Transcript
Page 1: Design of Operational Amplifier Phase Margin Using Routh

Gunma University Kobayashi Lab

Design of Operational Amplifier Phase Margin

Using Routh-Hurwitz Method

ICMEMIS2018

Nov.4-Nov.6 2018

ID:IPS3-05

JianLong Wang,

Nobukazu Tsukiji, Haruo Kobayashi

Kobayashi Lab, Gunma University

Page 2: Design of Operational Amplifier Phase Margin Using Routh

2/39

Contents

2018/11/7

Research Objective & Background

Stability Criteria

- Nyquist Criterion

- Routh-Hurwitz Criterion

Equivalence at Mathematical Foundations

Relationship between R-H parameters and phase margin

Simulation Verification

Discussion & Conclusion

Page 3: Design of Operational Amplifier Phase Margin Using Routh

3/39

Contents

2018/11/7

Research Objective & Background

Stability Criteria

- Nyquist Criterion

- Routh-Hurwitz Criterion

Equivalence at Mathematical Foundations

Relationship between R-H parameters and phase margin

Simulation Verification

Discussion & Conclusion

Page 4: Design of Operational Amplifier Phase Margin Using Routh

4/39

Research Background (Stability Theory)

2018/11/7

โ— Electronic Circuit Design Field

- Bode plot (>90% frequently used)

- Nyquist plot

โ— Control Theory Field

- Bode plot

- Nyquist plot

- Nicholas plot

- Routh-Hurwitz stability criterion

Very popular in control theory field

but rarely seen in electronic circuit books/papers

- Lyapunov function method

:

Page 5: Design of Operational Amplifier Phase Margin Using Routh

5/39

Electronic Circuit Text Book

2018/11/7

We were NOT able to find out any electronic circuit text book

which describes Routh-Hurwitz method

for operational amplifier stability analysis and design !

None of the above describes Routh-Hurwitz.

Only Bode plot is used.

Razavi Gray Maloberti Martin

Page 6: Design of Operational Amplifier Phase Margin Using Routh

6/39

Control Theory Text Book

2018/11/7

Most of control theory text books

describe Routh-Hurwitz method

for system stability analysis and design !

Page 7: Design of Operational Amplifier Phase Margin Using Routh

7/39

Research Objective

Our proposal

For

Analysis and design of operational amplifier

stability and phase margin

Use

Routh-Hurwitz stability criterion

We can obtain

โ€ข Explicit stability condition for circuit parameters

(which can NOT be obtained only with Bode plot).

โ€ข Relationship between R-H parameters and phase

margin2018/11/7

Page 8: Design of Operational Amplifier Phase Margin Using Routh

8/39

Contents

2018/11/7

Research Objective & Background

Stability Criteria

- Nyquist Criterion

- Routh-Hurwitz Criterion

Equivalence at Mathematical Foundations

Relationship between R-H parameters and phase margin

Simulation Verification

Discussion & Conclusion

Nyquist plot

Bode plot

Page 9: Design of Operational Amplifier Phase Margin Using Routh

9/39

Nyquist plot

โ€ข If the open-loop system is stable(P=0),

the Nyquist plot mustnโ€™t encircle the point (-1,j0).

Nyquist plot of open-loop system

j

๐œ”1,2 โ†’ โˆž

๐œ”1 = 0 ๐œ”2 = 0โˆ’1 0

๐พ2๐พ1โ€ข Open-loop frequency characteristic

Closed-loop stability

โ€ข Necessary and sufficient condition :

When ๐œ” = 0 โ†’โˆž, ๐‘ = ๐‘ƒ โˆ’ ๐‘

N : number, Nyquist plot anti-clockwise encircle point (-1,j0).

P: number, positive roots of open-loop characteristic equation.

๐œ”0

โˆ ๐บ๐‘œ๐‘๐‘’๐‘› ๐‘—๐œ”0 = โˆ’๐œ‹, ๐บ๐‘œ๐‘๐‘’๐‘›(๐‘—๐œ”0) < 1

Z: number, positive roots of closed-loop characteristic equation.

2018/11/7

Page 10: Design of Operational Amplifier Phase Margin Using Routh

10/39

Bode Plot

2018/11/7

1

0

๐œ”

๐œ”

โˆ’1800

๐บ๐‘‹

P๐‘‹

๐บ๐‘‹ precedes P๐‘‹

Greater spacing between ๐บ๐‘‹ and P๐‘‹

More stable

๐œ”1

๐‘ƒ๐‘€

๐‘“๐ด(๐‘—๐œ”)

โˆ ๐‘“๐ด(๐‘—๐œ”)

Phase margin : PM = 1800 + โˆ ๐‘“๐ด ๐œ” = ๐œ”1

๐œ”1: gain crossover frequency

Bode plot is useful,

but it does NOT show explicit stability conditions of circuit parameters.

๏ผˆgain crossover point๏ผ‰

๏ผˆphase crossover point๏ผ‰

Feedback system is stable

Page 11: Design of Operational Amplifier Phase Margin Using Routh

11/39

Phase Margin and Gain Margin

2018/11/7

j

๐œ” = โˆž๐œ”๐‘”

๐œ”๐‘

โˆ ๐‘“๐ด(๐‘—๐œ”๐‘)

(โˆ’1, ๐‘—0)

๐œ‘ 0

๐บ(๐œ”๐‘”)

โˆ™

๐œ‘

โ„Ž0dB

0o

โˆ’1800

๐œ”(log ๐‘ ๐‘๐‘Ž๐‘™๐‘’)

๐œ”(log ๐‘ ๐‘๐‘Ž๐‘™๐‘’)

20๐‘™๐‘œ๐‘” ๐‘“๐ด(๐‘—๐œ”)

โˆ ๐‘“๐ด(๐‘—๐œ”)

๐œ”๐‘”๐œ”๐‘

โ„Ž: Gain Margin

๐œ‘: Phase Margin

Fig.(a) Nyquist plot

Fig.(b) Bode Plot

โ€ข The included angle

Intersection point at ๐œ”๐‘

Negative real axis

โ€ข The angle difference

โˆ’1800

Phase at ๐œ”๐‘

โ€ข Reciprocal 1

๐บ(๐œ”๐‘”)

โ€ข The distance

0dB, real axis

Gian at ๐œ”๐‘”

Page 12: Design of Operational Amplifier Phase Margin Using Routh

12/39

Contents

2018/11/7

Research Objective & Background

Stability Criteria

- Nyquist Criterion

- Routh-Hurwitz Criterion

Equivalence at Mathematical Foundations

Relationship between R-H parameters and phase margin

Simulation Verification

Discussion & Conclusion

Page 13: Design of Operational Amplifier Phase Margin Using Routh

13/39

Routh Stability Criterion

Characteristic equation:

๐ท ๐‘  = ๐›ผ๐‘›๐‘ ๐‘› + ๐›ผ๐‘›โˆ’1๐‘ ๐‘›โˆ’1 + โ‹ฏ + ๐›ผ1s + ๐›ผ0 = 0

Sufficient and necessary

condition:

(i) ๐›ผ๐‘– > 0 for ๐‘– = 0,1, โ€ฆ , ๐‘›

(ii) All values of Routh tableโ€™s

first columns are positive.

๐‘†๐‘›

๐‘†๐‘›โˆ’1

๐‘†๐‘›โˆ’2

๐‘†๐‘›โˆ’3

๐‘†0

โ‹ฎ โ‹ฎ โ‹ฎโ‹ฎโ‹ฎโ‹ฎ

๐›ผ๐‘›

๐›ผ๐‘›โˆ’1

๐›ผ๐‘›โˆ’2

๐›ผ๐‘›โˆ’3

๐›ผ๐‘›โˆ’4

๐›ผ๐‘›โˆ’5

๐›ผ๐‘›โˆ’6

๐›ผ๐‘›โˆ’7

โ‹ฏ

โ‹ฏ

โ‹ฏ

โ‹ฏ๐›ฝ1 =๐›ผ๐‘›โˆ’1๐›ผ๐‘›โˆ’2 โˆ’ ๐›ผ๐‘›๐›ผ๐‘›โˆ’3

๐›ผ๐‘›โˆ’1๐›ฝ2 =

๐›ผ๐‘›โˆ’1๐›ผ๐‘›โˆ’4 โˆ’ ๐›ผ๐‘›๐›ผ๐‘›โˆ’5

๐›ผ๐‘›โˆ’1

๐›พ1 =๐›ฝ1๐›ผ๐‘›โˆ’3 โˆ’ ๐›ผ๐‘›โˆ’1๐›ฝ2

๐›ฝ1

๐›พ2 =๐›ฝ1๐›ผ๐‘›โˆ’5 โˆ’ ๐›ผ๐‘›โˆ’1๐›ฝ3

๐›ฝ1

๐›ผ0

๐›ฝ3 ๐›ฝ4

๐›พ3 ๐›พ4

Routh table

Mathematical test

Determine whether given polynomial has all roots in the left-half plane.

&

2018/11/7

Page 14: Design of Operational Amplifier Phase Margin Using Routh

14/39

Contents

2018/11/7

Research Objective & Background

Stability Criteria

- Nyquist Criterion

- Routh-Hurwitz Criterion

Equivalence at Mathematical Foundations

Relationship between R-H parameters and phase margin

Simulation Verification

Discussion & Conclusion

Page 15: Design of Operational Amplifier Phase Margin Using Routh

15/39

Four Examples

2018/11/7

Ex.1 ๐บ ๐‘  =๐พ

1 + ๐‘Ž1๐‘  + ๐‘Ž2๐‘ 2 + ๐‘Ž3๐‘ 3

๐บ ๐‘  =๐พ(1 + ๐‘1๐‘ )

1 + ๐‘Ž1๐‘  + ๐‘Ž2๐‘ 2Ex.2

๐บ ๐‘  =๐พ(1 + ๐‘1๐‘ )

1 + ๐‘Ž1๐‘  + ๐‘Ž2๐‘ 2 + ๐‘Ž3๐‘ 3Ex.3

๐บ ๐‘  =๐พ(1 + ๐‘1๐‘  + ๐‘2๐‘ 2)

1 + ๐‘Ž1๐‘  + ๐‘Ž2๐‘ 2 + ๐‘Ž3๐‘ 3Ex.4

Zero Zero Point, Three Pole Points

One Zero Point, Two Pole Points

One Zero Point, Three Pole Points

Two Zero Points, Three Pole Points

Page 16: Design of Operational Amplifier Phase Margin Using Routh

16/39

Based on Routh-Hurwitz Criterion

G(๐‘ )+

โˆ’

๐ถ(๐‘ )๐‘…(๐‘ )

๐บ ๐‘  =๐พ(1 + ๐‘๐‘ )

1 + ๐‘Ž1๐‘  + ๐‘Ž2๐‘ 2 + ๐‘Ž3๐‘ 3

๐ป ๐‘  =๐บ(๐‘ )

1 + ๐บ(๐‘ )=

๐พ + ๐พ๐‘๐‘ 

1 + ๐พ + (๐‘Ž1+๐พ๐‘)๐‘  + ๐‘Ž2๐‘ 2 + ๐‘Ž3๐‘ 3

Open-loop transfer function:

Closed-loop transfer function:

Based on Routh-Hurwitz criterion:

๐‘†3

๐‘†2

๐‘†1

๐‘Ž3

๐‘†0

๐‘Ž2

๐‘Ž1 + ๐พ๐‘

1 + ๐พ

1 + ๐พ

๐‘Ž2(๐‘Ž1 + ๐พ๐‘) โˆ’ ๐‘Ž3(1 + ๐พ)

๐‘Ž2

๐‘Ž3 > 0 ๐‘Ž2 > 0

1 + ๐พ > 0

๐พ >๐‘Ž3 โˆ’ ๐‘Ž1๐‘Ž2

๐‘Ž2๐‘ โˆ’ ๐‘Ž3

Example 3

๐‘Ž2(๐‘Ž1 + ๐พ๐‘) โˆ’ ๐‘Ž3(1 + ๐พ)

๐‘Ž2> 0

Routh table

๐พ <๐‘Ž3 โˆ’ ๐‘Ž1๐‘Ž2

๐‘Ž2๐‘ โˆ’ ๐‘Ž3

At condition:๐‘Ž2๐‘ โˆ’ ๐‘Ž3 > 0

At condition:๐‘Ž2๐‘ โˆ’ ๐‘Ž3 < 02018/11/7

Page 17: Design of Operational Amplifier Phase Margin Using Routh

17/39

Based on Nyquist Criterion

๐บ ๐‘—๐œ” =๐พ(1 + ๐‘๐‘—๐œ”)

1 โˆ’ ๐‘Ž2๐œ”2 + ๐‘—(๐‘Ž1๐œ” โˆ’ ๐‘Ž3๐œ”3)=

๐พ[ 1 โˆ’ ๐‘Ž2๐œ”2 + ๐‘Ž1๐‘๐œ”2 โˆ’ ๐‘Ž3๐‘๐œ”4 + ๐‘— ๐‘๐œ” โˆ’ ๐‘Ž2๐‘๐œ”3 โˆ’ ๐‘Ž1๐œ” + ๐‘Ž3๐œ”3 ]

(1 โˆ’ ๐‘Ž2๐œ”2)2 + (๐‘Ž1๐œ” โˆ’ ๐‘Ž3๐œ”3)2

๐‘—

๐œ” = 0

๐œ” = โˆž

sketch chart of Nyquist plot

.(โˆ’1, ๐‘—0)

๐ด.

๐‘๐œ” โˆ’ ๐‘Ž2๐‘๐œ”3 โˆ’ ๐‘Ž1๐œ” + ๐‘Ž3๐œ”3 = 0

At point A๐œ”2 =๐‘Ž1 โˆ’ ๐‘

๐‘Ž3 โˆ’ ๐‘Ž2๐‘

Special frequency expressions

๐บ ๐‘—๐œ” =๐พ(1 โˆ’ ๐‘Ž2๐œ”2 + ๐‘Ž1๐‘๐œ”2 โˆ’ ๐‘Ž3๐‘๐œ”4)

(1 โˆ’ ๐‘Ž2๐œ”2)2 + (๐‘Ž1๐œ” โˆ’ ๐‘Ž3๐œ”3)2= ๐พ

๐‘Ž3 โˆ’ ๐‘Ž2๐‘

๐‘Ž3 โˆ’ ๐‘Ž1๐‘Ž2

Frequency domain:

โˆ ๐บ ๐‘—๐œ” = โˆ’๐œ‹

Stability condition:

๐บ ๐‘—๐œ” < 1

๐‘Ž3 โˆ’ ๐‘Ž1๐‘Ž2

๐‘Ž2๐‘ โˆ’ ๐‘Ž3< ๐พ <

๐‘Ž3 โˆ’ ๐‘Ž1๐‘Ž2

๐‘Ž3 โˆ’ ๐‘Ž2๐‘

At condition: (๐‘Ž3โˆ’๐‘Ž1๐‘Ž2)(๐‘Ž3 โˆ’ ๐‘Ž2๐‘) < 0

At condition: (๐‘Ž3โˆ’๐‘Ž1๐‘Ž2)(๐‘Ž3 โˆ’ ๐‘Ž2๐‘) > 0

๐‘Ž3 โˆ’ ๐‘Ž1๐‘Ž2

๐‘Ž3 โˆ’ ๐‘Ž2๐‘< ๐พ <

๐‘Ž3 โˆ’ ๐‘Ž1๐‘Ž2

๐‘Ž2๐‘ โˆ’ ๐‘Ž3

2018/11/7

Page 18: Design of Operational Amplifier Phase Margin Using Routh

18/39

Contents

2018/11/7

Research Objective & Background

Stability Criteria

- Nyquist Criterion

- Routh-Hurwitz Criterion

Equivalence at Mathematical Foundations

Relationship between R-H parameters and phase margin

Ex.1: Two-stage amplifier with C compensation

Ex.2: Two-stage amplifier with C, R compensation

Simulation Verification

Discussion & Conclusion

Page 19: Design of Operational Amplifier Phase Margin Using Routh

19/39

Amplifier 1

๐‘Ž1 = ๐‘…1๐ถ1 + ๐‘…2๐ถ2 +(๐‘…1 + ๐‘…2 + ๐‘…1๐บ๐‘š2๐‘…2)๐ถ๐‘Ÿ ๐‘Ž2 = ๐‘…1๐‘…2(๐ถ1๐ถ2 + ๐ถ1๐ถ๐‘Ÿ + ๐ถ2๐ถ๐‘Ÿ)

๐‘1 = โˆ’๐ถ๐‘Ÿ

๐บ๐‘š2

๐ด0 = ๐บ๐‘š1๐บ๐‘š2๐‘…1๐‘…2

Open-loop transfer function from small signal model

๐ด ๐‘  =๐‘ฃ๐‘œ๐‘ข๐‘ก(๐‘ )

๐‘ฃ๐‘–๐‘›(๐‘ )= ๐ด0

1 + ๐‘1๐‘ 

1 + ๐‘Ž1๐‘  + ๐‘Ž2๐‘ 2

Fig.1 Two-stage amplifier with inter-stage capacitance

๐‘ฃ๐‘๐ถ๐‘Ÿ1

๐‘ฃ๐‘› ๐‘€1 ๐‘€2

๐‘€3 ๐‘€4

๐‘‰๐‘๐‘–๐‘Ž๐‘ 3

๐‘‰๐‘๐‘–๐‘Ž๐‘ 4

M6T

M6B M8B

M8T

๐‘ฃ๐‘œ๐‘ข๐‘ก

๐ถ๐ฟ

๐‘‰๐ท๐ท ๐‘‰๐ท๐ท ๐‘‰๐ท๐ท

๐‘€7โ‘ 

โ‘กโˆ™

โˆ™

โˆ™

โˆ™๐ถ1 ๐ถ2๐‘…1

๐‘…2

๐บ๐‘š2๐‘‰1

๐บ๐‘š1๐‘ฃ๐‘–๐‘›

๐‘ฃ๐‘œ๐‘ข๐‘ก

๐ถ๐‘Ÿ1โ‘  โ‘ก

+

โˆ’

Transistor level circuit

Small-signal model

๐‘ฃ๐‘–๐‘› = ๐‘ฃ๐‘ โˆ’ ๐‘ฃ๐‘›

2018/11/7

Page 20: Design of Operational Amplifier Phase Margin Using Routh

20/39

Routh-Hurwitz method

๐‘‰๐‘œ๐‘ข๐‘ก(๐‘ )

๐‘‰๐‘–๐‘›(๐‘ )=

๐ด(๐‘ )

1 + ๐‘“๐ด(๐‘ )=

๐ด0(1 + ๐‘1๐‘ )

1 + ๐‘“๐ด0 + ๐‘Ž1 + ๐‘“๐ด0๐‘1 ๐‘  + ๐‘Ž2๐‘ 2

๐œƒ = ๐‘Ž1 + ๐‘“๐ด0๐‘1

= ๐‘…1๐ถ1 + ๐‘…2๐ถ2+ ๐‘…1 + ๐‘…2 ๐ถ๐‘Ÿ + ๐บ๐‘š2 โˆ’ ๐‘“๐บ๐‘š1 ๐‘…1๐‘…2๐ถ๐‘Ÿ > 0

Closed-loop transfer function:

Explicit stability condition of parameters:

๐‘…1 = ๐‘Ÿ๐‘œ๐‘›||๐‘Ÿ๐‘œ๐‘ = 111๐‘˜ฮฉ

๐‘…2 = ๐‘Ÿ๐‘œ๐‘||๐‘…๐‘œ๐‘๐‘Ž๐‘ ๐‘› โ‰ˆ ๐‘Ÿ๐‘œ๐‘ = 333๐‘˜ฮฉ

๐บ๐‘š1 = ๐‘”๐‘š๐‘› = 100 ฮค๐‘ข๐ด ๐‘‰

๐บ๐‘š2 = ๐‘”๐‘š๐‘ = 180 ฮค๐‘ข๐ด ๐‘‰

๐ถ1 = ๐ถ๐‘‘๐‘”4 + ๐ถ๐‘‘๐‘”2 + ๐ถ๐‘”๐‘ 7 = 13.6๐‘“๐น

๐ถ2 = ๐ถ๐ฟ + ๐ถ๐‘”๐‘‘8 โ‰ˆ ๐ถ๐ฟ + 1.56๐‘“๐น

= 101.56๐‘“๐น (๐ถ๐ฟ = 100๐‘“๐น)

Short-channel CMOS parameters:

๐ด(๐‘ )+

โˆ’

๐‘‰๐‘œ๐‘ข๐‘ก(๐‘ )๐‘‰๐‘–๐‘›(๐‘ )

๐‘“

Relationship: ๐œƒ and phase margin

MATLAB

Data fitting

๐œƒ: time dimension parameter

Closed-loop configuration

2018/11/7

Page 21: Design of Operational Amplifier Phase Margin Using Routh

21/39

Data Processing by MATLAB

2018/11/7

โ€ข Data collection: [GM, PM, ๐น๐‘”๐‘š, ๐น๐‘๐‘š]=margin(G)

โ€ข Data fitting๏ผš p=polyfit(x,y,n) Curve Fitting Tool

๐‘“=0.01

๐ถ๐‘Ÿ1 [fF] 10 20 30 40 50 60 70 80 90 โ€ฆ

ฮธ [uS] 0.11 0.18 0.25 0.32 0.39 0.46 0.53 0.60 0.67 โ€ฆ

PM [degree] 16 19 22 24 27 29 31 33 34 โ€ฆ

GM [dB] 9.1 7.6 7.0 6.6 6.4 6.3 6.2 6.0 6.0 โ€ฆ

๐นg๐‘š [GHz] 4.5 3.4 2.9 2.6 2.3 2.1 2.0 1.9 1.8 โ€ฆ

๐น๐‘๐‘š [GHz] 2.6 2.1 1.8 1.5 1.4 1.2 1.1 1.0 9.4 โ€ฆ

Page 22: Design of Operational Amplifier Phase Margin Using Routh

22/39

Data Fitting Result

Fig.2 Relationship between PM and parameter ฮธ at various feedback factor conditions.

โ€ข One-to-one relationship

โ€ข increase of parameterโ€™s value

phase margin will be increased

feedback system will be more stable

Fitted Curve

2018/11/7

Page 23: Design of Operational Amplifier Phase Margin Using Routh

23/39

๐‘“ =0.01 Conditionใ€‚ ใ€‚๐‘‰in

๐‘‰๐‘œ๐‘ข๐‘ก+-

๐‘…1

๐‘…2

โˆ™

โˆ™๐ด(๐‘ )

๐‘“ =๐‘…2

๐‘…1 + ๐‘…2

PM= ๐‘“1 ๐œƒ= 2.601๐‘’28๐œƒ5 โˆ’ 5.616๐‘’23๐œƒ4 + 4.683๐‘’18๐œƒ3

โˆ’ 1.915๐‘’13๐œƒ2 + 4.076๐‘’28๐œƒ + 13.38

ฮธ: independent variable

๐‘ƒ๐‘€: dependent variable

Fig.3 Relationship between PM with parameter ฮธ at feedback factor ๐‘“ = 0.01 condition.

Curve Fitting Tool

Relation function:

2018/11/7

Page 24: Design of Operational Amplifier Phase Margin Using Routh

24/39

Amplifier 2

Fig.4 Two-pole amplifier with compensation network using a nulling resistor

๐‘ฃ๐‘๐ถ๐‘Ÿ2

๐‘ฃ๐‘› ๐‘€1 ๐‘€2

๐‘€3 ๐‘€4

๐‘‰๐‘๐‘–๐‘Ž๐‘ 3

๐‘‰๐‘๐‘–๐‘Ž๐‘ 4

M6T

M6B M8B

M8T

๐‘ฃ๐‘œ๐‘ข๐‘ก

๐ถ๐ฟ

๐‘‰๐ท๐ท ๐‘‰๐ท๐ท ๐‘‰๐ท๐ท

๐‘€7โ‘ 

โ‘กโˆ™โˆ™

โˆ™

๐ถ1 ๐ถ2๐‘…1

๐‘…2

๐บ๐‘š2๐‘‰1

๐บ๐‘š1๐‘ฃ๐‘–๐‘›

๐‘ฃ๐‘œ๐‘ข๐‘ก

๐ถ๐‘Ÿ2โ‘  โ‘ก

+

โˆ’

๐‘…๐‘Ÿ

๐‘…๐‘Ÿ

(a) Transistor level circuit

(b) Small-signal model

โˆ™

Open-loop transfer function:

๐ด ๐‘  =๐‘ฃ๐‘œ๐‘ข๐‘ก(๐‘ )

๐‘ฃ๐‘–๐‘›(๐‘ )= ๐ด0

1 + ๐‘‘1๐‘ 

1 + ๐‘Ž1๐‘  + ๐‘Ž2๐‘ 2 + ๐‘Ž3๐‘ 3

๐‘‘1 = โˆ’๐ถ๐‘Ÿ

๐บ๐‘š2โˆ’ ๐‘…๐‘Ÿ๐ถ๐‘Ÿ

๐ด0= ๐บ๐‘š1๐บ๐‘š2๐‘…1๐‘…2 ๐‘Ž1 = ๐‘…1๐ถ1 + ๐‘…2๐ถ2 + (๐‘…1 + ๐‘…2 + ๐‘…๐‘Ÿ + ๐‘…1 ๐‘…2๐บ๐‘š2)๐ถ๐‘Ÿ

๐‘Ž2 = ๐‘…1๐‘…2(๐ถ2๐ถ๐‘Ÿ + ๐ถ1๐ถ2 + ๐ถ1๐ถ๐‘Ÿ) +๐‘…๐‘Ÿ๐ถ๐‘Ÿ(๐‘…1๐ถ1 + ๐‘…2๐ถ2) ๐‘ฃ๐‘–๐‘› = ๐‘ฃ๐‘ โˆ’ ๐‘ฃ๐‘›2018/11/7

Page 25: Design of Operational Amplifier Phase Margin Using Routh

25/39

Routh-Hurwitz Method

Closed-loop transfer function:

๐‘‰๐‘œ๐‘ข๐‘ก(๐‘ )

๐‘‰๐‘–๐‘›(๐‘ )=

๐ด(๐‘ )

1 + ๐‘“๐ด(๐‘ )=

๐ด0(1 + ๐‘‘1๐‘ )

1 + ๐‘“๐ด0 + ๐‘Ž1 + ๐‘“๐ด0๐‘‘1 ๐‘  + ๐‘Ž2๐‘ 2 + ๐‘Ž3๐‘ 3

๐›ผ = ๐‘Ž1 + ๐‘“๐ด0๐‘‘1

= ๐‘…1๐ถ1 + ๐‘…2๐ถ2+ ๐‘…1 + ๐‘…2 + ๐‘…๐‘Ÿ ๐ถ๐‘Ÿ + ๐บ๐‘š2 โˆ’ ๐‘“๐บ๐‘š1 + ๐‘“๐บ๐‘š1๐บ๐‘š2๐‘…๐‘Ÿ ๐‘…1๐‘…2๐ถ๐‘Ÿ > 0

ใ€‚ ใ€‚๐‘‰in๐‘‰๐‘œ๐‘ข๐‘ก+

-๐‘…1

๐‘…2

โˆ™

โˆ™๐ด(๐‘ )

๐‘“ =๐‘…2

๐‘…1 + ๐‘…2

๐›ฝ =๐‘Ž1 + ๐‘“๐ด0๐‘‘1 ๐‘Ž2 โˆ’ ๐‘Ž3(1 + ๐‘“๐ด0)

๐‘Ž2> 0

(๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘…๐‘œ๐‘ข๐‘กโ„Ž ๐‘ ๐‘ก๐‘Ž๐‘๐‘™๐‘’)

Relationship:๐›ผ๏ผŒ๐›ฝand phase margin

Interpolation by MATLAB

๐›ผ, ๐›ฝ: time dimension parameters

Explicit stability condition of parameters:

2018/11/7

Page 26: Design of Operational Amplifier Phase Margin Using Routh

26/39

Data Collection

2018/11/7

๐ถ๐‘Ÿ1

๐‘…๐‘Ÿ11

๐‘…๐‘Ÿ12

๐‘…๐‘Ÿ13

โ€ฆ

๐‘…๐‘Ÿ19

(๐›ผ11, ๐›ฝ11)

(๐›ผ12, ๐›ฝ12)

(๐›ผ13, ๐›ฝ13)

(๐›ผ19, ๐›ฝ19)

โ€ฆ

๐‘…๐‘Ÿ21

๐‘…๐‘Ÿ22

๐‘…๐‘Ÿ23

โ€ฆ

๐‘…๐‘Ÿ29

(๐›ผ21, ๐›ฝ21)

(๐›ผ22, ๐›ฝ22)

(๐›ผ23, ๐›ฝ23)

(๐›ผ29, ๐›ฝ29)

โ€ฆ

๐ถ๐‘Ÿ2

๐‘…๐‘Ÿ31

๐‘…๐‘Ÿ32

๐‘…๐‘Ÿ33

โ€ฆ

๐‘…๐‘Ÿ39

(๐›ผ31, ๐›ฝ31)

(๐›ผ32, ๐›ฝ32)

(๐›ผ33, ๐›ฝ33)

(๐›ผ39, ๐›ฝ39)

โ€ฆ

๐ถ๐‘Ÿ3 โ€ฆ

๐‘…๐‘Ÿ91

๐‘…๐‘Ÿ92

๐‘…๐‘Ÿ93

โ€ฆ

๐‘…๐‘Ÿ99

(๐›ผ91, ๐›ฝ91)

(๐›ผ92, ๐›ฝ92)

(๐›ผ93, ๐›ฝ93)

(๐›ผ99, ๐›ฝ99)

โ€ฆ

๐ถ๐‘Ÿ9

Produce 9 โˆ— 9 = 81 groups data

Page 27: Design of Operational Amplifier Phase Margin Using Routh

27/39

Interpolation by MATLAB

2018/11/7

Fig.5 Relationship between PM with parameter ๐›ผ1, ๐›ฝ1

at feedback factor ๐‘“ = 0.01 condition.

โ€ข Linear relationship

โ€ข increase of parameterโ€™s value

phase margin will be increased

feedback system will be more stable

Page 28: Design of Operational Amplifier Phase Margin Using Routh

28/39

Contents

2018/11/7

Research Objective & Background

Stability Criteria

- Nyquist Criterion

- Routh-Hurwitz Criterion

Equivalence at Mathematical Foundations

Relationship between R-H parameters and phase margin

Simulation Verification

Discussion & Conclusion

Page 29: Design of Operational Amplifier Phase Margin Using Routh

29/39

Verification Circuit

๐‘ฃ๐‘–๐‘›๐‘๐ถ๐‘Ÿ1

๐‘ฃ๐‘–๐‘›๐‘› ๐‘€1 ๐‘€2

๐‘€3 ๐‘€4

๐‘ฃ๐‘œ๐‘ข๐‘ก

๐ถ๐ฟ

๐‘‰๐‘†๐‘†

๐‘€8โ‘ 

โ‘กโˆ™

โˆ™

โˆ™

โˆ™๐ถ1 ๐ถ2๐‘…1

๐‘…2

๐บ๐‘š2๐‘‰1

๐บ๐‘š1๐‘ฃ๐‘–๐‘›

๐‘ฃ๐‘œ๐‘ข๐‘ก

๐ถ๐‘Ÿ1โ‘  โ‘ก

+

โˆ’

๐‘‰๐ท๐ท

ใ€‚ ใ€‚๐‘‰in๐‘‰๐‘œ๐‘ข๐‘ก+

-9.9๐‘˜

0.1๐‘˜โˆ™

โˆ™๐ด(๐‘ )

๐‘“ =0.1

0.1 + 9.9= 0.01

๐‘€7๐‘€6๐‘€5

(a) Transistor level circuit

(b) Small-signal model

Fig.6 Two-pole amplifier with inter-stage capacitance

๐‘‰๐‘œ๐‘ข๐‘ก(๐‘ )

๐‘‰๐‘–๐‘›(๐‘ )=

๐ด(๐‘ )

1 + ๐‘“๐ด(๐‘ )=

๐ด0(1 + ๐‘1๐‘ )

1 + ๐‘“๐ด0 + ๐‘Ž1 + ๐‘“๐ด0๐‘1 ๐‘  + ๐‘Ž2๐‘ 2

๐œƒ = ๐‘Ž1 + ๐‘“๐ด0๐‘1

= ๐‘…1๐ถ1 + ๐‘…2๐ถ2+ ๐‘…1 + ๐‘…2 ๐ถ๐‘Ÿ1 + ๐บ๐‘š2 โˆ’ ๐‘“๐บ๐‘š1 ๐‘…1๐‘…2๐ถ๐‘Ÿ1 > 0

Closed-loop transfer function:

Explicit stability condition of parameters:

2018/11/7

Page 30: Design of Operational Amplifier Phase Margin Using Routh

30/39

Data Fitting by MATLAB

Fig.7 Relationship between PM with compensation capacitor ๐ถ๐‘Ÿ1

at variation feedback factor ๐‘“ conditions.

2018/11/7

Page 31: Design of Operational Amplifier Phase Margin Using Routh

31/39

PM versus ๐ถ๐‘Ÿ1

๐‘“ = 0.01 condition ใ€‚ ใ€‚๐‘‰in๐‘‰๐‘œ๐‘ข๐‘ก+

-๐‘…1

๐‘…2

โˆ™

โˆ™๐ด(๐‘ )

๐‘“ =๐‘…2

๐‘…1 + ๐‘…2= 0.01

PM= ๐‘“1 ๐ถ๐‘Ÿ1

= โˆ’1.026๐‘’36๐ถ๐‘Ÿ13 + 1.52๐‘’24๐ถ๐‘Ÿ1

2 + 4.488๐‘’12๐ถ๐‘Ÿ1 + 7.247

Relation function:

๐ถ๐‘Ÿ1: independent variable

๐‘ƒ๐‘€: dependent variable

2018/11/7

Page 32: Design of Operational Amplifier Phase Margin Using Routh

32/39

๐ถ๐‘Ÿ1versus PM

2018/11/7

๐‘“ = 0.01 condition ใ€‚ ใ€‚๐‘‰in๐‘‰๐‘œ๐‘ข๐‘ก+

-๐‘…1

๐‘…2

โˆ™

โˆ™๐ด(๐‘ )

๐‘“ =๐‘…2

๐‘…1 + ๐‘…2= 0.01

๐ถ๐‘Ÿ1 = ๐‘“1 ๐‘ƒ๐‘€= 6.343๐‘’โˆ’15๐‘ƒ๐‘€3 โˆ’ 2.091๐‘’โˆ’13๐‘ƒ๐‘€2 + 2.493๐‘’โˆ’12๐‘ƒ๐‘€ โˆ’ 9.822๐‘’โˆ’12

Relation function:

๐ถ๐‘Ÿ1: dependent variable

๐‘ƒ๐‘€: independent variable

Page 33: Design of Operational Amplifier Phase Margin Using Routh

33/39

Practicability

For stable feedback system,

necessary PM value: 45 degree or 60 degree

PM=๏ผ”๏ผ•degree, ๐ถ๐‘Ÿ1 = 2.5694๐‘’โˆ’10๐น = 0.25694nF

PM=60degree, ๐ถ๐‘Ÿ1 = 7.5709๐‘’โˆ’10๐น = 0.75709nF

For stability and needed PM value,

compensation capacitance can be calculated.

๐ถ๐‘Ÿ1 = ๐‘“1 ๐‘ƒ๐‘€= 6.343๐‘’โˆ’15๐‘ƒ๐‘€3 โˆ’ 2.091๐‘’โˆ’13๐‘ƒ๐‘€2 + 2.493๐‘’โˆ’12๐‘ƒ๐‘€ โˆ’ 9.822๐‘’โˆ’12

2018/11/7

Page 34: Design of Operational Amplifier Phase Margin Using Routh

34/39

Simulation by LTspice

feedback factor:

๐‘“ =0.1๐‘˜

9.9๐‘˜= 0.01compensation capacitor:

๐ถ๐‘Ÿ1 = 0.25694๐‘›๐น

2018/11/7

Page 35: Design of Operational Amplifier Phase Margin Using Routh

35/39

Simulation Result

2018/11/7๐‘ƒโ„Ž๐‘Ž๐‘ ๐‘’ ๐‘€๐‘Ž๐‘Ÿ๐‘”๐‘–๐‘› = 180ยฐ โˆ’ 133ยฐ = 47ยฐ

133ยฐ

Phase[d

egre

e]

Gain

Frequency

Page 36: Design of Operational Amplifier Phase Margin Using Routh

36/39

Contents

2018/11/7

Research Objective & Background

Stability Criteria

- Nyquist Criterion

- Routh-Hurwitz Criterion

Equivalence at Mathematical Foundations

Relationship between R-H parameters and phase margin

Simulation Verification

Discussion & Conclusion

Page 37: Design of Operational Amplifier Phase Margin Using Routh

37/39

Discussion

Depict small signal equivalent circuit of amplifier

Derive open-loop transfer function

Derive closed-loop transfer function

& obtain characteristics equation

Apply R-H stability criterion

& obtain explicit stability condition

Especially effective for

Multi-stage opamp (high-order system)

Limitation

Explicit transfer function with polynomials of ๐’” has to be derived.2018/11/7

Page 38: Design of Operational Amplifier Phase Margin Using Routh

38/39

Conclusion

โ€ข R-H method, explicit circuit parameter conditions can

be obtained for feedback stability.

โ€ข Equivalency of their mathematical foundations

was shown

โ€ข Relationship between R-H criterion parameter with PM:

- linear relationship

- the system will be more stable, following with the

increase of parameterโ€™s value.

โ€ข The proposed method has been confirmed with LTspice

simulation

R-H method can be used

with conventional Bode plot method.2018/11/7

Page 39: Design of Operational Amplifier Phase Margin Using Routh

39/39

2018/11/7

Thank you

for your kind attention.

Dr. Yuji Gendai is acknowledged

for his suggestions and helpful comments


Recommended