Download ppt - Gary Steigman

Transcript
Page 1: Gary  Steigman

Gary Steigman

OSU Physics Colloquium, November 21, 2006

PROBING THE UNIVERSE AT

20 MINUTES AND 400 THOUSAND YEARS

The Ohio State University

Page 2: Gary  Steigman

The Universe is expanding and is filled with radiation

Page 3: Gary  Steigman

~ 0.1 s after the Big BangNeutrinos Decouple

~ 400 kyr after the Big BangRelic Photons (CBR) are free

~ 100 s after the Big BangPrimordial Nucleosynthesis

Page 4: Gary  Steigman

BBN & The CBR Provide Complementary

Probes Of The Early Universe

Do predictions and observations of the

baryon density and the expansion rate

agree at 20 minutes and at 400 kyr ?

Page 5: Gary  Steigman

Baryon Density Parameter

Note : Baryons Nucleons

nN / n ; 10 = 274 Bh2

where : B B / c

and : h H0 / 100 km / s / Mpc 0.7

H0-1 = 9.8 / h Gyr 14 Gyr

Page 6: Gary  Steigman

BBN “begins” at T 70 keV

(when n / p 1 / 7)

Coulomb barriers and the absence of

free neutrons end BBN at T 30 keV

tBBN 4 24 min.

The Early, Hot, Dense Universe Is A

Cosmic Nuclear Reactor

Page 7: Gary  Steigman

10

More nucleons less D

Evolution of Deuterium

Page 8: Gary  Steigman

n / p 1 / 7 Y 0.25

All / most neutrons are incorporated in 4He

Y is VERY WEAKLY dependent on the nucleon abundance

Y 4He Mass Fraction

Y is neutron limited

10

Evolution of Helium - 4

Page 9: Gary  Steigman

BBN Abundances of D, 3He, 7Li

are RATE (Density) LIMITED

D, 3He, 7Li are potential BARYOMETERS

BBN – Predicted Primordial Abundances

7Li 7Be

Page 10: Gary  Steigman

Two pathways to mass - 7

Page 11: Gary  Steigman

DEUTERIUM --- The Baryometer Of Choice

• As the Universe evolves, D is only DESTROYED

* Anywhere, Anytime : (D/H) t (D/H) P

* For Z << Z : (D/H) t (D/H) P (Deuterium Plateau)

• H and D are seen in Absorption BUT …

* H and D spectra are identical H Interlopers?

* Unresolved velocity structure Errors in N(H ) ?

• (D/H) P is sensitive to the baryon density ( )

Page 12: Gary  Steigman

Ly - Absorption

Page 13: Gary  Steigman

D/H vs. Metallicity

Deuterium Plateau ?

Low – Z / High – z QSOALS

Real variations,systematic differences, statistical uncertainties ?

Page 14: Gary  Steigman

D/H vs. H I Column Density

D/H Correlated With N(H I) ?

Page 15: Gary  Steigman

D/H vs. H I Column Density

NEW (2006)

Page 16: Gary  Steigman

D/H vs. H I Column Density

D/H Correlated With N(H I) ?

Page 17: Gary  Steigman

D/H vs. Metallicity

For Primordial D/H adopt the mean and the

dispersion around the mean

105(D/H)P = 2.65 ± 0.25

Page 18: Gary  Steigman

(D/H)P + SBBN Constrains 10 (@ ~ 7 %)

SBBN

Page 19: Gary  Steigman

CBR

Page 20: Gary  Steigman

B h2 = 0.018, 0.023, 0.028

CBR (WMAP) constrains B h2

CBR Temperature Anisotropy Spectrum

(T2 vs. ) Encodes The Baryon Density

The CBR is an early - Universe Baryometer

Barger et al. (2003)

Amplitudes of odd/even

peaks depend on Bh2

Page 21: Gary  Steigman

CBR Constrains 10 (@ ~ 3 %)

CBR

Page 22: Gary  Steigman

BBN (20 min) & CBR (380 kyr) AGREE !

BBN CBR

Page 23: Gary  Steigman

BBN + WMAP

D/H vs. Metallicity

The CBR is a good Deuteronometer !

Page 24: Gary  Steigman

• S H / H (/)1/2 (1 + 7N / 43)1/2

The Expansion Rate (H Hubble Parameter)

provides a probe of Non-Standard Physics

• 4He is sensitive to S while D probes

for : + N and N 3 + N

Page 25: Gary  Steigman

0.23

0.24

0.25

4.0 3.0 2.0

YP & yD 105 (D/H)

D & 4He Isoabundance Contours

Kneller & Steigman (2004)

4He is an early – Universe Chronometer

Page 26: Gary  Steigman

SBBN Prediction

As O/H 0, Y 0

Page 27: Gary  Steigman

BBN (D, 4He)

4.0 3.0 2.0

0.25

0.24

0.23

For N ≈ 2.5 ± 0.3

YP & yD 105 (D/H)

Page 28: Gary  Steigman

Low Reheat Temp.

(TR MeV)

Kawasaki, Kohri & Sugiyama

Late Decay of a

Massive Particle

&

Relic Neutrinos Not

Fully (Re) Populated

Neff < 3

Non-Standard BBN (Example of Neff < 3)

Page 29: Gary  Steigman

N = 1, 2.75, 5, 7

CBR constrains N (S)

CBR Temperature Anisotropy Spectrum

Encodes the Radiation Density R (S or N)

The CBR is an early - Universe Chronometer

Barger et al. (2003)

Peak locations vary with N

Page 30: Gary  Steigman

BBN (D & 4He) + CBR (WMAP)

BBN

CBR

Barger et al. (2003)

BBN & CBRConsistent !

Barger et al. (2003)

Page 31: Gary  Steigman

Joint BBN (D & 4He) & CBR Fit

Barger et al. (2003)

N < 4

But, is Li Consistent ?

N > 1

Barger et al. (2003)

Page 32: Gary  Steigman

[Li]OBS 12 + log(Li/H) 2.1

[Li]BBN 12 + log(Li/H) 2.6 – 2.7

Li too low ?

BBN and Primordial (Pop ) Lithium

Page 33: Gary  Steigman

Even for N 3

Y + D H

[Li] 2.60 0.07

(vs. [Li]OBS 2.1)

Li depleted / diluted

in Pop stars ?

4.0

yLi 1010 (Li/H)

4.0 3.0 2.0

Or, New Physics ?

Page 34: Gary  Steigman

Baryon Density () Determinations

N < 3 ?

?

Page 35: Gary  Steigman

?

N < 3 ?

?

X ?

Observational Uncertainties Or New Physics?

Page 36: Gary  Steigman

N (S) Determinations

BBN is a betterChronometer than

the CBR

V. Simha

Page 37: Gary  Steigman

SUMMARY

• SBBN (N = 3) D / H & CBR

• BBN (D & 4He) & CBR agree for :

10 = 6.1 (Bh2 = 0.022) & N = 2.5 (?)

* 95% Ranges :

1.9 N 3.1

5.5 10 6.6 (B ≈ 0.04 – 0.05)

Page 38: Gary  Steigman
Page 39: Gary  Steigman

BBN and the CBR Agree !

(The Theorist’s Mantra)

More & Better Data Are Needed !

SUCCESS

CHALLENGE

But, what’s up with Lithium ?

Page 40: Gary  Steigman