Transcript
Page 1: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

Chapter 2

Functions and Graphs

Section 6

Logarithmic Functions

(Part I)

Page 2: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

2Barnett/Ziegler/Byleen Business Calculus 12e

Learning Objectives for Section 2.6 Logarithmic Functions

The student will be able to:β€’ Identify the graphs of one-to-one functions.β€’ Use and apply inverse functions.β€’ Evaluate logarithms.β€’ Rewrite log as exponential functions and vice versa.

Page 3: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

3Barnett/Ziegler/Byleen Business Calculus 12e

One to One Functions

Definition: A function f is said to be one-to-one if no x or y values are represented more than once.β€’ One-to-one:

β€’ Not one-to-one:

The graph of a one-to-one function passes both the vertical and horizontal line tests.

Page 4: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

4Barnett/Ziegler/Byleen Business Calculus 12e

Which Functions Are One to One?

-30

-20

-10

0

10

20

30

40

-4 -2 0 2 40

2

4

6

8

10

12

-4 -2 0 2 4

One-to-one

NOT One-to-one

Page 5: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

5Barnett/Ziegler/Byleen Business Calculus 12e

Definition of Inverse Function

If f is a one-to-one function, then the inverse of f is the function formed by interchanging the x and y coordinates for f. Thus, if (a, b) is a point on the graph of f, then (b, a) is a point on the graph of the inverse of f.β€’ Let β€’ Then

The domain of f becomes the range of . The range of f becomes the domain of . Note: If a function is not one-to-one then f does not have

an inverse.

Page 6: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

6

Finding the Inverse Function

Given the equation of a one-to-one function f, you can find algebraically by exchanging x for y and solving for y.

Example: Find

Barnett/Ziegler/Byleen Business Calculus 12e

𝑦=βˆ’ 2 x βˆ’3 π‘₯=βˆ’2 y βˆ’3π‘₯+3=βˆ’2 yπ‘₯+3βˆ’ 2

= y

𝑓 βˆ’1 (π‘₯ )=π‘₯+3βˆ’ 2

Page 7: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

7

Graphs of f and f-1

The graphs of and are reflections of each other over the line

If you know how to graph then simply take a few key points and switch their x and y coordinates to help you graph .

Or find the equation of algebraically first, then graph it.

Barnett/Ziegler/Byleen Business Calculus 12e

Page 8: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

8

Graphs of f and f-1

Graph and (from the previous example) on the same coordinate plane.

Barnett/Ziegler/Byleen Business Calculus 12e

𝑓 (π‘₯ )=βˆ’2 xβˆ’ 3

𝑓 βˆ’1 (π‘₯ )=βˆ’12π‘₯βˆ’

32

𝑓

𝑓 βˆ’1

𝑓 βˆ’1 (π‘₯ )=π‘₯+3βˆ’ 2

Page 9: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

9

Graphs of f and f-1

The graph of is shown. Graph .

Barnett/Ziegler/Byleen Business Calculus 12e

𝑦=π‘₯

Page 10: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

10

Exponential functions are one-to-one because they pass the vertical and horizontal line tests.

Barnett/Ziegler/Byleen Business Calculus 12e

Logarithmic Functions

𝑦=2π‘₯

Page 11: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

11Barnett/Ziegler/Byleen Business Calculus 12e

Inverse of an Exponential Function

Start with the exponential function: Now, interchange x and y:

Solving for y:

The inverse of an exponential function is a log function.

𝑓 (π‘₯ )=2π‘₯ 𝑓 βˆ’1 (π‘₯ )=π‘™π‘œπ‘”2π‘₯

𝑦=π‘™π‘œπ‘”2π‘₯

π‘₯=2𝑦𝑦=2π‘₯

This   is   called   a   logarithmic   function .

Page 12: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

12Barnett/Ziegler/Byleen Business Calculus 12e

Logarithmic Function

The inverse of an exponential function is called a logarithmic function. For b > 0 and b 1,

𝑓 (π‘₯)=𝑏π‘₯ 𝑓 βˆ’1 (π‘₯ )=π‘™π‘œπ‘”π‘ π‘₯π·π‘œπ‘šπ‘Žπ‘–π‘› : (βˆ’ ∞ , ∞ )π‘…π‘Žπ‘›π‘”π‘’ : (0 , ∞ ) π‘…π‘Žπ‘›π‘”π‘’ : (βˆ’ ∞ ,∞ )

π·π‘œπ‘šπ‘Žπ‘–π‘› : ( 0 , ∞ )

𝐸π‘₯π‘π‘œπ‘›π‘’π‘›π‘‘π‘–π‘Žπ‘™ hπΏπ‘œπ‘”π‘Žπ‘Ÿπ‘–π‘‘ π‘šπ‘–π‘

Page 13: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

13Barnett/Ziegler/Byleen Business Calculus 12e

Graphs

Page 14: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

14

Transformations

Parent function: Children:

β€’ Shifted up 2

β€’ Shifted right 5

β€’ Shifted down 3 and left 7

Barnett/Ziegler/Byleen Business Calculus 12e

𝑦=π‘™π‘œπ‘”π‘π‘₯+2

𝑦=π‘™π‘œπ‘”π‘(π‘₯βˆ’5)

𝑦=π‘™π‘œπ‘”π‘ (π‘₯+7 ) βˆ’3

Page 15: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

15

Log Notation

Common Logβ€’ log base 10β€’ When no base is specified, it’s base 10β€’

Natural Logβ€’ log base e

Barnett/Ziegler/Byleen Business Calculus 12e

Page 16: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

16

Simple Logs

Evaluate each log expression without a calculator:

Barnett/Ziegler/Byleen Business Calculus 12e

10βˆ’321βˆ’27100

Page 17: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

17

Log Exponential

Think of the word β€œlog” as meaning β€œexponent on base b” To convert a log equation to an exponential equation:

β€’ What’s the base?β€’ What’s the exponent?β€’ Write the equation

Barnett/Ziegler/Byleen Business Calculus 12e

𝑦=π‘™π‘œπ‘”327

πŸ‘π’šπŸ‘π’š=πŸπŸ•

π‘™π‘œπ‘”3 27=𝑦

Page 18: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

18Barnett/Ziegler/Byleen Business Calculus 12e

Converting a log into an exponential expression: 1.

2.

Log Exponential

Page 19: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

19

Exponential Log

To convert an exponential equation to a log equation:

β€’ What’s the base?β€’ What’s the exponent?β€’ Write the equation β€’ Check:

Barnett/Ziegler/Byleen Business Calculus 12e

16=2𝑦

πŸπ’šπ’š=π’π’π’ˆπŸπŸπŸ”

π’š=π’π’π’ˆπŸπŸπŸ”

Page 20: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

20Barnett/Ziegler/Byleen Business Calculus 12e

Exponential Log

Converting an exponential into a log expression:1.

2.

Page 21: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

21Barnett/Ziegler/Byleen Business Calculus 12e

Solving Simple Equations

Convert each log to an exponential equation and solve for x:

1.

2.

π‘₯3=1000π‘₯=3√1000π‘₯=10

π‘₯=777665=π‘₯

Page 22: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

22

Using Your Calculator

Use your calculator to evaluate and round to 2 decimal places:

Barnett/Ziegler/Byleen Business Calculus 12e

𝑙𝑛15β‰ˆ 2.71 π‘™π‘œπ‘”15β‰ˆ 1.18

Page 23: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

23

Page 24: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

Chapter 2

Functions and Graphs

Section 6

Logarithmic Functions

(Part II)

Page 25: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

25Barnett/Ziegler/Byleen Business Calculus 12e

Learning Objectives for Section 2.6 Logarithmic Functions

The student will be able to:β€’ Use log properties.β€’ Solve log equations.β€’ Solve exponential equations.

Page 26: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

26Barnett/Ziegler/Byleen Business Calculus 12e

Properties of Logarithms

If b, M, and N are positive real numbers, b 1, and p and x are real numbers, then

5. logb

MN logb

M logb

N

6. logb

M

Nlog

bM log

bN

7. logb

M p p logb

M

8. logb

M logb

N iff M N

1. logb(1) 0

2. logb(b) 1

3. logbbx x

4. blogb x x

9. h𝐢 π‘Žπ‘›π‘”π‘’π‘œπ‘“ π‘π‘Žπ‘ π‘’ π‘“π‘œπ‘Ÿπ‘šπ‘’π‘™π‘Ž : log𝑏 π‘₯=log π‘₯log𝑏

Page 27: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

27

Using Properties Rewrite each expression by using the appropriate log

property:

β€’

Barnett/Ziegler/Byleen Business Calculus 12e

ΒΏ π‘™π‘œπ‘”2205

ΒΏ π‘™π‘œπ‘”2 4ΒΏ2ΒΏ π‘₯π‘™π‘œπ‘”5 25

ΒΏ log10+log π‘₯ΒΏ1+ logπ‘₯2 π‘₯+1=5 π‘₯=2

ΒΏ π‘₯+1

ΒΏ2 π‘₯

ΒΏlog 19log 3

β‰ˆ 2.68

Page 28: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

28Barnett/Ziegler/Byleen Business Calculus 12e

Solving Log Equations

Solve for x: log

4x 6 log

4x 6 3

log 4 (π‘₯+6 ) (π‘₯βˆ’6 )=3

log 4 (π‘₯2βˆ’ 36 )ΒΏ3

43=π‘₯2βˆ’3664=π‘₯2βˆ’ 36

100=π‘₯2

π‘₯=Β± 10π‘₯=10

x can’t be -10 because you can’t take the log of a negative number.

Page 29: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

29Barnett/Ziegler/Byleen Business Calculus 12e

Solving Log Equations

Solve for x. Obtain the exact solution of this equation in terms of e.

ln (x + 1) – ln x = 1

ex = x + 1

ex - x = 1

x(e - 1) = 11

1x

e

𝑙𝑛(π‘₯+1π‘₯ )=1

𝑒1=(π‘₯+1π‘₯ )

Page 30: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

30

Solving Exponential Equations

Method 1:β€’ Convert the exponential equation to a log equation.β€’ Then evaluate.

Barnett/Ziegler/Byleen Business Calculus 12e

9π‘₯=2π‘₯=π‘™π‘œπ‘”92

π‘₯=log 2log 9

π±β‰ˆπŸŽ .πŸ‘πŸπŸ“πŸ“

Page 31: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

31

Solving Exponential Equations

Method 2:β€’ Isolate the exponential part on one side, then take the

log or ln of both sides of the equation.β€’ Then evaluate.

Barnett/Ziegler/Byleen Business Calculus 12e

log 9π‘₯= log 2

x βˆ™ log 9=log 2π‘₯=

log 2log 9

π±β‰ˆπŸŽ .πŸ‘πŸπŸ“πŸ“

9π‘₯=2

Page 32: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

32

Solving Exponential Equations

Solve and round answer to 4 decimal places:

Barnett/Ziegler/Byleen Business Calculus 12e

5𝑒π‘₯=2

𝑒π‘₯=25

𝑙𝑛𝑒π‘₯=𝑙𝑛25

π‘₯ βˆ™ 𝑙𝑛𝑒=𝑙𝑛25

π‘₯=𝑙𝑛25

π’™β‰ˆ βˆ’πŸŽ .πŸ—πŸπŸ”πŸ‘

1

Page 33: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

33

Page 34: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

Chapter 2

Functions and Graphs

Section 6

Logarithmic Functions

(Part III)

Page 35: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

35Barnett/Ziegler/Byleen Business Calculus 12e

Learning Objectives for Section 2.6 Logarithmic Functions

The student will be able to:β€’ Solve applications involving logarithms.

Page 36: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

36Barnett/Ziegler/Byleen Business Calculus 12e

Application: Finance

How long will it take money to double if compounded monthly at 4% interest?

𝐴=𝑃 (1+ π‘Ÿπ‘› )

𝑛𝑑

2𝑃=𝑃 (1+ 0.0412 )

(12 βˆ™π‘‘ )

2=(1+ 0.0412 )

(12βˆ™ 𝑑 )

ln 2=ln (1+ 0.0412 )

(12 βˆ™π‘‘ )

ln 2=12 t βˆ™ ln(1+ 0.0412 )

❑

ln 2

12βˆ™ ln (1+0.0412 )

❑=t

π‘‘β‰ˆ 17.4You can take the log or

the ln of both sides.It will take about 17.4 yrs for the

money to double.

Page 37: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

37Barnett/Ziegler/Byleen Business Calculus 12e

Application: Finance

Suppose you invest $1500 into an account that is compounded continuously. At the end of 10 years, you want to have a balance of $6500. What must the annual percentage rate be?

𝐴=𝑃 π‘’π‘Ÿπ‘‘

6 500=1500𝑒(π‘Ÿ βˆ™10)

π‘Ÿ β‰ˆ . 147

65001500

=𝑒(π‘Ÿ βˆ™10)

ln133

=ln𝑒 (π‘Ÿ βˆ™ 10)❑

ln133

=10π‘Ÿ βˆ™ ln𝑒

ln133

10=π‘Ÿ

The annual percentage rate must be 14.7%

Page 38: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

38Barnett/Ziegler/Byleen Business Calculus 12e

Application: Archeology

Recall from Lesson 2-5 that Carbon-14 decays according to the model:

Estimate that age of a fossil if 15% of the original amount of C-14 is still present.

0.15=1 βˆ™π‘’(βˆ’0.000124 βˆ™π‘‘ )

π‘‘β‰ˆ 15,299ln 0.15=ln𝑒 (βˆ’0.000124 βˆ™π‘‘ )❑

ln 0.15=βˆ’ 0.000124 𝑑 βˆ™ ln𝑒

ln 0.15βˆ’0.000124

=𝑑

The fossil would be 15,299 years old.

Page 39: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

39

Application: Sound Intensity

Sound intensity is measured using the formula:

I = sound intensity in watts per

= intensity of sound just below the threshold of hearing =

N = number of decibels

Barnett/Ziegler/Byleen Business Calculus 12e

Page 40: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

40

Application: Sound Intensity

Solve for N:

Barnett/Ziegler/Byleen Business Calculus 12e

𝐼=𝐼 0 βˆ™10𝑁 /10

𝐼𝐼0

=10𝑁 /10

)

π‘™π‘œπ‘”πΌπΌ0

= (𝑁 /10 ) log 10

π‘™π‘œπ‘”πΌπΌ0

= (𝑁 /10 )

𝑁=10 βˆ™ π‘™π‘œπ‘”πΌπΌ 0

Page 41: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

41

Application: Sound Intensity

Use the formula from the previous example to find the number of decibels for the sound of heavy traffic which has a sound intensity of

Barnett/Ziegler/Byleen Business Calculus 12e

𝑁=10 βˆ™ π‘™π‘œπ‘”πΌπΌ 0

𝑁=10 βˆ™ π‘™π‘œπ‘” 10βˆ’8

10βˆ’ 16

)

𝑁=10 βˆ™ π‘™π‘œπ‘”108

𝑁=10 βˆ™ 8 βˆ™ log 10𝑁=80 The sound of heavy traffic is

about 80 decibels.

Page 42: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

42Barnett/Ziegler/Byleen Business Calculus 12e

Logarithmic Regression

When the scatter plot of a data set indicates a slowly increasing or decreasing function, a logarithmic function often provides a good model.

We use logarithmic regression on a graphing calculator to find the function of the form y = a + b*ln(x) that best fits the data.

Page 43: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

43Barnett/Ziegler/Byleen Business Calculus 12e

Example of Logarithmic Regression

A cordless screwdriver is sold through a national chain of discount stores. A marketing company established the following price-demand table, where x is the number of screwdrivers in demand each month at a price of p dollars per screwdriver.

x p = D(x)

1,000 912,000 733,000 644,000 565,000 53

Find a log regression

equation to predict the price per

screwdriver if the demand reaches

6,000.

Page 44: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

44Barnett/Ziegler/Byleen Business Calculus 12e

Example of Logarithmic Regression

x p = D(x)

1,000 912,000 733,000 644,000 565,000 53

𝑦=256.47 βˆ’ 24.04ΒΏ

Page 45: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

45Barnett/Ziegler/Byleen Business Calculus 12e

Example of Logarithmic Regression

Xmax=6500TraceUp arrowEnter 6000

Page 46: Chapter 2 Functions and Graphs Section 6 Logarithmic Functions (Part I)

46


Recommended