Transcript
Page 1: Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada

Evaluating the utility of gravity gradient tensor components

Mark Pilkington

Geological Survey of Canada

Page 2: Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada

Tensor component choice

Txx Txy Txz

Tyz

Tyy

Tzz

Single components

Combinations

Concatenations

Which to use?

Qualitative interpretation

Quantitative interpretation

Page 3: Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada

Tensor component choice

Quantitative interpretation [Inversions]

(Txx, Txy, Txz, Tyy, Tyz) Li, 2001(Tuv, Txy), Tzz Zhdanov et al., 2004(Txz, Tyz, Tzz, Tuv) Droujinine et al., 2007(Tuv, Txy) Li, 2010(Tuv, Txy), Tzz, (Tzz, Tuv, Txy) Martinez & Li, 2011Tzz, (Txz, Tyz, Tzz), (Txz, Tyz, Txz, Tyy, Txx) Martinez et al., 2013

Rating the solutions:goodness of fitsharp/smoothclose to geology

Page 4: Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada

Inversion versus component combinations

Martinez et al., 2013

Tzz

Txz, Tyz, Tzz

Txz, Tyz, Txz, Tyy, Txx

Txz, Tyz, Txz, Tzz, Tyy, Txx

Components inverted:

RMS error Txx Txy Txz Tyy Tyz Tzz1-C 23.9 23.2 31.8 23.1 26.1 16.53-C 17.5 16.0 15.9 16.0 12.4 22.55-C 16.6 12.6 16.3 15.8 12.2 24.36-C 15.7 13.0 17.9 13.8 13.8 21.4

Page 5: Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada

Outline

Aim: quantitative rating of component/combinations

Approach: inversion using a simple model – estimate parameter errors

Method: linear inverse theory – analyse model/data relations

Page 6: Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada

Inversion method used

Inversion Parametric[underdetermined inversionproblem]

n datam parameters m >> n m << n

Model 3-D volume Specified shapequantity

Solution Physical property Parameters (density …) (depth, dip…)

Methodology Regularized inversion Overdeterminedleast – squares

Solution Resolution, covariance Parameter errorsappraisal

Page 7: Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada

Prism model

z

t

bw

xcyc

Page 8: Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada

Inverse theory

Forward problem: b = f (x) b = data

x =

parameters

(linearized) db = Adx A = Jacobian

[model dependent]

aij = dbi/dxj

Inverse problem : dx = A+db

A = UVT singular

value

decomposition

Page 9: Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada

Inverse theory

A = UVT singular value decomposition

U = data eigenvectors

V = parameter eigenvectors

= singular values

R = VVT Resolution matrix (=I)

S = UUT Data information matrix

C = CdV-2VT Covariance matrix

Page 10: Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada

Model parameter errors

C = CdV-2VT Parameter covariance matrix

Cd = Data covariance

=singular values

small large C large small C

Cd = e2I Equal data errorCd = D Variable data error

Page 11: Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada

Variable component errors

Components have different error levels: e.g., e(Txx) = e(Txz) only relative levels requiredestimate based on FFT or equivalent source methodratio Tzz : Txz, Tyz : Txy : Txx, Tyy = 1 : 0.70 : 0.37 : 0.59

Component quantities are combined: e.g., H1 = sqrt(Txz2+Tyz2) combine errors: e(Tuv) = [0.5 (e(Txx)2+e(Tyy)2)]1/2

Page 12: Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada

Component quantities tested

Single components:

Txx Tyy Tzz Txy Tyz Txz Tuv

Invariants:

I1 = TxxTyy+TyyTzz+TxxTzz-Txy2-Tyz2-Txz2

I2 = Txx(TyyTzz-Tyz2)+Txy(TyzTxz-TxyTzz)+Txz(TxyTyz-TxzTyy)H1 = sqrt(Txz2+Tyz2) H2 = sqrt[Txy2+0.25(Tyy-Txx)2]

Concatenations:

(Tuv, Txy)(Txz, Tyz, Tzz)

(Txy, Tyz, Txz)

(Txx, Tyy, Txy) (Txz, Tyz, Txz, Txy, Txx)(Tyy, Tyz, Txz, Txy, Txx)

Page 13: Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada

Inversion tests

Procedure:

•Specify model and evaluate matrix A [db=Adx]•Calculate covariance matrix C•Get parameter standard deviations (p.s.d.)•Rank p.s.d. for each parameter versus component quantity

Models tested:

xc yc z t w b

32 32 4 1,3,6,13,43 12 12 0.2

32 32 4 13 0.1,0.5,2,6,9 12 0.2

32 32 0.1,1,3,6,12 40 12 12 0.2

32 32 2 1 1 1 0.2

32 32 2 4 4 4 0.2

32 32 2 8 8 8 0.2

32 32 0.5,1,2 4 1 1 0.2

32 32 0.5,1,2,4 1 8 8 0.2

32 32 0.5,1,2,4 2 2 2 0.2

Page 14: Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada

Eigenvector matrix V

Page 15: Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada

Eigenvector matrix V

Invariants:

I1 = TxxTyy+TyyTzz+TxxTzz-Txy2-Tyz2-Txz2

I2 = Txx(TyyTzz-Tyz2)+Txy(TyzTxz-TxyTzz) +Txz(TxyTyz-TxzTyy)

H1 = sqrt(Txz2+Tyz2)

H2 = sqrt[Txy2+0.25(Tyy-Txx)2]

Page 16: Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada

Eigenvector matrix V

Page 17: Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada

Correlation matrix

corrij = covij

[ covii covjj ]1/2

Page 18: Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada

Parameter errors

xc,yc = locationz = deptht = thicknessw = widthb = breadth = density

Page 19: Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada

Parameter errors

xc,yc = locationz = deptht = thicknessw = widthb = breadth = density

Page 20: Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada

Parameter errors

xc,yc = locationz = deptht = thicknessw = widthb = breadth = density

Page 21: Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada

Parameter error ranking [29 models]

error

high

low

Page 22: Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada

Parameter errors versus averaging

No averagingcorrection

With averaging correction

Page 23: Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada

Conclusions

Concatenated components produce smallest parameter errors

Invariants I1, I2 best performers in combined component category

Purely horizontal components poor performers

Tzz best single component

Page 24: Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada
Page 25: Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada

Parameter rankings

I1Txz

higher error higher error

Page 26: Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada

Width error versus coordinate rotation

coordinateaxis

bodyaxis

Page 27: Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada

Information density matrix

Page 28: Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada

Information density versus eigenvector