Transcript
Page 1: FactorsAffecJngLargeVolumeInfusionPumpAccuracyandFlow · Findings! •Although(environmental(factors(external(to(the(pump(were(controlled(and(unchanged,(a(wide(range(of(8low(variability(was(observed(with(some(pumps

Findings  

• Although  environmental  factors  external  to  the  pump  were  controlled  and  unchanged,  a  wide  range  of  8low  variability  was  observed  with  some  pumps  • Two  of  the  three  large  volume  pumps  administered  8luids  at  highly  discontinuous  rates,  including  periods  of  little  or  no  infusion  • Continuous  infusion  pumps  exhibited  ‘cyclic’  variations  around  the  programmed  8low  rate;  Some  pumps  varied  by  more  than  +/-­‐30%  over  time  periods  greater  than  10  minutes  • Only  one  large  volume  infusion  pump  was  able  to  deliver  5%  accuracy  at  the  2  minute  observation  window    

                       

Pump  #3  

0  20          40            60              80                100                    120  Time  (min)  

Introduction

Ubiquitous  throughout  the  hospital,  large  volume  infusion  IV  pumps  play  a  crucial  role  in  delivering  8luids  and  complex  doses  of  medications  to  patients  in  a  wide  range  of  care  settings.  Medications  administered  through  the  IV  pump  are  assumed  to  infuse  at  a  smooth  and  continuous  8low  rate  displayed  on  the  screen.      And,  clinicians  expect  that  the  pump  is  delivering  8luid  at  the  rate  programmed.    However,  a  number  of  factors  in8luence  IV  pump  8low  accuracy.    Pump  standards  typically  report  8low  accuracy  of  +/-­‐5%  but  this  is  in  controlled  laboratory  conditions.    In  real  world  clinical  conditions  like  those  in  hospitals  today,  many  infusion  pumps  administer  8luids  at  highly  discontinuous  rates,  including  periods  of  little  or  no  infusion.    This  study  examined  the  short  term  8low  accuracy  of  three  large  volume  infusion  pumps  and  explores  the  clinical  impact  of  8low  variability  for  high  risk  medications  with  short  half-­‐lives.    

Conclusion    

Medications  administered  at  a  speci8ied  rate  are  assumed  to  infuse  continuously  and  consistently  at  the  programmed  rate.  However,  the  8indings  in  this  study  prove  this  is  not  the  case.  • Although  environmental  conditions  were  controlled,  two  of  the  three  studied  pumps  administered  8luids  at  highly  discontinuous  rates,  reporting  +/-­‐30%  variability  over  time  periods  greater  than  10  minutes        • The  8indings  are  especially  meaningful  if  high  risk  medications  with  short  half  lives  are  delivered.  Variations  in  8low  with  short  time  periods  could  have  a  profound  clinical  impact  on  the  patient    • Discontinuous  delivery  of  the  medication  may  lead  to  a  medical  intervention  including  bolus,  dose  increase  or  decrease,  and/or  additional  therapy    • Results  demonstrate  that  signi8icant  differences  exist  in  8low  continuity  among  infusion  pumps  and  this  variation  could  pose  a  risk  of  hemodynamic  instability  in  an  already  compromised  patient            

Susan  Niemeier  MHA,  BSN,  RN  Department  of  Clinical  Excellence                                                                                                                                          Ivenix,  Inc.,  North  Andover  MA  

Method

A  8low  accuracy  test  was  conducted  with  three  large  volume  infusion  pumps.    The  test  strictly  followed  international  industry  standards.      

•  IEC  60601-­‐2-­‐24:    Requirements  for  the  safety  of  infusion  pumps  and  controllers  

•  Infusion  Pump  Type  4:  Continuous  infusion  8low,  non-­‐continuous  8low  

•  Volumetric  Infusion  Pump:    The  delivery  rate  is  set  by  the  operator  &  indicated  by  the  equipment  in  volume  per  unit  of  time  

 

The  study  evaluated  8low  accuracy  of  0.5mL/hr  .      

Environmental  conditions  such  as  temperature,  humidity,  evaporation,  vibration,  and  8luid  properties  were  8ixed.    Head  height  and  back  pressure  were  at  the  nominal  conditions  de8ined  by  the  pump  manufacturers.        

Observed  variability  in  the  test  results  was  due  to  the  unique  characteristics  of  the  pumping  mechanism  for  each  large  volume  infusion  pump.    

A  startup  time  plot  (T0  –  8irst  60  minutes)  was  created  to  illustrate  the  instantaneous  8low  rate  versus  time,  for  the  8irst  two  hours  of  the  test.    It’s  intention  is  to  show  how  long  it  takes  the  device  to  get  to  the  desired  8low  rate  from  zero  and  reveal  8low  performance  characteristics.    

A  trumpet  curve  was  generated  after  the  pumps  stabilized  (T1-­‐second  60  minutes).  The  minimum  and  maximum  %  error  in  8low  rate  is  plotted  versus  the  length  of  time  used  to  average  the  data  (2,5,11,19  and  31  min  observation  windows).              

Questions?  Comments?  Please  contact:    [email protected]  

Discussion  

Medications  with  short  half-­‐lives  need  continuous  administration  to  maintain  therapeutic  ef8icacy  and                                                                                  desired  clinical  outcomes.  These  medications  are  mostly  for  the  acutely  ill  patient,  to  either  support  or                                                                                          control  blood  pressure,  control  arrhythmias,  provide  sedation  and  in  some  cases  to  paralyze  for                                                                                            therapeutic  needs.  For  example,  a  septic  patient  who  is  extremely  hypotensive  might  have  norepinephrine  administered  to  support  blood  pressure.    Norepinephrine  has  a  half-­‐life  of  approximately  3  minutes  with  an  even  shorter  duration  of  action  of  approximately  2  minutes.  In  essence,  discontinuous  delivery  of  the  medication  might  lead  to  either  the  need  to  bolus  (if  appropriate),  dose  increase,  and/or  additional  adjunct  therapy.  An  infusion  pump  that  continuously  delivers  the  same  amount  of  medication  in  a  smooth  and  consistent  fashion,  versus  small  cycles,  may  lead  to  bene8icial  patient  outcomes.    

Conversely,  a  patient  with  a  hypertensive  emergency  requires  drastic  reduction  in  blood  pressure.    Medications  such  as  nitroglycerin  and  sodium  nitroprusside  are  widely  used  depending  on  the  condition.  Both  medications  have  half-­‐lives  that  

       are  less  than  two  minutes  as  well  as  a  duration  of  action  that  is  about  three  to  8ive  minutes.    For  instance,          sodium    nitroprusside  has  an  extremely  rapid  action  that  quickly  goes  away  with  any  interruption,  such  as        reduced  8low  or  even  an  occlusion.    Patients  in  a  hypertensive  emergency  need  careful  but  calculated            reduction  in  blood  pressure  to  avoid  fatal  outcomes  such  as  stroke.  As  previously  discussed,  these            patients  cannot  afford  variations  in  medication  delivery  but  rather  accurate  and  consistent  drug  delivery.  

   

AIMs

1)  Compare  the  differences  of  8low  accuracy  of  three  large  volume  pumps    2)  Consider  the  therapeutic  ef8iciency  and  clinical  outcome  of  short  half-­‐life  

medications  if  variations  in  the  8low  rate  occur

         2                  5                                      11                                                  19                                                                            31  Time  (min)  

0  20          40            60              80                100                  120  Time  (min)  

         2                  5                                      11                                                  19                                                                            31  Time  (min)  

Flow

 Rate    %Error

0.5m

l/hr

0  20          40            60              80                100                  120  Time  (min)  

A  trumpet  curve  is  a  plot  of  min  and  max  %  error  in  8low  rate.  Error  in  8low  rate  (%)  is  the  error  in  slope  between  the  two  points      

Pump  #3  

Pump  #1   Pump  #2  

               2                  5                                      11                                                  19                                                                      31  Time  (min)  

2  minutes  is  the  half  life  of  nitroglycerin  2-­‐3  minutes  is  the  

half  life  of  norepienephrine  

Pump  #1   Pump  #2  +/-­‐30%  error  >10  minutes  

Wide  swing  over  10  minutes  5%  accuracy  achieved  

The  startup  time  plot  is  a  8low  of  instantaneous  8low  rate.  The  curves  illustrates  T0  (start-­‐up  0-­‐60  min)  and  T1  (60-­‐120  min)  8low  vs  time  data  with  a  30  sec  sample  rate  

Factors  AffecJng  Large  Volume  Infusion  Pump  Accuracy  and  Flow  

References

Hurlbut,  JC  et  al.,  In8luence  of  infusion  pumps  on  the  pharmacologic  response  to  nitroprusside,  Crit  Care  Med  1991  Jan:19(1):98-­‐101    

Klem,  SA  et  al,  In8luence  of  infusion  pump  operation  and  8low  rate  on  hemodynamic  stability  during  epinephrine  infusion,  Crit  Care  Med  1993  Aug:21(8):1213-­‐7    

Krauskopf  KH,  et  al.,  Disturbance  of  continuous,  pump  administration  of  cardiovascular  drugs  by  hydrostatic  pressure,  Anaesthesist.  1996  May;  45(5):  449-­‐52  

Leff  RD,  Stull  JC.  Accuracy,  continuity,  and  pattern  of  8low  from  8ive  macrorate  infusion  pumps  Am  J  Hosp  Pharm.  1988  Feb;45(2):361-­‐5    

Vanderveen,  T.  "Averting  highest-­‐risk  errors  is  8irst  priority."  2005.  www.psqh.com/mayjun05/averting.html  (19  Sept.  2005)  

Weinger  MB,  Kline  A.  Re8lections  on  the  Current  State  of  Infusion  Therapy.  Biomed  Instrum  Technol.  2016;50(4):253-­‐62  

 

 

 

 

 

 

Acknowledgements

I’d  like  to  thank  Jesse  Ambrosina,  Ben  Powers  &  Ivy  Andreica  for  their  invaluable  guidance  and  support  on  this  project.  

 

 

 

 

Flow

Recommended