Transcript
Page 1: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

Dynamiccausalmodellingofvisualimageryandperception

NadineDijkstra

Donders InstituteforBrain,Cognition andBejaviourDepartmentofArtificialIntelligenceRadboud university, Nijmegen, theNetherlands

SPMcourseMay24th 2019UCL,London,UnitedKingdom

Page 2: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

Stimulus from Buchel andFriston, 1997Figure 3 from Friston et al.,Neuroimage,2003Brain by Dierk Schaefer,Flickr, CC 2.0

Experimental Stimulus (u) Observations (y)

z = f(z,u,θn).

How brain activity z

changes over time

y = g(z, θh)

What we would see in the scanner, y, given the

neural model?

Neural Model Observation Model

DCMFramework

Page 3: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

TheNeuralmodel

�̇� =𝑧$̇⋮𝑧&̇

= 𝑓(𝑧,𝑢, 𝜃)

Deterministic DCM for fMRI

(Taylor approximation)

DCM for CSD

�̇� = 𝐴𝑧 + 𝑣

Task Resting StateCanonical Microcircuit

Coming soon

Friston et al., Neuroimage, 2014 Friston et al., Neuroimage, 2003 Friston et al., Neuroimage, 2017

�̇� = (𝐴 +0𝑢1

2

13$𝐵1)𝑧 + 𝐶𝑢

Page 4: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

“Howdoesbrainactivity,z,changeovertime?”

TheNeuralmodel

�̇� = (𝐴 +0𝑢1

2

13$

𝐵1)𝑧 + 𝐶𝑢

Friston et al. 2003

brain activity

baseline/averaged connectivity

modulation ofconnectivity

driving input

Page 5: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

TheNeuralModel“Howdoesbrainactivity,z,changeovertime?”

• Subjects viewed moving dots during fMRI• On some trials, subjects were instructed to pay attention to the

speed of the dots’ motion• Question: How does attention to motion change the strength of

the connections between V1, V5 and Superior Parietal Cortex?

V1V5SPC

Page 6: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

TheNeuralModel“Howdoesbrainactivity,z,changeovertime?”

V1z1a

c

u1

z1

z2

�̇�$ = 𝑎𝑧 + 𝑐𝑢$ Inhibitory self-connection (Hz).Rate constant: controls rate of decay in region 1. More negative = faster decay.

Driving input u1

Page 7: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

TheNeuralModel“Howdoesbrainactivity,z,changeovertime?”

V5

V1

Driving input u1

z1

z2

a11

a22

a21

c11

�̇�$ = 𝑎$$𝑧$ + 𝑐$$𝑢$

Change of activity in V1:

�̇�8 = 𝑎88𝑧8 + 𝑎8$𝑧$

Change of activity in V5:

Self decay V1 input

Page 8: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

TheNeuralModel“Howdoesbrainactivity,z,changeovertime?”

V5

V1z1

z2

a11

a22

c11

u1

z1

z2

Driving input u1

a21

Page 9: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

TheNeuralModel“Howdoesbrainactivity,z,changeovertime?”

V5

V1z1

z2

a11

a22

c11�̇� = 𝐴𝑧 + 𝐶𝑢$

𝑧$̇𝑧8̇

= 𝑎$$ 0𝑎8$ 𝑎88

𝑧$𝑧8 + 𝑐$$

0 𝑢$

Columns are outgoing connectionsRows are incoming connections

Driving input u1

a21

Page 10: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

TheNeuralModel“Howdoesbrainactivity,z,changeovertime?”

V5

V1z1

z2

a11

a22

c11

Driving input u1

a21u2

u1

z1

z2

b21

Attention u2

Page 11: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

TheNeuralModel“Howdoesbrainactivity,z,changeovertime?”

V5

V1z1

z2

a11

a22

c11

Driving input u1

a21

𝑧$̇ = 𝑎$$𝑧$ + 𝑐$$𝑢$

Change of activity in V1:

b21

Attention u2

𝑧8̇ = 𝑎88𝑧8 + 𝑎8$𝑧$ + (𝑏8$𝑢8)𝑧$

Change of activity in V5:

Self decay V1 input Modulatory input

Page 12: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

TheNeuralModel“Howdoesbrainactivity,z,changeovertime?”

V5

V1z1

z2

a11

a22

c11

Driving input u1

a21

b21

Attention u2

�̇� = (𝐴 +0𝑢1

2

13$𝐵1)𝑧 + 𝐶𝑢

For m experimental inputs:

�̇�$�̇�8

= 𝑎$$ 0𝑎8$ 𝑎88

+ 𝑢80 0𝑏8$ 0

𝑧$𝑧8 + 𝑐$$ 0

0 0𝑢$𝑢8

A: Structure B: ModulatoryInput

C: DrivingInput

Change in activity per

region

External input 2(attention)

Currentactivity

per region

All external input

Columns: outgoing connectionsRows: incoming connections

Page 13: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

TheHaemodynamic Model

Page 14: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

Stimulus from Buchel andFriston, 1997Figure 3 from Friston et al.,Neuroimage,2003Brain by Dierk Schaefer,Flickr, CC 2.0

Experimental Stimulus (u) Observations (y)

z = f(z,u,θn).

How brain activity z

changes over time

y = g(z, θh)

What we would see in the scanner, y, given the

neural model?

Neural Model Observation Model

DCMFramework

Page 15: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

DistinctTop-DownandBottom-UpBrainConnectivityduringVisualPerceptionandImagery

NadineDijkstra,PeterZeidman,SashaOndobaka,MarcelvanGerven &KarlFriston (2017)ScientificReports

UsingDCMtoinvestigatedirectionalconnectivityduringvisualperceptionandimagery

Page 16: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

Background:overlap

Dijkstra, N., Zeidman, P., Ondobaka,S., van Gerven, M., & Friston, K. (2017) Scientific Reports

Dijkstra,Bosch&vanGerven (2017)Journal ofNeuroscience

Leeetal.(2012)Neuroimage

Large overlap in neural representations of perceived and imagined stimuli Dijkstra, N. et al., (2019) Trends in Cognitive Sciences

Page 17: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

Background:twomechanisms

Dijkstra, N., Zeidman, P., Ondobaka,S., van Gerven, M., & Friston, K. (2017) Scientific Reports

MemoryEye

Perception ImageryVisual buffer

Kosslyn, 1980

Dentico et al. (2014)Mechelli et al. (2004)

Page 18: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

Experimentaldesign

Dijkstra, N., Bosch, S., & van Gerven, M. (2017) Journal of NeuroscienceDijkstra, N., Zeidman, P., Ondobaka,S., van Gerven, M., & Friston, K. (2017) Scientific Reports

Perception

Imagery

Page 19: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

Selectionofregions

Dijkstra, N., Zeidman, P., Ondobaka,S., van Gerven, M., & Friston, K. (2017) Scientific Reports

Page 20: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

Timeseriesextraction

Dijkstra, N., Zeidman, P., Ondobaka,S., van Gerven, M., & Friston, K. (2017) Scientific Reports

• 1 time series per region

• Mask (e.g. anatomical mask)

• Find peak relevant contrast

• Sphere (x mm)

• Box (x mm by y mm by z mm)

• Cluster (all voxels exceeding threshold)

Page 21: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

Timeseriesextraction

Dijkstra, N., Zeidman, P., Ondobaka,S., van Gerven, M., & Friston, K. (2017) Scientific Reports

• Regress out unrelated variance (e.g. head movement)

• Adjust based on effect of interest

• F-contrast, e.g.

• Take 1st principal component, i.e. eigenvariate

1 000 10001

Page 22: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

Timeseriesextraction

Dijkstra, N., Zeidman, P., Ondobaka,S., van Gerven, M., & Friston, K. (2017) Scientific Reports

Page 23: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

Timeseriesextraction

Dijkstra, N., Zeidman, P., Ondobaka,S., van Gerven, M., & Friston, K. (2017) Scientific Reports

Page 24: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

Timeseriesextraction

Dijkstra, N., Zeidman, P., Ondobaka,S., van Gerven, M., & Friston, K. (2017) Scientific Reports

Page 25: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

Timeseriesextraction

Dijkstra, N., Zeidman, P., Ondobaka,S., van Gerven, M., & Friston, K. (2017) Scientific Reports

Page 26: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

Timeseriesextraction

Dijkstra, N., Zeidman, P., Ondobaka,S., van Gerven, M., & Friston, K. (2017) Scientific Reports

Page 27: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

Timeseriesextraction

Dijkstra, N., Zeidman, P., Ondobaka,S., van Gerven, M., & Friston, K. (2017) Scientific Reports

Page 28: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

Timeseriesextraction

Dijkstra, N., Zeidman, P., Ondobaka,S., van Gerven, M., & Friston, K. (2017) Scientific Reports

• 8 mm sphere per subject within 16 mm sphere of group effect

check: https://en.wikibooks.org/wiki/SPM/Timeseries_extraction

Page 29: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

Definitionofmodel

Dijkstra, N., Zeidman, P., Ondobaka,S., van Gerven, M., & Friston, K. (2017) Scientific Reports

• Fully connected

• Bayesian Model Reduction

Parametric Empirical Bayes

PP

P

P

PPI

I I

II

I

Page 30: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

Definitionofmodel

Dijkstra, N., Zeidman, P., Ondobaka,S., van Gerven, M., & Friston, K. (2017) Scientific Reports

A =1 11 1

1 11 1

1 11 1

1 11 1

B(:,:,1) =0 11 0

1 11 1

1 11 1

0 11 0

B(:,:,2) =0 11 0

1 11 1

1 11 1

0 11 0

B(:,:,3) =1 11 0

1 11 1

1 11 1

0 11 0

Perception Imagery

Vividness

Page 31: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

Definitionofmodel:drivinginput

Dijkstra, N., Zeidman, P., Ondobaka,S., van Gerven, M., & Friston, K. (2017) Scientific Reports

P

I

II

I

Page 32: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

Definitionofmodel:drivinginput

Dijkstra, N., Zeidman, P., Ondobaka,S., van Gerven, M., & Friston, K. (2017) Scientific Reports

C(:,:,1) =1 00 0

0 00 0

0 00 0

0 00 0

C(:,:,2) =1 00 0

0 00 0

0 00 0

0 00 1

Perception Imagery

�̇� = (𝐴 +0𝑢1

2

13$

𝐵1)𝑧 + 𝐶𝑢

Page 33: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

Results

Dijkstra, N., Zeidman, P., Ondobaka,S., van Gerven, M., & Friston, K. (2017) Scientific Reports

Page 34: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

Results

Dijkstra, N., Zeidman, P., Ondobaka,S., van Gerven, M., & Friston, K. (2017) Scientific Reports

Page 35: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

Conclusions

Dijkstra, N., Zeidman, P., Ondobaka,S., van Gerven, M., & Friston, K. (2017) Scientific Reports

• Perception and imagery are both associated with increases in top-down

coupling

• Connectivity from IFG to OCC is present in both

• (2 x stronger in imagery)

• increase of visual activity relevant to current task

• Bottom-up coupling is only increased during perception

• Vividness is specifically associated with increases in top-down coupling

to OCC

Page 36: Dynamic causal modelling of visual imagery and perception · Dynamic causal modelling of visual imagery and perception Nadine Dijkstra DondersInstitute for Brain, Cognition and Bejaviour

Thankyou

Marcel van Gerven

Peter Zeidman Karl FristonSasha Ondobaka


Recommended