030 65075 48,2037037 120,50925936 conference 1.420,73 4 5682,92 5 285 27075 67687,5 50,13888889 125,34722227 conference 1473 4 5892 5 295 28025 70062,5 51,89814815 129,74537048 conference 1.483,14 4 5932,56 5 297 28215 70537,5 52,25 130,6259 conference 1.516,41 4 6065,64 5 304 28880 72200 53,48148148 133,703703710 Installations  2 1524,06 4 6096,24 20 0 0 0 0

Meeting  lobby 762,03 8 6096,24 1,5 509 0 0 0 011 offices 1.521,34 4 6085,36 20 77 7315 18287,5 13,5462963 33,8657407412 offices 1.511,69 4 6046,76 20 76 7220 18050 13,37037037 33,4259259313 offices 1.496,30 4 5985,2 20 75 7125 17812,5 13,19444444 32,9861111114 offices 1.475,13 4 5900,52 20 74 7030 17575 13,01851852 32,546296315 offices 1.242,80 4 4971,2 20 63 5985 14962,5 11,08333333 27,7083333316 offices 1.232,08 4 4928,32 20 62 5890 14725 10,90740741 27,2685185217 offices 1.219,39 4 4877,56 20 61 5795 14487,5 10,73148148 26,828703718 offices 1.218,75 4 4875 20 61 5795 14487,5 10,73148148 26,828703719 offices 1189,64 4 4758,56 20 60 5700 14250 10,55555556 26,3888888920 offices 1.189,64 4 4758,56 20 60 5700 14250 10,55555556 26,3888888921 offices 1.103,20 4 4412,8 20 56 5320 13300 9,851851852 24,6296296322 offices 1.060,07 4 4240,28 20 54 5130 12825 9,5 23,7523 offices 1.020,28 4 4081,12 20 52 4940 12350 9,148148148 22,8703703724 Installations  3 1.022,00 4 4088 20 0 0 0 0 0

Meeting  lobby 511,00 8 4088 1,5 341 0 0 0 025 offices 1.015,71 4 4062,84 20 51 4845 12112,5 8,972222222 22,4305555626 offices 1.000,04 4 4000,16 20 51 4845 12112,5 8,972222222 22,4305555627 offices 1.064,07 4 4256,28 20 54 5130 12825 9,5 23,7528 offices 1.131,77 4 4527,08 20 57 5415 13537,5 10,02777778 25,0694444429 offices 1.157,90 4 4631,6 20 58 5510 13775 10,2037037 25,5092592630 offices 1.185,79 4 4743,16 20 60 5700 14250 10,55555556 26,3888888931 offices 1.202,75 4 4811 20 61 5795 14487,5 10,73148148 26,828703732 offices 1.211,00 4 4844 20 61 5795 14487,5 10,73148148 26,828703733 offices 1.456,35 4 5825,4 20 73 6935 17337,5 12,84259259 32,1064814834 offices 1.476,27 4 5905,08 20 74 7030 17575 13,01851852 32,546296335 offices 1.499,11 4 5996,44 20 75 7125 17812,5 13,19444444 32,9861111136 offices 1.512,17 4 6048,68 20 76 7220 18050 13,37037037 33,4259259337 offices 1.521,12 4 6084,48 20 77 7315 18287,5 13,5462963 33,8657407438 Installations  4 1.524,06 4 6096,24 20 0 0 0 0

Meeting  lobby 762,03 8 6096,24 1,5 509 0 0 0 039 offices 1.523,70 4 6094,8 20 77 7315 18287,5 13,5462963 33,8657407440 offices 1.524,06 4 6096,24 20 77 7315 18287,5 13,5462963 33,8657407441 offices 1.528,86 4 6115,44 20 77 7315 18287,5 13,5462963 33,8657407442 offices 1.524,06 4 6096,24 20 77 7315 18287,5 13,5462963 33,8657407443 offices 1.524,06 4 6096,24 20 77 7315 18287,5 13,5462963 33,8657407444 offices 1.524,06 4 6096,24 20 77 7315 18287,5 13,5462963 33,8657407445 offices 1.524,06 4 6096,24 20 77 7315 18287,5 13,5462963 33,8657407446 offices 1.524,06 4 6096,24 20 77 7315 18287,5 13,5462963 33,8657407447 offices 1.524,06 4 6096,24 20 77 7315 18287,5 13,5462963 33,8657407448 offices 1.524,06 4 6096,24 20 77 7315 18287,5 13,5462963 33,8657407449 offices 1.524,06 4 6096,24 20 77 7315 18287,5 13,5462963 33,8657407450 offices 1.524,06 4 6096,24 20 77 7315 18287,5 13,5462963 33,8657407451 offices 1.528,85 4 6115,4 20 77 7315 18287,5 13,5462963 33,8657407452 Installations  4 1.924,37 4 7697,48 20 0 0 0 0

Meeting  lobby 962,19 8 7697,48 1,5 642 0 0 0 053 Sky  lobby 1.624,37 8 12994,96 5 325 30875 77187,5 57,17592593 142,939814855 Sky  lobby 1.470,88 8 11767,04 5 295 28025 70062,5 51,89814815 129,745370457 Sky  lobby 1321,36 8 10570,88 5 265 25175 62937,5 46,62037037 116,5509259

TOTAL 83.563,57 9964 564824,131 1412060,328 1045,970613 2614,926532total  en.consump 8356356,5 or  691  m3/day or  1727  m3/day or  1,6  m3/min or  3,2  m3/mintotal  en.consump  in  KW 8356,3565

Average  per  minute  demand  for  a  9  hour  operation  schedule

TOWER C