Transcript
Page 1: cos2 cos sin A A A 22 2cos 1 A 1 2sin A - Nicolson Institute Unit Practice.pdf22 2 2 sin sin cos cos sin cos cos cos sin sin sin2 2sin cos cos2 cos sin 2cos 1 1 2sin A B A B A B A

FORMULAE LIST

Circle:

The equation 2 2 2 2 0x y gx fy c

represents a circle centre ,g f and radius 2 2g f c .

The equation 2 2 2x a y b r

represents a circle centre ,a b and radius r .

Scalar Product: . cosa b a b , where is the angle between a and b

or 1 1 2 2 3 3.a b a b a b a b where 1

2

3

a

a a

a

and 1

2

3

b

b b

b

Trigonometric formulae:

2 2

2

2

sin sin cos cos sin

cos cos cos sin sin

sin 2 2sin cos

cos2 cos sin

2cos 1

1 2sin

A B A B A B

A B A B A B

A A A

A A A

A

A

m

Table of standard derivatives:

Table of standard integrals:

f x 'f x

sin

cos

ax

ax

cos

sin

a ax

a ax

f x f x dx

sin

cos

ax

ax

1cos

1sin

ax Ca

ax ca

Page 2: cos2 cos sin A A A 22 2cos 1 A 1 2sin A - Nicolson Institute Unit Practice.pdf22 2 2 sin sin cos cos sin cos cos cos sin sin sin2 2sin cos cos2 cos sin 2cos 1 1 2sin A B A B A B A

Calculus Unit Practice

1. a) Find f x , given that 𝑓(π‘₯) = 5√π‘₯ βˆ’2

π‘₯3 , π‘₯ > 0.

b) Find f x , given that 𝑓(π‘₯) = 2√π‘₯ + 3π‘₯βˆ’4, π‘₯ > 0.

c) Find f x , given that 𝑓(π‘₯) = 2π‘₯1

2 βˆ’3

π‘₯5, π‘₯ > 0.

d) Find f x , given that 𝑓(π‘₯) = 6√π‘₯ βˆ’5

π‘₯6 , π‘₯ > 0.

2 a) Differentiate the function 𝑓(π‘₯) = 4π‘π‘œπ‘ π‘₯ with respect to x.

b) Differentiate the function 𝑓(π‘₯) = 7𝑠𝑖𝑛π‘₯ with respect to x.

c) Differentiate the function 𝑓(π‘₯) = βˆ’2π‘π‘œπ‘ π‘₯ with respect to x.

d) Differentiate the function f (x) = 3cosx with respect to x.

3.a) A curve has equation 𝑦 = 3π‘₯2 + 2π‘₯ + 2, find the equation of

the tangent to the curve at π‘₯ = βˆ’1.

b) A curve has equation 𝑦 = 5π‘₯2 βˆ’ 3π‘₯ + 2, find the equation of

the tangent to the curve at π‘₯ = 2.

c) A curve has equation 𝑦 = 4π‘₯2 + 2π‘₯ βˆ’ 1, find the equation of

the tangent to the curve at π‘₯ = βˆ’2.

d) A curve has equation 𝑦 = 3π‘₯2 βˆ’ 2π‘₯ + 5, find the equation of

the tangent to the curve at π‘₯ = 1.

Page 3: cos2 cos sin A A A 22 2cos 1 A 1 2sin A - Nicolson Institute Unit Practice.pdf22 2 2 sin sin cos cos sin cos cos cos sin sin sin2 2sin cos cos2 cos sin 2cos 1 1 2sin A B A B A B A

4a) A yachtsman in distress fires a flare vertically upwards to signal for help. The height (in metres) of the flare t seconds after it is fired can be represented by the formula

β„Ž = 40𝑑 βˆ’ 2𝑑2.

The velocity of the flare at time t is given bydh

vdt

.

Find the velocity of the flare 10 seconds after it is set off.

b) A yachtsman in distress fires a flare vertically upwards to signal for help. The height (in metres) of the flare t seconds after it is fired can be represented by the formula

β„Ž = 30𝑑 βˆ’ 𝑑2.

The velocity of the flare at time t is given bydh

vdt

.

Find the velocity of the flare 15 seconds after it is set off.

c) A yachtsman in distress fires a flare vertically upwards to signal for help. The height (in metres) of the flare t seconds after it is fired can be represented by the formula

β„Ž = 60𝑑 βˆ’ 6𝑑2.

The velocity of the flare at time t is given bydh

vdt

.

Find the velocity of the flare 5 seconds after it is set off.

d) A yachtsman in distress fires a flare vertically upwards to signal for help. The height (in metres) of the flare t seconds after it is fired can be represented by the formula

β„Ž = 16𝑑 βˆ’ 4𝑑2.

The velocity of the flare at time t is given bydh

vdt

.

Find the velocity of the flare 2 seconds after it is set off.

5.a) Find ∫ 5π‘₯3

2 +1

π‘₯3 𝑑π‘₯, π‘₯ β‰  0.

b) Find ∫ 2π‘₯1

2 βˆ’1

π‘₯5 𝑑π‘₯, π‘₯ β‰  0.

c) Find ∫ 4π‘₯2

3 +1

π‘₯2 𝑑π‘₯, π‘₯ β‰  0.

d) Find ∫ 5π‘₯1

4 βˆ’1

π‘₯7 𝑑π‘₯, π‘₯ β‰  0.

Page 4: cos2 cos sin A A A 22 2cos 1 A 1 2sin A - Nicolson Institute Unit Practice.pdf22 2 2 sin sin cos cos sin cos cos cos sin sin sin2 2sin cos cos2 cos sin 2cos 1 1 2sin A B A B A B A

6. a) 𝑓 β€²(π‘₯) = (π‘₯ + 3)βˆ’7, find f(π‘₯), π‘₯ β‰ -3.

b) 𝑓 β€²(π‘₯) = (π‘₯ βˆ’ 1)βˆ’6, find f(π‘₯), π‘₯ β‰ 1.

c) 𝑓 β€²(π‘₯) = (π‘₯ + 4)βˆ’3, find f(π‘₯), π‘₯ β‰ -4.

d) 𝑓 β€²(π‘₯) = (π‘₯ βˆ’ 9)βˆ’2, find f(π‘₯), π‘₯ β‰ 9.

7. a) Find ∫ 3 cos πœƒ π‘‘πœƒ

b) Find ∫ 2 sin πœƒ π‘‘πœƒ

c) Find ∫ βˆ’6 cos πœƒ π‘‘πœƒ

d) Find ∫ 4 cos πœƒ π‘‘πœƒ

8.a) ∫ (π‘₯ + 1)33

1

b) ∫ (π‘₯ βˆ’ 5)42

1

c) ∫ (π‘₯ + 2)63

2

d) ∫ (π‘₯ βˆ’ 7)24

1

Page 5: cos2 cos sin A A A 22 2cos 1 A 1 2sin A - Nicolson Institute Unit Practice.pdf22 2 2 sin sin cos cos sin cos cos cos sin sin sin2 2sin cos cos2 cos sin 2cos 1 1 2sin A B A B A B A

9. (a) A box with a square base and open top has a surface area of

192cm2. . The volume of the box can be represented by the

formula:

𝑉(π‘₯) = 48π‘₯ βˆ’1

4π‘₯3 π‘€β„Žπ‘’π‘Ÿπ‘’ π‘₯ > 0

Find the value of π‘₯ which maximises the volume of the box.

(b) A box with a square base and open top has a surface area of

972cm2. . The volume of the box can be represented by the

formula:

𝑉(π‘₯) = 243π‘₯ βˆ’1

4π‘₯3 π‘€β„Žπ‘’π‘Ÿπ‘’ π‘₯ > 0

Find the value of π‘₯ which maximises the volume of the box.

(c) A box with a square base and open top has a surface area of

432cm2. . The volume of the box can be represented by the

formula:

𝑉(π‘₯) = 108π‘₯ βˆ’1

4π‘₯3 π‘€β„Žπ‘’π‘Ÿπ‘’ π‘₯ > 0

Find the value of π‘₯ which maximises the volume of the box.

(d) A box with a square base and open top has a surface area of

484cm2. . The volume of the box can be represented by the

formula:

𝑉(π‘₯) = 121π‘₯ βˆ’1

4π‘₯3 π‘€β„Žπ‘’π‘Ÿπ‘’ π‘₯ > 0

Find the value of π‘₯ which maximises the volume of the box.

Page 6: cos2 cos sin A A A 22 2cos 1 A 1 2sin A - Nicolson Institute Unit Practice.pdf22 2 2 sin sin cos cos sin cos cos cos sin sin sin2 2sin cos cos2 cos sin 2cos 1 1 2sin A B A B A B A

10. (a) The curve with equation 𝑦 = π‘₯2(3 βˆ’ π‘₯) is shown below.

Calculate the shaded area.

(b) The curve with equation 𝑦 = π‘₯2(5 βˆ’ π‘₯) is shown below.

Calculate the shaded area.

𝑦 = π‘₯2(3 βˆ’ π‘₯)

3

𝑦 = π‘₯2(5 βˆ’ π‘₯)

5

Page 7: cos2 cos sin A A A 22 2cos 1 A 1 2sin A - Nicolson Institute Unit Practice.pdf22 2 2 sin sin cos cos sin cos cos cos sin sin sin2 2sin cos cos2 cos sin 2cos 1 1 2sin A B A B A B A

(c) The curve with equation 𝑦 = π‘₯2(6 βˆ’ π‘₯) is shown below.

Calculate the shaded area.

(d) The curve with equation 𝑦 = π‘₯2(10 βˆ’ π‘₯) is shown below

Calculate the shaded area.

𝑦 = π‘₯2(6 βˆ’ π‘₯)

6

𝑦 = π‘₯2(10 βˆ’ π‘₯)

10

Page 8: cos2 cos sin A A A 22 2cos 1 A 1 2sin A - Nicolson Institute Unit Practice.pdf22 2 2 sin sin cos cos sin cos cos cos sin sin sin2 2sin cos cos2 cos sin 2cos 1 1 2sin A B A B A B A

y

𝑦 = π‘₯2 βˆ’ 2π‘₯ + 2

11. (a) The line with equation 𝑦 = π‘₯ and the curve with equation

𝑦 = π‘₯2 βˆ’ 2π‘₯ + 2 are shown below

The line and the curve meet at the points where π‘₯ = 1 π‘Žπ‘›π‘‘ π‘₯ = 2.

Calculate the shaded area.

x

𝑦 = π‘₯

1

2

Page 9: cos2 cos sin A A A 22 2cos 1 A 1 2sin A - Nicolson Institute Unit Practice.pdf22 2 2 sin sin cos cos sin cos cos cos sin sin sin2 2sin cos cos2 cos sin 2cos 1 1 2sin A B A B A B A

(-2,0)

0 1

(b) The line with equation 𝑦 = π‘₯ + 2 and the curve with the equation 𝑦 = 4 βˆ’ π‘₯2 are shown

below.

The line and the curve meet at the points where π‘₯ = βˆ’2 and π‘₯ = 1.

Calculate the shaded area.

𝑦

π‘₯

𝑦 = π‘₯ + 2 𝑦 = 4 βˆ’ π‘₯2

Page 10: cos2 cos sin A A A 22 2cos 1 A 1 2sin A - Nicolson Institute Unit Practice.pdf22 2 2 sin sin cos cos sin cos cos cos sin sin sin2 2sin cos cos2 cos sin 2cos 1 1 2sin A B A B A B A

𝑦 = 6 βˆ’ π‘₯ βˆ’ π‘₯2

π‘₯ (-3,0)

0 1

(c) The line with equation 𝑦 = π‘₯ + 3 and the curve with equation 𝑦 = 6 βˆ’ π‘₯ βˆ’ π‘₯2 are shown

below.

The line and the curve meet at the points where π‘₯ = βˆ’3 and π‘₯ = 1.

Calculate the shaded area.

𝑦 = π‘₯ + 3

𝑦

Page 11: cos2 cos sin A A A 22 2cos 1 A 1 2sin A - Nicolson Institute Unit Practice.pdf22 2 2 sin sin cos cos sin cos cos cos sin sin sin2 2sin cos cos2 cos sin 2cos 1 1 2sin A B A B A B A

𝑦 = 3 βˆ’ π‘₯

𝑦 = π‘₯2 + π‘₯ + 3

𝑦

0 -2

(d) The line with equation 𝑦 = 3 βˆ’ π‘₯and the curve with equation 𝑦 = π‘₯2 + π‘₯ + 3 are shown

below.

The line and the curve meet at the points where π‘₯ = βˆ’2 and π‘₯ = 0.

Calculate the shaded area.

π‘₯

Page 12: cos2 cos sin A A A 22 2cos 1 A 1 2sin A - Nicolson Institute Unit Practice.pdf22 2 2 sin sin cos cos sin cos cos cos sin sin sin2 2sin cos cos2 cos sin 2cos 1 1 2sin A B A B A B A

Answers

1. a) 𝑓 β€²(π‘₯) =5

2π‘₯βˆ’

1

2 + 6π‘₯βˆ’4 b) 𝑓 β€²(π‘₯) = π‘₯βˆ’1

2βˆ’12π‘₯βˆ’5

c) 𝑓 β€²(π‘₯) = π‘₯βˆ’1

2 + 15π‘₯βˆ’6 d) 𝑓 β€²(π‘₯) = 3π‘₯βˆ’1

2+30π‘₯βˆ’7

2. a) 𝑓 β€²(π‘₯) = βˆ’4𝑠𝑖𝑛π‘₯ b) 𝑓 β€²(π‘₯) = 7π‘π‘œπ‘ π‘₯

c) 𝑓 β€²(π‘₯) = 2𝑠𝑖𝑛π‘₯ d) 𝑓 β€²(π‘₯) = βˆ’3𝑠𝑖𝑛π‘₯

3.a) 𝑦 βˆ’ 3 = βˆ’4(π‘₯ + 1) b) 𝑦 βˆ’ 16 = 17(π‘₯ βˆ’ 2)

c) 𝑦 βˆ’ 11 = βˆ’14(π‘₯ + 2) d) 𝑦 βˆ’ 6 = 4(π‘₯ βˆ’ 1)

4. a) i) 𝑣 = 0 ii) The flare has stopped rising

b) i) 𝑣 = 0 ii) The flare has stopped rising

c) i) 𝑣 = 0 ii) The flare has stopped rising

d) i) 𝑣 = 0 ii) The flare has stopped rising

5. a) 2π‘₯πŸ“

𝟐 βˆ’1

2π‘₯βˆ’2 + 𝑐 b)

4

3π‘₯

πŸ‘

𝟐 +1

4π‘₯βˆ’4 + 𝑐

c) 12

5π‘₯

πŸ“

πŸ‘ βˆ’ π‘₯βˆ’1 + 𝑐 d) 4π‘₯5

4 +1

6π‘₯βˆ’6 + 𝑐

6. a) 𝑓 β€²(π‘₯) = βˆ’1

6(π‘₯ + 3)βˆ’6 + 𝑐 b) 𝑓 β€²(π‘₯) = βˆ’

1

5(π‘₯ βˆ’ 1)βˆ’5 + 𝑐

c) 𝑓 β€²(π‘₯) = βˆ’1

2(π‘₯ + 4)βˆ’2 + 𝑐 d) 𝑓 β€²(π‘₯) = βˆ’(π‘₯ βˆ’ 9)βˆ’1 + 𝑐

7. a) 3π‘ π‘–π‘›πœ½ + 𝒄 b) βˆ’2π‘π‘œπ‘ πœ½ + 𝒄 c) βˆ’6π‘ π‘–π‘›πœ½ + 𝒄 d) 4π‘ π‘–π‘›πœ½ + 𝒄

8. a) 60 b) 781

5 c)

61741

7 d) 63

9 (a) Max at π‘₯ = 8

(b) Max at π‘₯ = 18

(c) Max at π‘₯ = 12

(d) Max at π‘₯ = 12 βˆ™ 7

Page 13: cos2 cos sin A A A 22 2cos 1 A 1 2sin A - Nicolson Institute Unit Practice.pdf22 2 2 sin sin cos cos sin cos cos cos sin sin sin2 2sin cos cos2 cos sin 2cos 1 1 2sin A B A B A B A

10 (a) 63

4 (b) 52

1

12 (c) 108 (d) 833

1

3

11 (a) 1

6 (b) 4

1

2 (c) 10

2

3 (d)

4

3


Recommended