Transcript
Page 1: Fibonacci anyons and Topological quantum Computing

Vu Pham

Fibonacci anyons & Topological quantum Computers

By Christos Charalambous

Christos Charalambous 1/45 Fibonacci anyons & Topological Quantum Computing Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 2: Fibonacci anyons and Topological quantum Computing

Vu Pham

1. Quantum Computer Quantum Computing Decoherence

2. โ€œAnyโ€-ons Abelian anyons Non-abelian anyons Physical realization of non-abelian anyons Fractional Quantum Hall effect Geometric phase Topological Quantum Computer

3. Computing using anyons Braiding Fusion Recap: Fusion rules for minimal models Fusion space F & R matrices The unitary B-matrix Compatibility equations: Pentagon and Hexagon equations

4. Fibonacci model Fibonacci/Yang Lee model Chern-Simons theory Recap of WZW models

5. Summary

Contents

Fibonacci anyons & Topological Quantum Computing Fibonacci anyons & Topological Quantum Computers Christos Charalambous 2/45 13/05/13

Page 3: Fibonacci anyons and Topological quantum Computing

Vu Pham

1. Quantum Computer Quantum Computing Decoherence

2. โ€œAnyโ€-ons Abelian anyons Non-abelian anyons Physical realization of non-abelian anyons Fractional Quantum Hall effect Geometric phase Topological Quantum Computer

3. Computing using anyons Braiding Fusion Recap: Fusion rules for minimal models Fusion space F & R matrices The unitary B-matrix Compatibility equations: Pentagon and Hexagon equations

4. Fibonacci model Fibonacci/Yang Lee model Chern-Simons theory Recap of WZW models

5. Summary

Contents

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 3/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 4: Fibonacci anyons and Topological quantum Computing

Vu Pham

Classical computer: limited computational power

3d magnet

Interference โ†’ Quantum physics could speed up processes

Qubit: โˆฃ ๐œ“ > = ๐›ผ โˆฃ 0 > +๐›ฝ โˆฃ 1 > where ๐‘Ž2 + ๐›ฝ2 = 1, ๐‘Ž, ๐›ฝ โˆˆ โˆ

Hilbert spaces: ๐œ“1 โˆˆ ๐ป1 , ๐œ“2 โˆˆ ๐ป2

โ†’ ๐œ“12 = ๐‘Ž๐‘–๐‘—ฯˆ๐‘–๐‘–,๐‘—= 1,2 โจ‚ฯˆ๐‘— โˆˆ ๐ป1โจ‚๐ป2

classical: m bits โ†’ 2๐‘š states

quantum: m qubits โ†’ 2๐‘š basis states

Entanglement: speeding up classical algorithms

Quantum computation

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 4/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 5: Fibonacci anyons and Topological quantum Computing

Vu Pham

โ€ข Quantum Circuits: unitary operators that act on a Hilbert space, generated by n qubits, whose states encode the information we want to process.

Quantum Circuits are composed of elementary Quantum gates.

โ€ข Universality: existence of a universal set of quantum gates, the elements of which can perform any unitary evolution in SU(N) with arbitrary accuracy

Need:

1. Singe qubit rotation gates that can span SU(2): 2. A Two - qubit entangling gate: ๐‘ˆ โˆˆ ๐‘†๐‘ˆ(2)

Examples of quantum algorithms: โ†’ Deutsch algorithm

โ†’ Shorโ€™s factoring algorithm

Quantum computation

๐‘ˆ

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 5/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

where โจ = addition mod 2

time

x=0 โ†’ y unchanged

x=1 โ†’ ๐‘ฆ = 0 โ†’ ๐‘ฆ = 1๐‘ฆ = 1 โ†’ ๐‘ฆ = 0

Page 6: Fibonacci anyons and Topological quantum Computing

Vu Pham

Deutsch Algorithm

โ€ข Boolean Function F: Constant (f(0)=f(1)) or Balanced (f(0)โ‰ f(1))?

โ€ข Requires only 1 measurement to answer while classically it takes 2 evaluations of F

Decoherence

Very easy for errors to appear in the system due to interactions with the environment:

Examples: 1. Bit flips: โˆฃ 0 > โ†’ โˆฃ 1 > , โˆฃ 1 > โ†’ โˆฃ 0 >

2. Phase flips: 1

2(โˆฃ 0 >+โˆฃ 1 >) โ†’

1

2(โˆฃ 0 >โˆ’โˆฃ 1 >)

Quantum computation

Fibonacci anyons & Topological Quantum Computing

H

H ๐‘ผ๐‘ญ

0

1

H

H

Christos Charalambous 6/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

๐ป =1

2

1 11 โˆ’1

Single qubit rotation gate called Hadamard :

Page 7: Fibonacci anyons and Topological quantum Computing

Vu Pham

Goal: encode information in an environment independent way

Idea: Topological properties are insensitive to local perturbations

Quantum computation

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 7/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

TIME

Page 8: Fibonacci anyons and Topological quantum Computing

Vu Pham

1. Quantum Computer Quantum Computing Decoherence

2. โ€œAnyโ€-ons Abelian anyons Non-abelian anyons Physical realization of non-abelian anyons Fractional Quantum Hall effect Geometric phase Topological Quantum Computer

3. Computing using anyons Braiding Fusion Recap: Fusion rules for minimal models Fusion space F & R matrices The unitary B-matrix Compatibility equations: Pentagon and Hexagon equations

4. Fibonacci model Fibonacci/Yang Lee model Chern-Simons theory Recap of WZW models

5. Summary

Contents

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 8/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 9: Fibonacci anyons and Topological quantum Computing

Vu Pham

Exchanging:

โˆฃ ๐œ“๐ด >โˆฃ ๐œ“๐ต > โ†’ ๐‘’๐‘–๐œƒ โˆฃ ๐œ“๐ต >โˆฃ ๐œ“๐ด >

Winding:

โˆฃ ๐œ“๐ด >โˆฃ ๐œ“๐ต > โ†’ (๐‘’๐‘–๐œƒ)2 โˆฃ ๐œ“๐ด >โˆฃ ๐œ“๐ต >

In 3D: (๐‘’๐‘–๐œƒ)2 = ๐ผ

โ†’Boson: ฮธ=2ฯ€+2ฯ€n โˆฃ ๐œ“๐ด๐ต > โ†’ โˆฃ ๐œ“๐ต๐ด >

โ†’Fermion: ฮธ=ฯ€+2ฯ€n โˆฃ ๐œ“๐ด๐ต > โ†’ โˆ’โˆฃ ๐œ“๐ต๐ด >

Move to 2D:

Any ฮธ โ†’ โ€œAnyโ€-ons

Exchanging=braiding

๐ถ1(๐‘ก1)

๐ถ2(๐‘ก2)

๐ถ0(๐‘ก0)

A

B

Abelian anyons

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 9/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

z

y

x

Page 10: Fibonacci anyons and Topological quantum Computing

Vu Pham

Degenerate state space ๐œ“๐‘– , ๐‘– = 1,โ€ฆ , ๐‘‘ then:

๐œ“1๐œ“2โ‹ฎ๐œ“๐‘‘

๐œ“โ€ฒ1๐œ“โ€ฒ2โ‹ฎ๐œ“โ€ฒ๐‘‘

= ๐‘ˆ11 โ‹ฏ ๐‘ˆ1๐‘‘โ‹ฎ โ‹ฑ โ‹ฎ๐‘ˆ๐‘‘1 โ‹ฏ ๐‘ˆ๐‘‘๐‘‘

๐œ“1๐œ“2โ‹ฎ๐œ“๐‘‘

Non-abelian anyons

Candidate space to store and process quantum information

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 10/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 11: Fibonacci anyons and Topological quantum Computing

Vu Pham

Physical realization of Non-abelian anyons:

1. Degenerate ground state

2. Finite energy gap ฮ”ฮ• for ground state

3. Adiabaticity

4. Anyons being far apart

5. All local operators have vanishing correlation functions apart from identity

Physical realization of Non-abelian anyons

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 11/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 12: Fibonacci anyons and Topological quantum Computing

Vu Pham

Trapped ๐‘’โˆ’ gas

Conductance: ๐œŽ = ๐œˆ๐‘’2

โ„Ž where ๐œˆ a fractional number

โ†’Fractional charge

Abelian anyons for ๐œˆ =1

3

Laughlin states: Trial wavefunctions Expect โ†’ fractional statistics = anyonic statistics

๐ต๐‘ง

๐ธ๐‘ฅ

Fractional Quantum Hall effect

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 12/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 13: Fibonacci anyons and Topological quantum Computing

Vu Pham

Time evolution of a state:

โˆฃ ๐œ“ ฮค > = exp i๐›พ๐‘› ๐ถ expโˆ’๐‘–2๐œ‹

โ„Ž ๐‘‘๐‘กฮค

0

๐ธ๐‘› ๐‘… ๐‘ก โˆฃ ๐œ“ 0 >

where ๐›พ๐‘›(๐ถ) is Berryโ€™s geometric phase:

๐›พ๐‘› ๐ถ = ๐‘– < ๐‘›, ๐‘… ๐‘ก โˆฃ ๐›ป๐‘…๐‘›, ๐‘… ๐‘ก > ๐‘‘๐‘…๐ถ= ๐ด๐œ‡๐‘‘๐‘…

๐œ‡๐ถ

= 1

2๐น๐œ‡๐œˆ๐‘‘๐‘…

๐œ‡ โˆง ๐‘‘๐‘…๐œˆ๐‘†

Geometric phase

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 13/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 14: Fibonacci anyons and Topological quantum Computing

Vu Pham

Vector potential gauge transformation: ๐ด๐œ‡ โ†’ ฮ‘๐œ‡ โˆ’ ๐œ•๐œ‡๐‘Ž๐‘›

Vector field:

(๐น๐œ‡๐œˆ)๐‘–๐‘“ โ‰” (๐œ•๐œ‡ฮ‘๐œˆ โˆ’ ๐œ•๐œˆฮ‘๐œ‡)

๐‘–๐‘“

โ†’ invariant under gauge transformations

If (๐น๐œ‡๐œˆ)๐‘–๐‘“ โ‰  0 i.e. not diffeomorphic invariant as well:

โ†’ Case 1: Non-degenerate state space โ†’ Abelian geometric phase, U(1)

Example:

Geometric phase

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 14/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 15: Fibonacci anyons and Topological quantum Computing

Vu Pham

โ†’ Case 2: Degenerate state space ((๐น๐œ‡๐œˆ)๐‘–๐‘“ a matrix):

Example: ๐ด๐ต๐ถ โ‰  ๐ถ๐ต๐ด Transformations of the state space are elements of SU(2) For N degenerate state space transformations are elements of SU(N)

Geometric phase

Fibonacci anyons & Topological Quantum Computing

A

B

C 1

2

3 4

5

6

7

1 7

Christos Charalambous 15/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 16: Fibonacci anyons and Topological quantum Computing

Vu Pham

In general: โˆฃ ๐œ“ C > = ฮ“๐ด ๐ถ โˆฃ ๐œ“ 0 >

ฮ“๐ด ๐ถ = exp i๐›พ๐‘› ๐ถ

the following properties hold:

(A) ฮ“ฮ‘ ๐ถ2 โˆ™ ๐ถ1 = ฮ“ฮ‘ ๐ถ2 ฮ“ฮ‘ ๐ถ1 ๐ถ1, ๐ถ2 paths in parametric space

(B) ฮ“ฮ‘ ๐ถ0 = ๐ผ ๐ถ0 point

(C) ฮ“ฮ‘ ๐ถโˆ’1 = ฮ“โˆ’1๐ด(๐ถ) ๐ถ clockwise path,

๐ถโˆ’1 anti-clockwise path

(D) ฮ“ฮ‘ ๐ถ โˆ˜ ๐‘“ = ฮ“ฮ‘(๐ถ) ๐‘“ is a function of time t

Geometric phase

(A)+(B)+(C) Forms a Group

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 16/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 17: Fibonacci anyons and Topological quantum Computing

Vu Pham

โ€ข Relate parametric space to anyons coordinates

โ€ข Assume vector field ๐น๐œ‡๐œˆ is confined to anyons position

Hence:

non-abelian geometric evolutions in a system

phases evolutions of non-abelian anyons

Geometric phase

A B

M ๐‘…2

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 17/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 18: Fibonacci anyons and Topological quantum Computing

Vu Pham

Quasiparticle worldlines forming braids carry out unitary transformations on a Hilbert space of n anyons. This Hilbert space is exponentially large and its states cannot be distinguished by local measurements

candidate model for fault-tolerant quantum computing

Topological Quantum Computer

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 18/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 19: Fibonacci anyons and Topological quantum Computing

Vu Pham

1997 A.Kitaev: System of non-abelian anyons with suitable properties can efficiently simulate a quantum circuit

2000 Freedman, Kitaev and Wang: system of anyons can be simulated by a quantum circuit

โ†’Equivalence of the two views of the system, i.e. between an anyonic computational model (e.g. a Topological quantum computer) and a

quantum circuit

Is there an anyonic computational model that can simulate a quantum circuit that exhibits universality?

Topological Quantum Computer

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 19/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 20: Fibonacci anyons and Topological quantum Computing

Vu Pham

1. Quantum Computer Quantum Computing Decoherence

2. โ€œAnyโ€-ons Abelian anyons Non-abelian anyons Physical realization of non-abelian anyons Fractional Quantum Hall effect Geometric phase Topological Quantum Computer

3. Computing using anyons Braiding Fusion Recap: Fusion rules for minimal models Fusion space F & R matrices The unitary B-matrix Compatibility equations: Pentagon and Hexagon equations

4. Fibonacci model Fibonacci/Yang Lee model Chern-Simons theory Recap of WZW models

5. Summary

Contents

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 20/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 21: Fibonacci anyons and Topological quantum Computing

Vu Pham

World lines cannot cross

โ†’ braids ๐œŽ๐‘– (particle histories) in

distinct topological classes

1:1 correspondence of the topological

classes with distinct elements of a Braid set

1. Any braid can be obtained by

multiplying elementary braids

2. The inverse of any braid exists

3. Existence of Vacuum

4. Associativity for disjoint ๐œŽ๐‘–

Braiding

Braid group

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 21/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

๐œŽ๐‘– โ‰” ๐‘’๐‘ฅ๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’ ๐‘œ๐‘“ ๐‘–๐‘กโ„Ž ๐‘Ž๐‘›๐‘‘ ๐‘– + 1 ๐‘กโ„Ž ๐‘Ž๐‘›๐‘ฆ๐‘œ๐‘›

๐†(๐ˆ๐’Š) representations of the Braid group = the unitary transformations

Page 22: Fibonacci anyons and Topological quantum Computing

Vu Pham

Defining relations of Braid group for an anyonic model:

1. Exchanges of disjoint particles commute: ฯƒ๐‘—ฯƒ๐‘˜ = ฯƒ๐‘˜ฯƒ๐‘— โˆฃ ๐‘— โˆ’ ๐‘˜ โˆฃโ‰ฅ 2

2. Yang-Baxter relation:

ฯƒ๐‘—ฯƒ๐‘—+1ฯƒ๐‘— = ฯƒ๐‘—+1ฯƒ๐‘—ฯƒ๐‘—+1 ๐‘— = 1,2,โ€ฆ , ๐‘› โˆ’ 2

=

Braiding

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 22/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 23: Fibonacci anyons and Topological quantum Computing

Vu Pham

Fusion: The process of bringing two particles together

A non abelian anyonic model is defined starting from the superselection sector:

Finite set of particles that are linked by the following fusion rules, and their charges are conserved under local operations

Fusion algebra: ๐‘Ž ร— ๐‘ = ๐‘๐‘๐‘Ž๐‘๐‘๐‘

where ๐‘๐‘๐‘Ž๐‘ can be matrices

Abelian ๐‘๐‘๐‘Ž๐‘=1

Non-abelian ๐‘๐‘๐‘Ž๐‘๐‘ > 1

Associativity: ๐‘e๐‘Ž๐‘๐‘’ ๐‘๐‘๐‘‘๐‘’ = ๐‘e๐‘๐‘‘๐‘’ ๐‘๐‘๐‘’๐‘Ž

Commutativity: ๐‘๐‘๐‘Ž๐‘= ๐‘๐‘๐‘๐‘Ž

Fusion

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 23/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 24: Fibonacci anyons and Topological quantum Computing

Vu Pham

Same fusion algebra:

ฯ•๐‘– ร— ฯ•๐‘— = ๐‘๐‘˜๐‘–๐‘—

๐‘˜

ฯ•๐‘˜

Commutativity also holds:

๐‘๐‘˜๐‘–๐‘— = ๐‘๐‘˜๐‘—๐‘–

Associativity :

๐‘๐‘™๐‘—๐‘˜๐‘™

๐‘๐‘š๐‘–๐‘™ = ๐‘๐‘™๐‘–๐‘—

๐‘™

๐‘๐‘š๐‘™๐‘˜

Recap: Fusion rules for minimal models

Minimal models can be mapped to anyonic models

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 24/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 25: Fibonacci anyons and Topological quantum Computing

Vu Pham

Fusion spaces ๐‘‰๐‘๐‘Ž๐‘: are subspaces of the space of all possible fusion outcomes which are also Hilbert spaces:

๐‘‰๐‘Žโจ‚๐‘‰๐‘ = โจ๐‘๐‘๐‘๐‘Ž๐‘๐‘‰๐‘๐‘Ž๐‘

The logical states โˆฃ 0 > & โˆฃ 1 > will be encoded in one of these fusion spaces

Relation of dimensionality of fusion spaces and quantum dimension:

๐‘‘๐‘Ž๐‘‘๐‘ = ๐‘๐‘๐‘Ž๐‘๐‘‘๐‘๐‘

Simplest non-abelian example: fusion rule for Spin- 1

2 particles

1

2โจ‚1

2= 0โจ1

(i.e. 2x2=1+3)

Fusion space

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 25/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 26: Fibonacci anyons and Topological quantum Computing

Vu Pham

Fibonacci anyons fusion rule:

1 = vacuum

ฯ„ = non-abelian anyon

The Fusion (Anyonic) Hilbert space:

โ€ข Fusion trees are orthogonal basis elements of a Hilbert space

โ€ข If the initial and final states are fixed then the dimension of this space depends on the number of in-between outcomes. For the above example the dimension is 2.

Fusion space basis (fusion trees)

Fibonacci anyons & Topological Quantum Computing

ฯ„ ฯ„

ฯ„

ฯ„

1

ฯ„ ฯ„

ฯ„

ฯ„

ฯ„

โˆฃ ๐œ๐œ โ†’ 1 ๐œ โ†’ ๐œ > โˆฃ ๐œ๐œ โ†’ ๐œ ๐œ โ†’ ๐œ >

๐œโจ‚๐œ = 1โจ๐œ

Christos Charalambous 26/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 27: Fibonacci anyons and Topological quantum Computing

Vu Pham

The order of the fusion should not be relevant (associativity):

Therefore there exists a matrix F that transforms one basis to the other:

Exchange of a & b before fusion= self-rotation of outcome c after fusion:

therefore just a phase factor is obtained. For many in between outcomes R = diagonal matrix:

F & R matrices

ฯ„ ฯ„

ฯ„

ฯ„

1,ฯ„

ฯ„ ฯ„

ฯ„

ฯ„

1,ฯ„ โ‰…

B A

D

C B A

D

C

F

The F-matrix The R-matrix

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 27/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 28: Fibonacci anyons and Topological quantum Computing

Vu Pham

Consider superposition of multiple fusion outcomes, and consider the braiding of two particles that do no have a direct fusion outcome

exchanges result in a non-diagonal matrix R By applying F matrices on the R matrices we can change to a basis where the anyons do have a direct fusion outcome:

Example:

F & R fully describe all the processes we can do in an anyonic model of computation

The unitary braiding matrix: B-matrix

๐ต = ๐น๐‘…๐นโˆ’1 = ๐œŒ(๐œŽ๐‘–)

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 28/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 29: Fibonacci anyons and Topological quantum Computing

Vu Pham

Fusion is associative Associativity of fusion + allow pentagon equation must hold: braiding Hexagon equation

These two equations encode all the constraints we can impose on F & R

Compatibility equations: Pentagon & Hexagon equations

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 29/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 30: Fibonacci anyons and Topological quantum Computing

Vu Pham

1. Quantum Computer Quantum Computing Decoherence

2. โ€œAnyโ€-ons Abelian anyons Non-abelian anyons Physical realization of non-abelian anyons Fractional Quantum Hall effect Geometric phase Topological Quantum Computer

3. Computing using anyons Braiding Fusion Recap: Fusion rules for minimal models Fusion space F & R matrices The unitary B-matrix Compatibility equations: Pentagon and Hexagon equations

4. Fibonacci model Fibonacci/Yang Lee model Chern-Simons theory Recap of WZW models

5. Summary

Contents

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 30/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 31: Fibonacci anyons and Topological quantum Computing

Vu Pham

Simple and rich structure

Encoding of logical states (the naive way):

Fibonacci anyonic model

Fibonacci anyons & Topological Quantum Computing

๐œโจ‚๐œ = 1โจ๐œ

1

ฯ„

โˆฃ >

โˆฃ >

Christos Charalambous 31/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 32: Fibonacci anyons and Topological quantum Computing

Vu Pham

Simple and rich structure

Encoding of logical states:

The last state is not a problem as we will see right now:

Fibonacci anyonic model

Fibonacci anyons & Topological Quantum Computing

๐œโจ‚๐œ = 1โจ๐œ

Christos Charalambous 32/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 33: Fibonacci anyons and Topological quantum Computing

Vu Pham

From fusion rules and pentagon equation for Fibonacci model:

๐น๐œ๐œ๐œ1 = ๐น1๐œ๐œ๐œ = ๐น

๐œ1๐œ๐œ = ๐น

๐œ๐œ1๐œ = 1

๐น๐œ๐œ๐œ๐œ =

1

๐œ‘

1

๐œ‘

1

๐œ‘โˆ’1

๐œ‘

where ฯ† is the golden ratio ฯ† =(1+ 5)

2

From hexagon equation and Yang-baxter relation:

๐‘…๐œ1๐œ = ๐‘…1๐œ๐œ = 1

๐‘…๐œ๐œ = ๐‘’๐‘–4๐œ‹/5 00 โˆ’๐‘’๐‘–2๐œ‹/5

Fibonacci anyonic model

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 33/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 34: Fibonacci anyons and Topological quantum Computing

Vu Pham

Braiding matrices obtained from F and R:

๐œŽ1 =

๐œŽ2 =

Fibonacci anyonic model

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 34/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 35: Fibonacci anyons and Topological quantum Computing

Vu Pham

Dimension of Hilbert space for Fibonacci model with the constraint that no two consecutive 1โ€™s can appear

Bratelli diagram:

2 1 ฯ„

ฯ„ 1 ฯ„

1 ฯ„ ฯ„ 1 ฯ„

3 5

Fibonacci anyonic model

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 35/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Dimension of the space is โˆ ฮฆ๐‘›

Page 36: Fibonacci anyons and Topological quantum Computing

Vu Pham

Universality

Solovay and Kitaev (version of brute force search algorithm):

Combine short braids โ†’ can obtain a long braid that with arbitrary accuracy ฮต will simulate a desired single qubit unitary operation

Bonesteel, Hormozi: 2-qubit entangling gate CNOT

1st observation:

Fibonacci anyonic model

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 36/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

ฯ„ ฯ„ ฯ„

Page 37: Fibonacci anyons and Topological quantum Computing

Vu Pham

2nd observation: Case 1: upper qubit is

Case 2: upper qubit is

Fibonacci anyonic model

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 37/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 38: Fibonacci anyons and Topological quantum Computing

Vu Pham

โ†’ ๐œŒ(๐œŽ1) & ๐œŒ(๐œŽ2) acting on the logical states can perform any unitary evolution in SU(N)

โ†’ universal computations

Conclusion:

Fibonacci anyonic model:

โ€ข Can achieve universal computing

โ€ข well-controlled accuracy

โ€ข Requires 4n physical anyons for encoding n logical qubits (i.e. polynomial scaling)

Fibonacci anyonic model

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 38/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 39: Fibonacci anyons and Topological quantum Computing

Vu Pham

spin-1 particles: 1โจ‚1 = 0โจ1โจ2 Similarity to: ๐œ โŠ— ๐œ = 0โŠ• ๐œ if spin-2 is cut off

๐‘†๐‘ˆ(2)๐‘˜: โ€˜โ€˜ quantizedโ€™โ€™ version of SU(2) obtained by truncating the possible values of the angular momentum to

j = 0,1

2, 1,3

2โ€ฆ ,๐‘˜

2

e.g. ๐‘†๐‘ˆ(2)3 = {0,1

2, 1,3

2}

Consider only 0 & 1 particles of ๐‘†๐‘ˆ(2)3

โ†’subgroup (โ€˜โ€˜evenโ€™โ€™ part) of ๐‘†๐‘ˆ(2)3 โ‰… superselection sector of Fibonacci model

A model described by such symmetry is the ๐‘บ๐‘ผ(๐Ÿ)๐Ÿ‘ WZW model coupled to a U(1) gauge field

Fibonacci anyons and ๐‘†๐‘ˆ(2)3

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 39/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 40: Fibonacci anyons and Topological quantum Computing

Vu Pham

๐‘†๐ถ๐‘† ๐ด =๐‘˜

4๐œ‹ ๐‘‘3๐‘ฅ๐œ€๐œ‡๐œˆ๐œŒ

ฮœ

๐‘ก๐‘Ÿ ๐ด๐œ‡๐œ•๐œˆ๐ด๐œŒ + ๐‘–2

3๐ด๐œ‡๐ด๐œˆ๐ด๐œŒ =

1

4๐œ‹ ๐‘‘3๐‘ฅ๐ฟ๐ถ๐‘†(๐ด)ฮœ

where k: coupling constant , ๐‘€ = ฮฃ ร— R (2+1D) , A is a gauge field

No metric โ†’ invariant under diffeomorphisms

Non Abelian Gauge transformations:

๐ดโ€ฒ๐œ‡ = ๐‘”๐ด๐œ‡๐‘”โˆ’1 โˆ’ ๐‘–๐‘”๐œ•๐œ‡๐‘”

โˆ’1 where g:๐‘€ โ†’ ๐บ

โ†’๐ฟ๐ถ๐‘† ๐ด

โ€ฒ =

๐ฟ๐ถ๐‘†(๐ด) โˆ’ ๐‘˜๐œ€๐œ‡๐œˆ๐œŒ๐œ•๐œ‡๐‘ก๐‘Ÿ ๐œ•๐œˆ๐‘” ๐‘”

โˆ’1๐ด๐œŒ โˆ’๐‘˜

3๐œ€๐œ‡๐œˆ๐œŒ๐‘ก๐‘Ÿ ๐‘”โˆ’1(๐œ•๐œ‡๐‘”)๐‘”

โˆ’1(๐œ•๐œˆ๐‘”)๐‘”โˆ’1(๐œ•๐œŒ๐‘”)

For suitable boundary conditions the 1st extra term vanishes in the action.

Non-abelian Chern-Simons Theory

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 40/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 41: Fibonacci anyons and Topological quantum Computing

Vu Pham

In the case of simple compact groups e.g. G=SU(2):

๐œ” ๐‘” =1

24๐œ‹2๐œ€๐œ‡๐œˆ๐œŒ๐‘ก๐‘Ÿ ๐‘”โˆ’1(๐œ•๐œ‡๐‘”)๐‘”

โˆ’1(๐œ•๐œˆ๐‘”)๐‘”โˆ’1(๐œ•๐œŒ๐‘”)

where ฯ‰(g)=winding number and we realize that is proportional to the 2nd extra term in the Lagrangian. Hence the action becomes:

โ†’ ๐‘†๐ถ๐‘† ๐ดโ€ฒ = ๐‘†๐ถ๐‘† ๐ด + 2๐œ‹๐œ…๐œ”(๐‘”)

โ€ข If ฯ‰(g)=0 (small gauge transformations, low energies)

โ†’ action is invariant

โ€ข If ฯ‰(g)โ‰ 0 (large gauge transformations, high energies)

โ†’ failure of gauge invariance

Case 1: k integer โ†’ OK

Case 2: k not an integer โ†’ gapped pure gauge degrees of freedom for the high energy theory

Non-abelian Chern-Simons Theory

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 41/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 42: Fibonacci anyons and Topological quantum Computing

Vu Pham

๐ป =๐‘˜

4๐œ‹๐‘ก๐‘Ÿ ๐ด2๐œ•0๐ด1 โˆ’ ๐ด1๐œ•0๐ด2 โˆ’ ๐ฟ = 0

Easily seen if we choose gauge ๐ด0 = 0 where the momenta

canonically conjugated to: ๐ด1: โˆ’๐‘˜

4๐œ‹๐ด2 , ๐ด2:

๐‘˜

4๐œ‹๐ด1

Introduce spatial boundaries ๐‘€ = ๐œ•ฮฃ ร— R

Locally (bulk part): Gauge invariance BUT globally: topological obstruction in making the gauge field zero everywhere if ฮฃ topologically non-trivial

โ†’ Chern-Simons gauge invariant up to a surface term โ†’ physical topological degrees of freedom

โ†’ Chern-Simons: theory of ground state of a 2D topologically ordered system in ฮฃ

Non-abelian Chern-Simons Theory

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 42/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 43: Fibonacci anyons and Topological quantum Computing

Vu Pham

Conclusion โ€ข For low energies: โ†’ Chern Simons theory describes non abelian anyons. โ€ข For high energies: โ†’ Difficult to disentangle physical topological degrees of freedom from unphysical local gauge degrees of freedom

โ†’ hence have to consider Chern Simons as low energy effective field theory

What is the theory that describes the excitations of these

quasiparticles?

Non-abelian Chern-Simons Theory

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 43/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

Page 44: Fibonacci anyons and Topological quantum Computing

Vu Pham

WZW models describe Symmetry Protected topological Phases (SPT) in 2D at an open boundary with symmetry SU(2).

Showed global and local SU(2) invariance of ๐ฝ+ (the WZW charge carrying covariant current density) coupled with an external field action

Showed that integrating action with an external field leads to an effective field theory:

WZW action coupled with external field at low energies

โ‰… Chern Simon action

For WZW models:

โ†’ k= number of anyon species in the theory โ†’ integer

โ†’ gapless WZW gauge degrees of freedom = CS pure gauge degrees of freedom

Recap of WZW models

Fibonacci anyons & Topological Quantum Computing Christos Charalambous 44/45 Fibonacci anyons & Topological Quantum Computers 13/05/13

โ†’Solved problem of Chern-Simons in higher energies

Page 45: Fibonacci anyons and Topological quantum Computing

Vu Pham

1. Defined Quantum Computer and identified problem of decoherence

2. Identified topological properties as a remedy for the problem

3. Identified anyons as systems that exhibit such topological properties and hence under specific conditions can accomodate a Topological quantum computer 4. Examined Fibonacci anyons as candidate particles for performing Universal Topological quantum computing

5. Showed that such particles can be theoretically described in the context of a CFT model

Summary

Fibonacci anyons & Topological Quantum Computers 13/05/13 Christos Charalambous 45/45


Recommended