Transcript
  • 8/10/2019 Chapter 2 Emprical Model.pdf

    1/50

    Chapter 2 Identification

    (Empirical Modeling)

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    2/50

    Process Control Prof. Cai Wenjian 2

    Lecture 3

    1. Fundamentals of Empirical Modeling2. Identification from Step Response

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    3/50

    Process Control Prof. Cai Wenjian 3

    What is Process Modeling?

    Constructing process model from experimentally obtained

    input/output data, with no recourse to physical nature andproperties of system.

    What are three problems in control engineering?

    Given input and model find

    output?

    Given output and model

    find input?

    Given input and output find

    model?

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    4/50

    Process Control Prof. Cai Wenjian 4

    Purpose of Modeling

    Improve Process Understanding: Simulation on dynamic and steady-state

    process behavior before plant is constructed, model based simulation caninvestigate process transient without disturb process.

    Train plant operating personnel: Interfacing a process simulator with

    standard process control equipment to create a realistic training environment,

    train plant operators to run complex units and deal with emergency situations

    Develop control strategy for new processes: Process dynamic model

    allows alternative control strategies to be evaluated. For model-based

    control strategies, process model is part of the control law.

    Optimize process operating conditions: Use steady-state model torecalculate optimum operating conditions to maximize profit or minimize

    cost. Use steady-state process model and economic information to

    determine most profitable operating conditions.

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    5/50

    Process Control Prof. Cai Wenjian 5

    Models Classification

    Empir ical model:obtained by fitting experimentaldata.

    Hybrid model:combination of the two; values

    of some parameters in a theoretical model arecalculated from experimental data.

    Theoretical model:developed using the

    principles of chemistry, physics, and biology.

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    6/50

    Process Control Dr. Cai Wenjian 6

    Procedure of Empirical Modeling

    Empirical modeling (identification) consists of followingsteps:

    1. Problem Definition Step 1. Problem Definition

    2. Model Formulation Step 2. Model Formulation

    3. Input function selection Step 3. Input function Selection

    4. Parameter Estimation Step 4. Parameter Estimation

    5. Model Validation Step 5. Model Validation

    Flow Chart of Process Identification

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    7/50

    Process Control Prof. Cai Wenjian 7

    Step 1. Problem Definition

    Different interpretation, resulting different models

    same aspect but various angles, vary degree of complexity.

    how simple or complex, will model have to be?

    model only useful with tool available for solution

    which aspects of process most relevant and be contained in model?

    Impossible to represent all aspect of the physical process,

    capture those aspects that most relevant to problem at hand.

    what do we intend to use the model for?

    Some modeling solved analytically, others by numericalmethods

    how can we test the adequacy of model?

    how much time do we have for the modeling exercise?

    Procedure of Empirical Modeling

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    8/50

    Process Control Prof. Cai Wenjian 8

    Step 2. Model Formulation

    In empirical modeling, we analysis of input/output data to detect

    model form capable of explaining the observed behavior

    ( )1

    Ls

    p

    Kg s e

    Ts

    2( )

    ( 1)

    Ls

    p

    Kg s e

    Ts

    Four parameter model

    1 2

    ( )( 1)( 1)

    Ls

    p

    Keg s

    s s

    2

    sL

    p

    eg s

    as bs c

    Five parameter model Procedure of Empirical Modeling

    1 2

    ( 1)( )

    ( 1)( 1)

    Ls

    p

    K s eg s

    s s

    2

    ( 1) sL

    p

    s eg s

    as bs c

    Three parameter model

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    9/50

    Process Control Prof. Cai Wenjian 9

    Step 3. Input function Selection

    Process information of output data dependent on input function.

    Input should provide output rich in useful information and easily extracted.

    Typical input functions used in process identification are:

    Sine waves

    Impulse#Pulse (rectangular or arbitrary)#

    White noise

    Pseudo random binary sequences

    Step#

    Relay#

    Procedure of Empirical Modeling

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    10/50

    Process Control Prof. Cai Wenjian 10

    Step 4. Parameter Estimation

    After candidate model selected, estimate unknownparameters.

    Fitting experimental data to a predetermined model

    form by finding the parameter values which provide

    the best fit.

    Estimating unknown parameters carried in time

    domain or in the frequency domain.Procedure of Empirical Modeling

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    11/50

    Process Control Prof. Cai Wenjian 11

    Step 5. Model Validation

    -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2-1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    Final step involves checking how the empirical model fits data it supposed to

    represent. Comparing model predictions with additional process data, and

    evaluating the fit.

    Time domain, response to certain signal

    Frequency domain, Nyquist Plot. Procedure of Empirical Modeling

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    12/50

    Process Control Prof. Cai Wenjian 12

    Flow Chart of Process Identification

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    13/50

    Process Control Prof. Cai Wenjian 13

    Basic Requirement of Step Response

    Obtain process model from a transient response experiment.

    inject step input at the process

    measure response

    Requirement:

    stable process

    Amplitude of step input must be determined before test

    sufficiently large so response is easily visible above noise level

    as small as possiblenot to disturb the process more than necessary

    keep the dynamics linear.

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    14/50

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    15/50

    Process Control Prof. Cai Wenjian 15

    Graphic Method( )

    1p

    Kg s

    s

    /( ) (1 )ty t y e

    AyK steady-state gain

    Time Constant

    Deepest Slop

    /( )

    ( )max

    tydy t edt

    ydy t

    dt

    tan to (0) y

    y t

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    16/50

    Process Control Prof. Cai Wenjian 16

    Graphic Method

    Ls

    p e

    Ts

    KsG

    1

    )(

    when times greater than the time delay

    )1()( /)( Lt

    eyty

    A

    yK

    steady-state gain

    Time Constant

    Time Delay L:

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    17/50

    Process Control Prof. Cai Wenjian 17

    Two Points Method( )

    1

    Ls

    p

    Kg s e

    Ts

    )1()( TLt

    eKAty

    y()% 28.4 39.3 55 59.3 63.2 77.7 86.5

    time(t) T/3+L T/2+L 0.8T+L 0.9T+L T+L 1.5T+L 2T+L

    t1 and t2, the time when response

    with value 28.4% and 63.2%

    )(5.1 12 ttT

    )3(5.0 21 ttL

    Process model and step response

    t1= T/3+L t2=T+L

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    18/50

    Process Control Prof. Cai Wenjian 18

    Lecture 4

    Identification from Step Response (2)

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    19/50

    Process Control Prof. Cai Wenjian 19

    Log Method ( )1

    Ls

    p

    Kg s e

    Ts

    when times greater than the time delay

    )1()( /)( Lteyty

    yy AK K A

    /)( Ltkey

    yy

    ln y y L t

    y

    steady-state gain

    Time Constant and Time Delay L:

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    20/50

    Process Control Prof. Cai Wenjian 20

    Log Method

    Plot against t: a straight line with

    slope of

    intercept y-axis atL / .

    meet the t-axis at the point t=L.

    1/ ln

    y y L t

    y

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    21/50

    Process Control Prof. Cai Wenjian 21

    Area Method

    0 0 0

    ( )/

    0

    [ ( ) ( )] ( ) [ ( ) ( )]

    [1 (1 )]

    L

    Lar

    Lt L T

    L

    y y t dt y dt y y t dtAT

    K K K

    Kdt K e dtT L

    K

    Average residence time Taris computed form the area ofA0

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    22/50

    Process Control Prof. Cai Wenjian 22

    Area Method

    1

    0

    /

    01 ]1[)(

    KTedteKdttyAT

    TtTar

    0 01 1( )

    arT

    ar

    e y t dt AeA eAT L T T

    K K K K

    Measure and compute areaA1

    under step response up to time Tar

    Than TandL can be estimated as

    arT T L

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    23/50

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    24/50

    Process Control Dr. Cai Wenjian 24

    Numerical Integration

    Integral of a continuous time signal over 0, ft approximate

    00

    0

    ( ) ( ) ( )f

    lti

    l s i

    i

    y d y t y t lT q y t

    Ts: integration step size,

    l: length factor of the integrator (a natural number);

    -1q

    1 ( ) ( ).sq y t y t T

    unit delay operator

    a0al: coefficients

    For trapezoidal integration rule, filter coefficients:

    0 , , 1, 12

    sl i s

    TT i l

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    25/50

    Process Control Dr. Cai Wenjian 25

    FOPDT Process

    Lthbdyatyt

    101

    0

    1 1 1

    ( ) ( )

    ( ) [ ]

    [ ]

    t

    T

    t y t

    t y d h th

    a b L b

    ( ) ( )t t e Define

    1

    1( ) ( )

    Lsb

    Y s e U ss a

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    26/50

    Process Control Dr. Cai Wenjian 26

    Least Squares Solution

    ,

    TT 1

    32

    3

    1

    1

    1

    /

    L

    b

    a

    Least Squares Solution

    TakingNinput output samples

    Parameter solved

    Must start t L1 11

    2 2

    1

    1

    ( ) ( )

    ( ) ( ), ,

    ( ) ( )N N

    t ta

    t tb L

    b

    t t

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    27/50

    Process Control Prof. Cai Wenjian 27

    Working Example

    8

    1

    ( ) ( 1)g s s

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    28/50

    Process Control Prof. Cai Wenjian 28

    Two Points Method

    28.4%, t1 = 6.2s63.2%, t2 = 8.64s

    T = 1.5(t2 - t1)

    = 1.5(8.64 - 6.2) = 3.66sL = 0.5(3t1 - t2)

    = 0.5(3*6.2 -8.64) = 4.98s

    4.981( )3.66 1

    sg s e

    s

    K = y/u = 1

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    29/50

    Log Method

    ( )

    ln( )

    i iy L

    y T

    y t

    T

    t

    4.27;

    / 1.65

    4.27 /1.65 2.59

    L

    L T

    T

    4.271( )2.59 1

    sg s e

    s

    K = y/u = 1

    For i=1N, calculate the

    equation;

    Draw a straight line which

    best approximate the curve

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    30/50

    Process Control Prof. Cai Wenjian 30

    Area method

    0 1A 1 1 1 / 2 7.9989T y i y i

    1 2A 1 / 2 1.4960T y i y i

    1 1.496 4.0665eAT eK

    07.9989 4.0665 3.9324

    AL T

    K

    3.93241( )4.0665 1

    sg s es

    K = y/u = 1

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    31/50

    Process Control Prof. Cai Wenjian 31

    Least Squares Method

    303 matrix

    301 vector

    Sampling: (start after apparent time delay) 4 to 34,

    Sampling time: 1s

    1

    0.2843

    0.2200

    0.2875

    T T

    7653.02875.0/2200.02875.0,0.2843 3111 Lba

    4.76531

    1

    4.7653

    0.2875

    ( ) 0.2843

    1.0113( )

    1 3.5174s 1

    Ls s

    Ls s

    b

    g s e es a s

    Kg s e e

    Ts

    N = 30

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    32/50

    Process Control Prof. Cai Wenjian 32

    Verification (time domain)

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    33/50

    Process Control Prof. Cai Wenjian 33

    Verification (frequency domain)

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    34/50

    Process Control Prof. Cai Wenjian 34

    Lecture 5

    Relay Feedback Method

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    35/50

    Process Control Prof. Cai Wenjian 35

    Identification from Relay Feedback

    Procedure

    Closed-loop I dentif ication

    Generating Sustained Oscillation Generating Sustained Oscillation

    Determine Critical Parameters Determine Critical Parameters

    Approximate Transfer Functions Fourier series Analysis

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    36/50

    Process Control Prof. Cai Wenjian 36

    Generating Sustained Oscillation

    Increased uby h, (e.g., 5%)

    Bring the system to steady-state

    Repeat to generate sustained oscillation

    AfterL, y increase, relay switches to

    opposite position,

    Output-input phase lag: -, limit cycle

    with periodPu.

    Identification from Relay Feedback

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    37/50

    Process Control Prof. Cai Wenjian 37

    Determine Critical Parameters

    u

    u

    P

    2

    Limit cycle periodPu, obtain

    H, height of the relay;

    a, amplitude of oscillation.

    L, difference between e andy

    Identification from Relay Feedback

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    38/50

    Process Control Prof. Cai Wenjian 38

    Fourier series Analysis

    tate sin)(

    0

    1

    ( ) cos sin

    2

    n n

    n

    Au t A n t B n t

    2

    0

    2

    0

    sin)(

    cos)(

    ttdntuB

    ttdntuA

    n

    n

    1 sin)( nn

    tnBtu

    ,6,4,2,0

    ,5,3,1,4

    n

    nn

    h

    Bn

    Input signal (e(t)) to relay: sinusoidal wave:

    Output u(t) of relay: square wave:

    u(t): odd-symmetric

    (N(a): unbiased and symmetric)

    A0 andAn zero

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    39/50

    Process Control Prof. Cai Wenjian 39

    Describing function

    Transfer function of nonlinear system.

    only the first Fourier coefficient

    2 2

    1 1( )B A

    N aa

    ahaN 4)(

    For ideal relay,A1 = 0,B1 = 4h/,

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    40/50

    Process Control Prof. Cai Wenjian 40

    Ultimate Gain

    1 ( ) ( ) 0u

    N a g

    1 4( )( )

    u

    u

    hK N ag j a

    Relay feedback oscillation frequency

    corresponds to limit of stability:

    Ultimate gain (Ku)becomes:

    ( ) 1u u

    K g j

    Results:

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    41/50

    Process Control Prof. Cai Wenjian 41

    Steady-state Gain

    uyKp

    Kp: compare input and output values at two different steady-states:

    changes in u: small enough so it represents the linearized gain. highly nonlinear

    processes, changes as small as 10-3 to 10-6percent of full range

    such small changes only feasible for mathematical steady-state gains

    impractical to obtain reliable steady-state gains from plant data. (how to improve?)

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    42/50

    Process Control Prof. Cai Wenjian 42

    Transfer function Modeling

    Once the model is selected, model parameters back-calculated from ultimate gain

    and ultimate frequency equations.

    ( ) 1u u

    K g j

    arg ( )ug j

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    43/50

    Process Control Prof. Cai Wenjian 43

    Three Parameter Model

    Both TorKp needed to solve for time constant, if L available

    ( )1

    p Ls

    p

    Kg s e

    Ts

    2( )

    ( 1)

    p Ls

    p

    Kg s e

    Ts

    2

    1 11

    up jL

    u u p u

    u

    KK e K K T

    jT

    1tanu uL T

    tan( )u

    u

    LT

    2

    1up

    u

    TK

    K

    2

    tan( ) / 2

    1

    u

    u

    u

    p

    u

    LT

    TK

    K

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    44/50

    Process Control Prof. Cai Wenjian 44

    Four Parameter Model

    Kp assume to be known

    Ku and L needed to solve for two time constants

    1 2

    ( )( 1)( 1)

    Ls

    p

    Keg s

    s s

    1 1

    1 2

    2 2

    1 2

    tan ( ) tan ( )

    1

    [1 ( ) ][1 ( ) ]

    u u u

    p

    u u u

    L

    K

    K

    1 2and

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    45/50

    Process Control Prof. Cai Wenjian 45

    Example: Wood and Berry column

    Transfer function between top composition and reflux flow.

    True value: Ku=2.1, u=1.608

    Relay feedback test:Ku=1.71, u=1.615

    Parameters calculated for

    Model 1: (assumeL=1 is known)

    Model 2: (assumeL=1 is known)Model 3: (assumeL=1 andKp are known)

    12.8( )

    16.8 1

    s

    pg s e

    s

    13.2( )14.8 1

    spg s e

    s

    2

    1.12( )

    (0.59 1)

    s

    pg s e

    s

    12.8( )

    (13.5 1)(0.0009 1)

    s

    p

    eg s

    s s

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    46/50

    Process Control Prof. Cai Wenjian 46

    Fourier Transform Method

    y(t) and u(t) are piece wise continuous and periodic,Laplace transform

    0

    1( ) ( )

    1

    Pst

    PsY s y t e dt

    e

    0

    1( ) ( )

    1

    P

    st

    PsU s u t e dt

    e

    0

    0

    ( )( )

    ( )( ) ( )

    P

    st

    P st

    y t e dtY s

    G sU s u t e dt

    1 1

    2 2

    ( )( )

    ( )

    Y j c jd G j a jb

    U j c jd

    1

    0

    ( ) cos( )

    P

    c y t t dt

    1

    0

    ( ) sin( )

    P

    d y t t dt

    2

    0

    ( ) cos( )

    P

    c u t t dt

    2

    0

    ( ) sin( )

    P

    d u t t dt

    1 2 1 2

    2 22 2

    1 2 1 2

    2 2

    2 2

    ( )

    ( )

    ( )

    ( )

    c c d d a

    c d

    c d d cb

    c d

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    47/50

    Process Control Prof. Cai Wenjian 47

    Working Example

    8

    1( )

    ( 1)g s

    s

    0 10 20 30 40 50 60 70 80 90 100-1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    48/50

    Process Control Prof. Cai Wenjian 48

    Three Parameter Model

    0 10 20 30 40 50 60 70 80 90 100-1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    4.5L

    0.7442a

    61 ?u

    P

    41.7183

    u

    hK

    a

    Reading:

    4.51( )2.4463 1

    s

    pg s e

    s

    2

    0.57uu

    P

    2

    1

    1

    2.4463

    p

    p u

    u

    K

    K KT

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    49/50

    Process Control Prof. Cai Wenjian 49

    Model verification

    0 5 10 15 20 25

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Step Response

    Time (sec)

    Amplitud

    e

    sys

    G

  • 8/10/2019 Chapter 2 Emprical Model.pdf

    50/50

    Summary

    1. Time-saving, easy to use, automatically extractsprocess response at an important frequency, facilitatessimple push-button tuning

    2. Test under closed-loop to keeps the process in linear

    region, good on highly nonlinear processes3. No requirement for careful choice of sampling rate,

    useful in initializing a more sophisticated adaptivecontroller.

    4. Can be modified to cope with disturbances andperturbations to process.