Download pdf - ch2 electricitt

Transcript
Page 1: ch2 electricitt

7/29/2019 ch2 electricitt

http://slidepdf.com/reader/full/ch2-electricitt 1/19

Home 

End 

HolisticTuition 

CashPlants 

Chapter 2:

Electricity

Form 5

1

Physics 

Next > 

The study of matter 

Page 2: ch2 electricitt

7/29/2019 ch2 electricitt

http://slidepdf.com/reader/full/ch2-electricitt 2/19

Home 

End 

HolisticTuition 

CashPlants 

Objectives:(what you will learn) 

1) electric fields & charge flow

2) electric current & potential difference

3) series & parallel circuits

4) electromotive force & internal resistance

5) electrical energy & power  

Physics: Chapter 2

2

< Back  

Next > 

Page 3: ch2 electricitt

7/29/2019 ch2 electricitt

http://slidepdf.com/reader/full/ch2-electricitt 3/19

Home 

End 

HolisticTuition 

CashPlants 3

< Back  

Next > 

Electric Fields

Electric field: region where a charged bodyexperiences a force 

It is shown by a field pattern that are lines of forces.

line of force = path of a test charge in the field

direction = motion of a free positive charge

+

Positive point charge

 – 

Negative point charge

electric field pattern

Page 4: ch2 electricitt

7/29/2019 ch2 electricitt

http://slidepdf.com/reader/full/ch2-electricitt 4/19

Home 

End 

HolisticTuition 

CashPlants 4

< Back  

Next > 

Electric Fields

Between a positive

and a negative

point charge

Between two

positive point

charges

Electric lines of force 

Page 5: ch2 electricitt

7/29/2019 ch2 electricitt

http://slidepdf.com/reader/full/ch2-electricitt 5/19

Home 

End 

HolisticTuition 

CashPlants 5

< Back  

Next > 

Electric Fields

Electric field between twoparallel metal plates that

are oppositely charged.

Electric field between

two opposite charges.

Page 6: ch2 electricitt

7/29/2019 ch2 electricitt

http://slidepdf.com/reader/full/ch2-electricitt 6/19

Home 

End 

HolisticTuition 

CashPlants 6

< Back  

Next > 

Electric Fields

+  – 

+  – 

+  –  F F 

Ball coated with conductor 

hangs vertically in the centre

because it is neutral.

Ball oscillating between 2

plates, after it touches one side

causing a force, F to repel the

ball due to like charges.

+  – 

Negative ions

Positive ions

Candle flame spreading

sideways between 2 plates due

to attraction between oppositelycharged ions and metal plates.

Experiments to show existence of electric fields.

Page 7: ch2 electricitt

7/29/2019 ch2 electricitt

http://slidepdf.com/reader/full/ch2-electricitt 7/19

Home 

End 

HolisticTuition 

CashPlants 7

< Back  

Next > 

Electric Fields

Electric fields cause charges to move.Net movement of charges = electric current

In the late 1700s scientists chose the direction of electric

current to be the direction in which positive charges move in

an electric field. They did not know that electrons andprotons were the negative and positive charge particles, and

that the electron moved much more easily. 

In a copper wire, the outer electrons of the copper 

atom move relative to the nucleus of the atom.

+ -Current, I  electrons 

So, the charge carriers (electrons) move in the

opposite direction to the current.

Page 8: ch2 electricitt

7/29/2019 ch2 electricitt

http://slidepdf.com/reader/full/ch2-electricitt 8/19

Home 

End 

HolisticTuition 

CashPlants 

Electric Charge

8

Electric current = Rate of flow of electric charge

< Back  

Next > Electric charge, Q = It 

units Q in Coulomb, I in Ampere, t in second

 I =

t   , t  = time

C = A s

Basic unit of electric charge = Coulomb (C)Charge of a proton or electron = ± 1.60 10-19 C

 A Coulomb of charge is a lot, at 6.25 x 1018 electrons – 

most objects have charges in the µC (10-6 C) range.

Page 9: ch2 electricitt

7/29/2019 ch2 electricitt

http://slidepdf.com/reader/full/ch2-electricitt 9/19

Home 

End 

HolisticTuition 

CashPlants 9

< Back  

Next > 

Potential Difference

V =

W  

Work done

Charge=

Potential difference (V) between 2 points inan electric field = work done (W) in moving 1

coulomb of charge (Q) between the 2 points.

Unit of potential difference:

Volt (V) = = J C-1

J

C

 A BMoving 1 coulomb of charge

Potential difference between 2 points

Page 10: ch2 electricitt

7/29/2019 ch2 electricitt

http://slidepdf.com/reader/full/ch2-electricitt 10/19

Home 

End 

HolisticTuition 

CashPlants 10

< Back  

Next > 

Electric CurrentOhm’s Law 

The current (I) in a conductor is directly

proportional to the potential difference (V) across

the conductor if the temperature is constant.

V  

 I   = constant 

Ohmic conductor   A conductor that obeys Ohm’s Law. 

 I 

V 0

 A

V

 I 

Conductor 

Switch

Rheostat Circuit used to find the

relationship between current

 I and potential difference V  

for a conductor.

Page 11: ch2 electricitt

7/29/2019 ch2 electricitt

http://slidepdf.com/reader/full/ch2-electricitt 11/19

Home 

End 

HolisticTuition 

CashPlants 11

< Back  

Next > 

Electric Current

Non-ohmic conductor   A conductor that does not obey Ohm’s Law. 

 I 

V 0

 I 

V 0

 I 

V 0Dilute sulphuric acid Filament lamp Junction diode

Examples

 A circuit element is non-ohmic if the graph of 

current versus voltage is nonlinear.

 A filament lamp is a non-ohmic conductor since its

resistivity, like most materials, varies with

temperature. As the filament gets hot, theresistance increases quickly.

Page 12: ch2 electricitt

7/29/2019 ch2 electricitt

http://slidepdf.com/reader/full/ch2-electricitt 12/19

Home 

End 

HolisticTuition 

CashPlants 12

< Back  

Next > 

Resistance

The resistance, R of a conductor is defined as theratio of the potential difference V across the

conductor to the current I in the conductor.

V  

 I  Resistance, R =

The unit of resistance is the ohm (Ω).

conductor 

 I I 

Potential difference, V = IR

H li ti T iti

Page 13: ch2 electricitt

7/29/2019 ch2 electricitt

http://slidepdf.com/reader/full/ch2-electricitt 13/19

Home 

End 

HolisticTuition 

CashPlants 13

< Back  

Next > 

Resistance

Factors that affect the resistance of a conductor:a. length of wire, l  

b. cross-sectional area, A 

c. type of material with resistivity, p 

d. temperature, T 

 pl  

 A Resistance, R =

Based on a constant temperature:

 R

T/ o

C0 Metal Semi-conductor 

 R

0 T/ o

C

H li ti T iti

Page 14: ch2 electricitt

7/29/2019 ch2 electricitt

http://slidepdf.com/reader/full/ch2-electricitt 14/19

Home 

End 

HolisticTuition 

CashPlants 14

< Back  

Next > 

Series Circuit

 I 

 R1  R2  R3

V 1 V 2 V 3V  

V 1 = IR1 

V 2 = IR2 

V 3 = IR3

When resistors are connected in series:a. Same current I is in all the resistors

b. Potential difference,

c. V = V 1 + V 2 + V 3

d. Effective resistance, 

 R = R1 + R2 + R3

HolisticT ition

Page 15: ch2 electricitt

7/29/2019 ch2 electricitt

http://slidepdf.com/reader/full/ch2-electricitt 15/19

Home 

End 

HolisticTuition 

CashPlants 15

< Back  

Next > 

Parallel Circuit

 I   R1  I 1

 R2  I 2

 R3  I 3

V  

When resistors are connected in parallel:a. Same potential differences across all resistors, V 

 R 

 R1 

 R3 

 R2 = + +

c.  I = I 1 + I 2 + I 3

d. Effective resistance,

b. Current in the resistors,

V   R1  I 1 =V  

 R2  I 2 =

V   R3 

 I 3 =

HolisticTuition

Page 16: ch2 electricitt

7/29/2019 ch2 electricitt

http://slidepdf.com/reader/full/ch2-electricitt 16/19

Home 

End 

HolisticTuition 

CashPlants 16

< Back  

Next > 

Electromotive ForceElectromotive force (e.m.f.), E  

Work done to drive a unit charge (1 C) around circuit

 – where the unit is

volt, V = J C-1

Using a high resistance voltmeter 

Potential difference V < e.m.f. E 

because work is done to drive a

charge through a cell with internalresistance, r .

 E = 1.5 V

V

 I  

r  

 R I 

 E = V + Ir = I ( R + r ) 

 E  

V  

 R + r   R 

r   R = = 1 +

HolisticTuition

Page 17: ch2 electricitt

7/29/2019 ch2 electricitt

http://slidepdf.com/reader/full/ch2-electricitt 17/19

Home 

End 

HolisticTuition 

CashPlants 17

< Back  

Next > 

Electrical EnergyThe potential difference V across a conductor is the

work done in moving a charge of 1 C across the

conductor. The work done is transformed into heat

which is dissipated from the conductor.

From volt, V = J C-1 = Energy dissipated, E

Charge, Q

Energy dissipated, E = QV Q = It  

= IVt V = IR 

= I 2 Rt I = V/R 

V 2t 

 RE = 

substitutions

HolisticTuition

Page 18: ch2 electricitt

7/29/2019 ch2 electricitt

http://slidepdf.com/reader/full/ch2-electricitt 18/19

Home 

End 

HolisticTuition 

CashPlants 18

< Back  

Next > 

Electrical Power

Electrical power, P =

Energy dissipated

Time, t 

V 2

 R P =

=  I 2 R I = V/R=  IV V = IR

substitutions

 E = IVt 

Power rating of an electrical appliance is the power 

consumed by it when the stated voltage is applied.

V 2

 P Resistance of the appliance, R =

1 unit of electrical energy consumed = 1 kW h

= (1000 Js-1)(3600 s) = 3.6 x 106 J

Cost of electrical energy = units x cost per unit

HolisticTuition

Page 19: ch2 electricitt

7/29/2019 ch2 electricitt

http://slidepdf.com/reader/full/ch2-electricitt 19/19

Home 

End 

HolisticTuition 

19

Summary

< Back  

What you have learned:

1. Electric fields & charge flow

Thank You

2. Electric current & potential difference

3. Series & parallel circuits

4. Electromotive force & internal resistance

5. Electrical energy & power