Transcript

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.11, 2014

143

Asymptotic Properties of Bayes Factor in One- Way Repeated

Measurements Model

Ameera Jaber Mohaisen and Khawla Abdul Razzaq Swadi

Mathematics Department College of Education for Pure Science AL-Basrah University-Iraq

E-mail: [email protected]

Abstract

In this paper, we consider the linear one- way repeated measurements model which has only one within units

factor and one between units factor incorporating univariate random effects as well as the experimental error

term. In this model, we investigate the consistency property of Bayes factor for testing the fixed effects linear

one- way repeated measurements model against the mixed one- way repeated measurements alternative model.

Under some conditions on the prior and design matrix, we identify the analytic form of the Bayes factor and

show that the Bayes factor is consistent.

Keywords: One- Way Repeated Measurements Model, ANOVA, Mixed model, Prior Distribution, Posterior

Distribution, covariance matrix, Bayes Factor, Consistent.

1. Introduction

Repeated measurements occur frequently in observational studies which are longitudinal in nature, and in

experimental studies incorporating repeated measures designs. For longitudinal studies, the underlying

metameter for the occasions at which measurements are taken is usually time. Here, interest often centers around

modeling the response as linear or nonlinear function of time, Repeated measures designs, on the other hand,

entail one or more response variables being measured repeatedly on each individual over arrange of conditions.

Here the metameter may be time or it may be a set of experimental conditions (e.g. ,dose levels of a drug).

Repeated measurements analysis is widely used in many fields, for example , in the health and life science,

epidemiology, biomedical, agricultural, industrial, psychological, educational researches and so on.[2],[3],[17]

A balanced repeated measurements design means that the p occasions of measurements are the same for all of

the experimental units. A complete repeated measurements design means that measurements are available each

time point for each experimental unit. A typical repeated measurements design consist of experimental units or

subjects randomized to a treatment (a between-units factor) and remaining on the assigned treatment throughout

the course of the experiment. [2],[3],[17]

A one โ€“way repeated measurements analysis of variance refers to the situation with only one within-units

factor and a multi-way repeated measurements analysis of variance to the situation with more than one within

units factor. This is because the number of within factors, and not the number or between factor, dictates the

complexity of repeated measurements analysis of variance.[2],[3],[4],[12],[17]

In this paper, we consider the linear one- way repeated measurements model which has only one within units

factor and one between units factor incorporating univariate random effects as well as the experimental error

term, we can represent repeated measurements model as a mixed model.

The asymptotic properties of the Bayes factor have been studied mainly in nonparametric density estimation

problems related to goodness of fit testing [1],[5],[7],[8],[9],[15],[16]. Choi, Taeryon and et al in (2009) [6]

studied the semiparametric additive regression models as the encompassing model with algebraic smoothing and

obtained the closed form of the Bayes factor and studied the asymptotic behavior of the Bayes factor based on

the closed form. Mohaisen, A. J. and Abdulhussain , A. M. in (2013)[11] investigated large sample properties of

the Bayes factor for testing the pure polynomial component of spline null model whose mean function consists

of only the polynomial component against the fully spline semiparametric alternative model whose mean

function comprises both the pure polynomial and the component spline basis functions. In this paper, we

investigate the consistency property of Bayes factor for testing the fixed effects linear one- way repeated

measurements model against the mixed one- way repeated measurements alternative model. Under some

conditions on the prior and design matrix, we identify the analytic form of the Bayes factor and show that the

Bayes factor is consistent.

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.11, 2014

144

2. One- Way Repeated Measurements Model

Consider the model

yijk = ฮผ+ ฯ„j + ฮดi(j) + ฮณk+ (ฯ„ฮณ)jk + eijk (1)

Where

i=1,โ€ฆ.,n is an index for experimental unit within group j ,

j=1,โ€ฆ,q is an index for levels of the between-units factor (Group) ,

k=1,โ€ฆ,p is an index for levels of the within-units factor (Time) ,

yijk is the response measurement at time k for unit i within group j,

ยต is the overall mean ,

ฯ„j is the added effect for treatment group j ,

ฮด i(j) is the random effect for due to experimental unit i within treatment group j ,

๐›พ๐‘˜ is the added effect for time k ,

(ฯ„ฮณ)jk is the added effect for the group j ร— time k interaction ,

e ijk is the random error on time k for unit i within group j ,

For the parameterization to be of full rank, we imposed the

following set of conditions

โˆ‘ ฯ„j=0qj=1 , โˆ‘ ฮณ

k=0

pk=1 , โˆ‘ (ฯ„ฮณ)jk=0

qj=1 for each k=1,โ€ฆ,p

โˆ‘ (ฯ„ฮณ)jk=0pk=1 for each j=1,โ€ฆ,q .

And we assumed that the eijk and ฮดi(j) are indepndent with

eijk ~ i.i.d N (0,ฯƒe2) , ฮดij ~ i.i.d N (0,ฯƒฮด2) (2)

The model (1) is rewritten as follows

๐‘Œ = ๐‘‹๐›ฝ + ๐‘๐‘ + ๐œ– (3)

Where

Y = [

y111y112โ‹ฎ

ynqp

]

nqpร—1

, ฮฒ = [

ฮผ1ร—1ฯ„qร—1ฮณpร—1

(ฯ„ฮณ)qpร—1

]

(qp+q+p+1)ร—1

, Z = (1Pร—1 โ‹ฏ 0Pร—1โ‹ฎ โ‹ฑ โ‹ฎ

0Pร—1 โ‹ฏ 1Pร—1

)

nqpร—nq

,

b = ฮด =

[ ฮด1(1)

ฮด1(2)โ‹ฎ

ฮดn(q)]

nqร—1

, ๐œ– = [

e111e112โ‹ฎenqp

]

nqpร—1

and ๐‘‹ = (๐‘‹1๐‘‡ , ๐‘‹2

๐‘‡ , ๐‘‹3๐‘‡ , ๐‘‹4

๐‘‡)๐‘‡is an

(๐‘›๐‘ž๐‘ ร— (1 + ๐‘ž + ๐‘ + ๐‘ž๐‘)) design matrix of fixed effects.

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.11, 2014

145

We assume ๐‘›๐‘ž๐‘ < 1 + ๐‘ž + ๐‘ + ๐‘ž๐‘ + ๐‘›๐‘ž, ๐‘›๐‘ž๐‘ + ๐‘  = 1 + ๐‘ž + ๐‘ + ๐‘ž๐‘ + ๐‘›๐‘ž, (๐‘  is integer number and greater

than 1 ), and we assume that the design matrix as the following way:

๐‘€๐‘›๐‘ž๐‘๐‘‡ ๐‘€๐‘›๐‘ž๐‘ = ๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ โˆ€๐‘›๐‘ž๐‘ โ‰ฅ 1 (4)

where:

๐‘€๐‘›๐‘ž๐‘ = [๐‘‹ ๐‘๐‘Ÿ] and ๐‘๐‘Ÿ be the ๐‘›๐‘ž๐‘ ร— [๐‘›๐‘ž๐‘ โˆ’ (1 + ๐‘ž + ๐‘ + ๐‘ž๐‘)] matrix, and let ๐‘ = [๐‘๐‘Ÿ ๐‘๐‘ ].

We would like to choose between a Bayesian mixed one- way repeated measurements model and itโ€™s one- way

repeated measurements model (the model without random effects) by the criterion of the Bayes factor for two

hypotheses,

๐ป0: ๐‘Œ = ๐‘‹๐›ฝ + ๐œ– i . e ๐ป0: yijk = ฮผ+ ฯ„j + ฮณk+ (ฯ„ฮณ)jk + eijk versus

๐ป1: ๐‘Œ = ๐‘‹๐›ฝ + ๐‘๐‘ + ๐œ– i . e ๐ป1: yijk = ฮผ+ ฯ„j + ฮดi(j) + ฮณk+ (ฯ„ฮณ)jk + eijk . (5)

We assume ๐›ฝ and ๐‘ are independent and the prior distribution for the parameters are

๐›ฝ ~ ๐‘(0, โˆ‘0) , where

โˆ‘0 = ๐œŽ๐›ฝ2๐ผ1+๐‘ž+๐‘+๐‘ž๐‘ =

[

๐œŽ๐œ‡2 01ร—๐‘ž 01ร—๐‘

0๐‘žร—1 ๐œŽ๐œ2๐ผ๐‘žร—๐‘ž 0๐‘žร—๐‘

0๐‘ร—1 0๐‘žร—๐‘ ๐œŽ๐›พ2๐ผ๐‘ร—๐‘

01ร—๐‘ž๐‘ 0๐‘žร—๐‘ž๐‘ 0๐‘ร—๐‘ž๐‘

0๐‘ž๐‘ร—1 0๐‘ž๐‘ร—๐‘ž 0๐‘ž๐‘ร—๐‘ ๐œŽ(๐œ๐›พ)2 ๐ผ๐‘ž๐‘ร—๐‘ž๐‘]

(1+๐‘ž+๐‘+๐‘ž๐‘)ร—(1+๐‘ž+๐‘+๐‘ž๐‘)

, (6)

and ๐‘ ~ ๐‘(0, โˆ‘1) , where

โˆ‘1 = ๐œŽ๐‘2๐ผ๐‘›๐‘ž = ๐œŽ๐›ฟ

2๐ผ๐‘›๐‘ž =

[ ๐œŽ๐›ฟ112 0 โ‹ฏ 0

0 ๐œŽ๐›ฟ122 โ‹ฏ 0

โ‹ฎ0

โ‹ฎ0

โ‹ฑ โ‹ฎโ‹ฏ ๐œŽ๐›ฟ๐‘›๐‘ž

2]

๐‘›๐‘žร—๐‘›๐‘ž

. (7)

2.Posterior distribution

From the model (1), we have the following:

๐‘Œ๐‘›๐‘ž๐‘|๐œ‰๐‘›๐‘ž๐‘ ~ ๐‘๐‘›๐‘ž๐‘(๐œ‰๐‘›๐‘ž๐‘, ๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘) , ๐œ‰๐‘›๐‘ž๐‘ ~ ๐‘๐‘›๐‘ž๐‘(0๐‘›๐‘ž๐‘, ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘โˆ‘1๐‘๐‘‡) (8)

where

๐œ‰๐‘–๐‘—๐‘˜ = ฮผ+ ฯ„j + ฮดi(j) + ฮณk+ (ฯ„ฮณ)jk + eijk,for, ๐‘– = 1,2, โ€ฆ , ๐‘›, ๐‘— = 1,โ€ฆ , ๐‘ž ๐‘Ž๐‘›๐‘‘ ๐‘˜ = 1,โ€ฆ , ๐‘.

Then, the posterior distribution ๐œ‹1(๐œ‰๐‘›๐‘ž๐‘|๐‘Œ๐‘›๐‘ž๐‘) is the multivariate normal with

๐ธ(๐œ‰๐‘›๐‘ž๐‘|๐‘Œ๐‘›๐‘ž๐‘ , ๐œŽ๐œ–2) = โˆ‘2(โˆ‘2 + ๐œŽ๐œ–

2๐ผ๐‘)โˆ’1๐‘Œ๐‘›๐‘ž๐‘ , where N=1+q+p+qp+nq and

๐‘‰๐‘Ž๐‘Ÿ(๐œ‰๐‘›๐‘ž๐‘|๐‘Œ๐‘›๐‘ž๐‘, ๐œŽ๐œ–2) = (โˆ‘2

โˆ’1 + (๐œŽ๐œ–2๐ผ๐‘)

โˆ’1)โˆ’1 = โˆ‘2(โˆ‘2 + ๐œŽ๐œ–2๐ผ๐‘ )

โˆ’1๐œŽ๐œ–2๐ผ๐‘

where

โˆ‘2 = ๐‘‹โˆ‘0๐‘‹๐‘‡ + ๐‘โˆ‘1๐‘

๐‘‡ = ๐‘‹

[

๐œŽ๐œ‡2 01ร—๐‘ž 01ร—๐‘

0๐‘žร—1 ๐œŽ๐œ2๐ผ๐‘žร—๐‘ž 0๐‘žร—๐‘

0๐‘ร—1 0๐‘ร—๐‘ž ๐œŽ๐›พ2๐ผ๐‘ร—๐‘

01ร—๐‘ž๐‘ 0๐‘žร—๐‘ž๐‘ 0๐‘ร—๐‘ž๐‘

0๐‘ž๐‘ร—1 0๐‘ž๐‘ร—๐‘ž 0๐‘ž๐‘ร—๐‘ ๐œŽ(๐œ๐›พ)2 ๐ผ๐‘ž๐‘ร—๐‘ž๐‘]

๐‘‹๐‘‡ + ๐‘

[ ๐œŽ๐›ฟ112 0 โ‹ฏ 0

0 ๐œŽ๐›ฟ122 โ‹ฏ 0

โ‹ฎ0

โ‹ฎ0

โ‹ฑ โ‹ฎโ‹ฏ ๐œŽ๐›ฟ๐‘›๐‘ž

2]

๐‘๐‘‡

Then, ๐‘Œ๐‘›๐‘ž๐‘~ ๐‘€๐‘‰๐‘(0, ๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + โˆ‘2). (9)

Hence, the distribution of ๐‘Œ๐‘›๐‘ž๐‘ under ๐ป0 and ๐ป1 are respectively ๐‘๐‘›๐‘ž๐‘(0, ๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡) and

๐‘๐‘›๐‘ž๐‘(0, ๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘โˆ‘1๐‘๐‘‡). (10)

We investigate the consistency of the Bayes factor, under the one- way repeated measurements model with

design matrix of the random effects (๐‘) to the first ๐‘›๐‘ž๐‘ terms. We get

yijk = ฮผ + ฯ„j + ฮดKโˆ— + ฮณk+ (ฯ„ฮณ)jk + eijk , K

โˆ— = 1,โ€ฆ . , (๐‘›๐‘ž๐‘ โˆ’ (1 + ๐‘ž + ๐‘ + ๐‘ž๐‘)).The covariance matrix of the

distribution of ๐‘Œ๐‘›๐‘ž๐‘ under ๐ป1 as:

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.11, 2014

146

๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡ = ๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ +๐‘€๐‘›๐‘ž๐‘๐ท๐‘›๐‘ž๐‘๐‘€๐‘›๐‘ž๐‘๐‘‡ (11)

where โˆ‘1,๐‘Ÿ=๐œŽ๐‘2๐ผ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘) =

[ ๐œŽ๐›ฟ112 0 โ‹ฏ 0

0 ๐œŽ๐›ฟ122 โ‹ฏ 0

โ‹ฎ0

โ‹ฎ0

โ‹ฑ โ‹ฎโ‹ฏ ๐œŽ๐›ฟ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

2]

๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)ร—๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

= ๐œŽ๐›ฟ2๐ผ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘) and ๐ท๐‘›๐‘ž๐‘ = [

โˆ‘0 0๐‘Ÿ101๐‘Ÿ โˆ‘1,๐‘Ÿ

] , where 0๐‘Ÿ1, 01๐‘Ÿ are the matrices for zeros element with size

(1 + ๐‘ž + ๐‘ + ๐‘ž๐‘) ร— (๐‘›๐‘ž๐‘ โˆ’ (1 + ๐‘ž + ๐‘ + ๐‘ž๐‘)) and (๐‘›๐‘ž๐‘ โˆ’ (1 + ๐‘ž + ๐‘ + ๐‘ž๐‘)) ร— (1 + ๐‘ž + ๐‘ + ๐‘ž๐‘) ,

respectively.

Then, we can rewrite (11) by using ๐ท๐‘›๐‘ž๐‘ as:

๐‘€๐‘›๐‘ž๐‘ [๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]๐‘€๐‘›๐‘ž๐‘

๐‘‡ . (12)

Then, the covariance matrix of the distribution of ๐‘Œ๐‘›๐‘ž๐‘ under ๐ป0, can be represented as:

๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘๐‘Ÿ0๐‘Ÿ๐‘Ÿ๐‘๐‘Ÿ๐‘‡ = ๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ +๐‘€๐‘›๐‘ž๐‘๐ถ๐‘›๐‘ž๐‘๐‘€๐‘›๐‘ž๐‘๐‘‡ , where:

๐ถ๐‘›๐‘ž๐‘ = [โˆ‘0 0๐‘Ÿ101๐‘Ÿ 0๐‘Ÿ๐‘Ÿ

]

and 0๐‘Ÿ๐‘Ÿ is the matrix for zeros element with size (๐‘›๐‘ž๐‘ โˆ’ (1 + ๐‘ž + ๐‘ + ๐‘ž๐‘)) ร— (๐‘›๐‘ž๐‘ โˆ’ (1 + ๐‘ž + ๐‘ + ๐‘ž๐‘)), then

we can rewrite the covariance matrix of the distribution of ๐‘Œ๐‘›๐‘ž๐‘ under ๐ป0, the following:

๐‘€๐‘›๐‘ž๐‘ [๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ถ๐‘›๐‘ž๐‘]๐‘€๐‘›๐‘ž๐‘

๐‘‡ (13)

and the covariance matrix of the distribution of ๐‘Œ๐‘›๐‘ž๐‘ under ๐ป1, can be represented as:

๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘โˆ‘1๐‘๐‘‡ = ๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + [๐‘‹ ๐‘]๐บ๐‘›๐‘ž๐‘[๐‘‹ ๐‘]๐‘‡, where:

๐บ๐‘›๐‘ž๐‘ = [โˆ‘0 0๐‘Ÿ101๐‘Ÿ โˆ‘1

]

then we can rewrite the covariance matrix of the distribution of ๐‘Œ๐‘›๐‘ž๐‘ under ๐ป1, the following:

[๐‘‹ ๐‘] [๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐บ๐‘›๐‘ž๐‘] [๐‘‹ ๐‘]

๐‘‡ (14)

Lemma(1):Let the covariance matrices of the distribution of ๐‘Œ๐‘›๐‘ž๐‘ under ๐ป๐‘‚ and ๐ป1 be defined as in (12) and

(13) respectively, and suppose ๐‘€๐‘›๐‘ž๐‘satisfy (4). Then, the following hold.

1 โˆ’๐‘€๐‘›๐‘ž๐‘๐‘€๐‘›๐‘ž๐‘๐‘‡ = ๐‘€๐‘›๐‘ž๐‘

๐‘‡ ๐‘€๐‘›๐‘ž๐‘ = ๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘

2 โˆ’ det(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡) = ๐‘›๐‘ž๐‘1+๐‘ž+๐‘+๐‘ž๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐œ‡

2)(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐œ

2)๐‘ž(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐›พ

2)๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ(๐œ๐›พ)

2 )๐‘ž๐‘

(๐œŽ๐œ–2)๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

3 โˆ’ det(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡) =

(๐‘›๐‘ž๐‘)๐‘›๐‘ž๐‘ (๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐œ‡

2) (๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐œ

2)๐‘ž

(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐›พ

2)๐‘

(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ(๐œ๐›พ)

2 )๐‘ž๐‘

(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐›ฟ

2)๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

4 โˆ’ (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹๐›ด0๐‘‹

๐‘‡)โˆ’1 = 1

๐‘›๐‘ž๐‘2๐‘€๐‘›๐‘ž๐‘ [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ถ๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡

5 โˆ’ (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡)โˆ’1 =

1

๐‘›๐‘ž๐‘2๐‘€๐‘›๐‘ž๐‘ [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡

Proof:-

1 โˆ’ By multiplying ๐‘€๐‘›๐‘ž๐‘ and ๐‘€๐‘›๐‘ž๐‘๐‘‡ to equation (4) from right and left side, we have:-

๐‘€๐‘›๐‘ž๐‘๐‘€๐‘›๐‘ž๐‘๐‘‡ ๐‘€๐‘›๐‘ž๐‘๐‘€๐‘›๐‘ž๐‘

๐‘‡ = ๐‘€๐‘›๐‘ž๐‘๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘๐‘€๐‘›๐‘ž๐‘๐‘‡

= ๐‘€๐‘›๐‘ž๐‘๐‘›๐‘ž๐‘๐‘€๐‘›๐‘ž๐‘๐‘‡

= ๐‘›๐‘ž๐‘๐‘€๐‘›๐‘ž๐‘๐‘€๐‘›๐‘ž๐‘๐‘‡

Multiplying (๐‘€๐‘›๐‘ž๐‘๐‘€๐‘›๐‘ž๐‘๐‘‡ )โˆ’1 to the above equation from left side, we get:-

๐‘€๐‘›๐‘ž๐‘๐‘€๐‘›๐‘ž๐‘๐‘‡ ๐‘€๐‘›๐‘ž๐‘๐‘€๐‘›๐‘ž๐‘

๐‘‡ (๐‘€๐‘›๐‘ž๐‘๐‘€๐‘›๐‘ž๐‘๐‘‡ )โˆ’1 = ๐‘›๐‘ž๐‘๐‘€๐‘›๐‘ž๐‘๐‘€๐‘›๐‘ž๐‘

๐‘‡ (๐‘€๐‘›๐‘ž๐‘๐‘€๐‘›๐‘ž๐‘๐‘‡ )โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘€๐‘›๐‘ž๐‘๐‘‡ = ๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘

2 โˆ’ ๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ = ๐‘€๐‘›๐‘ž๐‘ [๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ถ๐‘›๐‘ž๐‘]๐‘€๐‘›๐‘ž๐‘

๐‘‡ , and by using (4), we get

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.11, 2014

147

= [๐‘‹ , ๐‘๐‘Ÿ]

[ (

๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐œ‡

2) 01ร—๐‘ž 01ร—๐‘ 01ร—๐‘ž๐‘ 01ร—๐‘›๐‘ž

0๐‘žร—1 (๐œŽ๐œ–2๐ผ๐‘ž

๐‘›๐‘ž๐‘+ ๐œŽ๐œ

2๐ผ๐‘ž) 0๐‘žร—๐‘ 0๐‘žร—๐‘ž๐‘ 0๐‘žร—๐‘›๐‘ž

0๐‘ร—1

0๐‘ž๐‘ร—1

0๐‘›๐‘žร—1

0๐‘ร—๐‘ž

0๐‘ž๐‘ร—๐‘ž

0๐‘›๐‘žร—๐‘ž

(๐œŽ๐œ–2๐ผ๐‘

๐‘›๐‘ž๐‘+ ๐œŽ๐›พ

2๐ผ๐‘) 0๐‘ร—๐‘ž๐‘ 0๐‘ร—๐‘›๐‘ž

0๐‘ž๐‘ร—๐‘ (๐œŽ๐œ–2๐ผ๐‘ž๐‘

๐‘›๐‘ž๐‘+ ๐œŽ(๐œ๐›พ)

2 ๐ผ๐‘ž๐‘) 0๐‘ž๐‘ร—๐‘›๐‘ž

0๐‘›๐‘žร—๐‘ 0๐‘›๐‘žร—๐‘ž๐‘๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)]

[๐‘‹ , ๐‘๐‘Ÿ]๐‘‡

=

[ ๐‘›๐‘ž๐‘(

๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐œ‡

2) 01ร—๐‘ž 01ร—๐‘ 01ร—๐‘ž๐‘ 01ร—๐‘›๐‘ž

0๐‘žร—1 ๐‘›๐‘ž๐‘(๐œŽ๐œ–2๐ผ๐‘ž

๐‘›๐‘ž๐‘+ ๐œŽ๐œ

2๐ผ๐‘ž) 0๐‘žร—๐‘ 0๐‘žร—๐‘ž๐‘ 0๐‘žร—๐‘›๐‘ž

0๐‘ร—1

0๐‘ž๐‘ร—1

0๐‘›๐‘žร—1

0๐‘ร—๐‘ž

0๐‘ž๐‘ร—๐‘ž

0๐‘›๐‘žร—๐‘ž

๐‘›๐‘ž๐‘(๐œŽ๐œ–2๐ผ๐‘

๐‘›๐‘ž๐‘+ ๐œŽ๐›พ

2๐ผ๐‘) 0๐‘ร—๐‘ž๐‘ 0๐‘ร—๐‘›๐‘ž

0๐‘ž๐‘ร—๐‘ ๐‘›๐‘ž๐‘(๐œŽ๐œ–2๐ผ๐‘ž๐‘

๐‘›๐‘ž๐‘+ ๐œŽ(๐œ๐›พ)

2 ๐ผ๐‘ž๐‘) 0๐‘ž๐‘ร—๐‘›๐‘ž

0๐‘›๐‘žร—๐‘ 0๐‘›๐‘žร—๐‘ž๐‘ ๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)]

Then

det(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡) = ๐‘›๐‘ž๐‘1+๐‘ž+๐‘+๐‘ž๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐œ‡

2)(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐œ

2)๐‘ž(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐›พ

2)๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ(๐œ๐›พ)

2 )๐‘ž๐‘

(๐œŽ๐œ–2)๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

3 โˆ’ ๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡ = ๐‘€๐‘›๐‘ž๐‘ [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]๐‘€๐‘›๐‘ž๐‘

๐‘‡

= [๐‘‹ ๐‘๐‘Ÿ]

[ (๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐œ‡

2) 01ร—๐‘ž 01ร—๐‘ 01ร—๐‘ž๐‘ 01ร—๐‘›๐‘ž

0๐‘žร—1 (๐œŽ๐œ–2๐ผ๐‘ž๐‘›๐‘ž๐‘

+ ๐œŽ๐œ2๐ผ๐‘ž) 0๐‘žร—๐‘ 0๐‘žร—๐‘ž๐‘ 0๐‘žร—๐‘›๐‘ž

0๐‘ร—1

0๐‘ž๐‘ร—1

0๐‘›๐‘žร—1

0๐‘ร—๐‘ž

0๐‘ž๐‘ร—๐‘ž

0๐‘›๐‘žร—๐‘ž

(๐œŽ๐œ–2๐ผ๐‘๐‘›๐‘ž๐‘

+ ๐œŽ๐›พ2๐ผ๐‘) 0๐‘ร—๐‘ž๐‘ 0๐‘ร—๐‘›๐‘ž

0๐‘ž๐‘ร—๐‘ (๐œŽ๐œ–2๐ผ๐‘ž๐‘๐‘›๐‘ž๐‘

+ ๐œŽ(๐œ๐›พ)2 ๐ผ๐‘ž๐‘) 0๐‘ž๐‘ร—๐‘›๐‘ž

0๐‘›๐‘žร—๐‘ 0๐‘›๐‘žร—๐‘ž๐‘ (๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘) + ๐œŽ๐›ฟ

2๐ผ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘))]

[๐‘‹ ๐‘๐‘Ÿ]๐‘‡

=

[ ๐‘›๐‘ž๐‘(

๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐œ‡

2) 01ร—๐‘ž 01ร—๐‘ 01ร—๐‘ž 01ร—๐‘ž

0๐‘žร—1 ๐‘›๐‘ž๐‘(๐œŽ๐œ–2๐ผ๐‘ž๐‘›๐‘ž๐‘

+ ๐œŽ๐œ2๐ผ๐‘ž) 0๐‘žร—๐‘ 0๐‘žร—๐‘ž๐‘ 0๐‘žร—๐‘›๐‘ž

0๐‘ร—1

0๐‘ž๐‘ร—1

0๐‘›๐‘žร—1

0๐‘ร—๐‘ž

0๐‘ž๐‘ร—๐‘ž

0๐‘›๐‘žร—๐‘ž

๐‘›๐‘ž๐‘(๐œŽ๐œ–2๐ผ๐‘๐‘›๐‘ž๐‘

+ ๐œŽ๐›พ2๐ผ๐‘) 0๐‘ร—๐‘ž๐‘ 0๐‘ร—๐‘›๐‘ž

0๐‘ž๐‘ร—๐‘ ๐‘›๐‘ž๐‘(๐œŽ๐œ–2๐ผ๐‘ž๐‘๐‘›๐‘ž๐‘

+ ๐œŽ(๐œ๐›พ)2 ๐ผ๐‘ž๐‘) 0๐‘ž๐‘ร—๐‘›๐‘ž

0๐‘›๐‘žร—๐‘ 0๐‘›๐‘žร—๐‘ž๐‘ ๐‘›๐‘ž๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘) + ๐œŽ๐›ฟ

2๐ผ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘))]

.

Then

det(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡) = (๐‘›๐‘ž๐‘)๐‘›๐‘ž๐‘(

๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐œ‡

2)(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐œ

2)๐‘ž(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐›พ

2)๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ(๐œ๐›พ)

2 )๐‘ž๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+

๐œŽ๐›ฟ2)๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

4 โˆ’ (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡)โˆ’1 = {๐‘€๐‘›๐‘ž๐‘ [๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ถ๐‘›๐‘ž๐‘]๐‘€๐‘›๐‘ž๐‘

๐‘‡ }โˆ’1

= ๐‘€๐‘›๐‘ž๐‘๐‘‡ โˆ’1

[๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ถ๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘โˆ’1

=๐ผ๐‘›๐‘ž๐‘โˆ’1

๐‘›๐‘ž๐‘๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘๐‘€๐‘›๐‘ž๐‘

๐‘‡ โˆ’1[๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ถ๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘โˆ’1๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘

๐ผ๐‘›๐‘ž๐‘โˆ’1

๐‘›๐‘ž๐‘

=1

(๐‘›๐‘ž๐‘)2๐‘€๐‘›๐‘ž๐‘๐‘€๐‘›๐‘ž๐‘

๐‘‡ ๐‘€๐‘›๐‘ž๐‘๐‘‡ โˆ’1

[๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ถ๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘โˆ’1๐‘€๐‘›๐‘ž๐‘๐‘€๐‘›๐‘ž๐‘

๐‘‡

= 1

(๐‘›๐‘ž๐‘)2๐‘€๐‘›๐‘ž๐‘ [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ถ๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡ (by lemma 1)

5 โˆ’ (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡)โˆ’1 = {๐‘€๐‘›๐‘ž๐‘ [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]๐‘€๐‘›๐‘ž๐‘

๐‘‡ }โˆ’1

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.11, 2014

148

= ๐‘€๐‘›๐‘ž๐‘๐‘‡ โˆ’1

[๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘โˆ’1

=๐ผ๐‘›๐‘ž๐‘โˆ’1

๐‘›๐‘ž๐‘๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘๐‘€๐‘›๐‘ž๐‘

๐‘‡ โˆ’1[๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘โˆ’1๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘

๐ผ๐‘›๐‘ž๐‘โˆ’1

๐‘›๐‘ž๐‘

=1

(๐‘›๐‘ž๐‘)2๐‘€๐‘›๐‘ž๐‘๐‘€๐‘›๐‘ž๐‘

๐‘‡ ๐‘€๐‘›๐‘ž๐‘๐‘‡ โˆ’1

[๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘โˆ’1๐‘€๐‘›๐‘ž๐‘๐‘€๐‘›๐‘ž๐‘

๐‘‡

= 1

(๐‘›๐‘ž๐‘)2๐‘€๐‘›๐‘ž๐‘ [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡ . โˆŽ

3- The Bayes factor

The Bayes factor for testing problem (5) is given by:

๐ต01(yijk) = m(yijk|๐ป๐‘œ)

m(yijk|๐ป1)

=

1

โˆš2๐œ‹๐‘›๐‘ž๐‘1+๐‘ž+๐‘+๐‘ž๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ‡2 )(

๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ2)๐‘ž(

๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐›พ2)๐‘(

๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ(๐œ๐›พ)2 )๐‘ž๐‘(๐œŽ๐œ–

2)๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž)

exp{โˆ’1

2๐‘Œ๐‘›๐‘ž๐‘๐‘‡ (

1

๐‘›๐‘ž๐‘2๐‘€๐‘›๐‘ž๐‘[

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘+ ๐ถ๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡ )๐‘Œ๐‘›๐‘ž๐‘}

1

โˆš2๐œ‹(๐‘›๐‘ž๐‘)๐‘›๐‘ž๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ‡2)(

๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ2)

๐‘ž

(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐›พ2)

๐‘

(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ(๐œ๐›พ)2 )

๐‘ž๐‘

(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐›ฟ2)๐‘›๐‘ž

exp{โˆ’1

2๐‘Œ๐‘›๐‘ž๐‘๐‘‡ (

1

๐‘›๐‘ž๐‘2[๐‘‹ ๐‘][

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘+ ๐บ๐‘›๐‘ž๐‘]

โˆ’1

[๐‘‹ ๐‘]๐‘‡)๐‘Œ๐‘›๐‘ž๐‘}

=

โˆš(๐‘›๐‘ž๐‘)๐‘›๐‘ž๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ‡

2)(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ

2)๐‘ž

(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐›พ

2)๐‘

(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ(๐œ๐›พ)

2 )๐‘ž๐‘

(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐›ฟ

2)๐‘›๐‘ž

โˆš๐‘›๐‘ž๐‘1+๐‘ž+๐‘+๐‘ž๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ‡

2)(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ

2)๐‘ž(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐›พ

2)๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ(๐œ๐›พ)

2 )๐‘ž๐‘(๐œŽ๐œ–2)๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

exp{ โˆ’1

2๐‘›๐‘ž๐‘2๐‘Œ๐‘›๐‘ž๐‘๐‘‡

(๐‘€๐‘›๐‘ž๐‘ [๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ถ๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡ โˆ’[๐‘‹ ๐‘] [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐บ๐‘›๐‘ž๐‘]

โˆ’1

[๐‘‹ ๐‘]๐‘‡)๐‘Œ๐‘›๐‘ž๐‘}. (15)

Now let the approximation of ๐ต01 with design matrix of the random effects (๐‘) to the first ๐‘›๐‘ž๐‘ terms as

following

๏ฟฝฬƒ๏ฟฝ01 =

โˆš(๐‘›๐‘ž๐‘)๐‘›๐‘ž๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ‡

2)(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ

2)๐‘ž(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐›พ

2)๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ(๐œ๐›พ)

2 )๐‘ž๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐›ฟ

2)๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

โˆš๐‘›๐‘ž๐‘1+๐‘ž+๐‘+๐‘ž๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ‡

2)(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ

2)๐‘ž(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐›พ

2)๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ(๐œ๐›พ)

2 )๐‘ž๐‘(๐œŽ๐œ–2)๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

exp{โˆ’1

2๐‘›๐‘ž๐‘2๐‘Œ๐‘›๐‘ž๐‘๐‘‡

(๐‘€๐‘›๐‘ž๐‘ [๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ถ๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡ โˆ’๐‘€๐‘›๐‘ž๐‘ [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡ )๐‘Œ๐‘›๐‘ž๐‘}. (16)

Then,

log๏ฟฝฬƒ๏ฟฝ01 = 1

2log

(๐‘›๐‘ž๐‘)๐‘›๐‘ž๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ‡

2)(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ

2)๐‘ž(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐›พ

2)๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ(๐œ๐›พ)

2 )๐‘ž๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐›ฟ

2)

๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

๐‘›๐‘ž๐‘1+๐‘ž+๐‘+๐‘ž๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ‡

2)(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ

2)๐‘ž(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐›พ

2)๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ(๐œ๐›พ)

2 )๐‘ž๐‘(๐œŽ๐œ–2)๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

โˆ’ 1

2๐‘›๐‘ž๐‘2๐‘Œ๐‘›๐‘ž๐‘๐‘‡

(๐‘€๐‘›๐‘ž๐‘ [๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ถ๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡ โˆ’๐‘€๐‘›๐‘ž๐‘ [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡ )๐‘Œ๐‘›๐‘ž๐‘

2 log๏ฟฝฬƒ๏ฟฝ01 = log(๐‘›๐‘ž๐‘)๐‘›๐‘ž๐‘(

๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐›ฟ

2)

๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

๐‘›๐‘ž๐‘1+๐‘ž+๐‘+๐‘ž๐‘(๐œŽ๐œ–2)๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

โˆ’ 1

๐‘›๐‘ž๐‘2๐‘Œ๐‘›๐‘ž๐‘๐‘‡ (๐‘€๐‘›๐‘ž๐‘ [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ถ๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡

โˆ’๐‘€๐‘›๐‘ž๐‘ [๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡ )๐‘Œ๐‘›๐‘ž๐‘

โ†’ 2 log๏ฟฝฬƒ๏ฟฝ01 = log(๐‘›๐‘ž๐‘)๐‘›๐‘ž๐‘(

๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐›ฟ

2)๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

๐‘›๐‘ž๐‘1+๐‘ž+๐‘+๐‘ž๐‘(๐œŽ๐œ–2)๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

โˆ’1

(๐‘›๐‘ž๐‘)2 {๐‘Œ๐‘›๐‘ž๐‘

๐‘‡ ๐‘€๐‘›๐‘ž๐‘ {[๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ถ๐‘›๐‘ž๐‘]

โˆ’1

โˆ’ [๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ +

๐ท๐‘›๐‘ž๐‘]โˆ’1

}๐‘€๐‘›๐‘ž๐‘๐‘‡ ๐‘Œ๐‘›๐‘ž๐‘}

= log(๐‘›๐‘ž๐‘)๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)(

๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐›ฟ

2)

๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

(๐œŽ๐œ–2)๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

โˆ’1

(๐‘›๐‘ž๐‘)2{๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ๐‘€๐‘›๐‘ž๐‘

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.11, 2014

149

[ 0 01ร—๐‘ž 01ร—๐‘ 01ร—๐‘ž๐‘ 01ร—๐‘›๐‘ž

0๐‘žร—1 0๐‘žร—๐‘ž 0๐‘žร—๐‘ 0๐‘žร—๐‘ž๐‘ 0๐‘žร—๐‘›๐‘ž

0๐‘ร—1

0๐‘ž๐‘ร—1

0๐‘›๐‘žร—1

0๐‘ร—๐‘ž

0๐‘ž๐‘ร—๐‘ž

0๐‘›๐‘žร—๐‘ž

0๐‘ร—๐‘ 0๐‘ร—๐‘ž๐‘ 0๐‘žร—๐‘›๐‘ž 0๐‘ž๐‘ร—๐‘ 0๐‘ž๐‘ร—๐‘ž๐‘ 0๐‘ž๐‘ร—๐‘›๐‘ž

0๐‘›๐‘žร—๐‘ 0๐‘›๐‘žร—๐‘ž๐‘ ( (๐‘›๐‘ž๐‘)2๐œŽ๐›ฟ

2

(๐œŽ๐œ–2+๐‘›๐‘ž๐‘๐œŽ๐›ฟ

2)๐œŽ๐œ–2 )๐ผ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)]

๐‘›๐‘ž๐‘ร—๐‘›๐‘ž๐‘

๐‘€๐‘›๐‘ž๐‘๐‘‡ ๐‘Œ๐‘›๐‘ž๐‘}

= log(๐œŽ๐œ–2+๐‘›๐‘ž๐‘๐œŽ๐›ฟ

2

๐œŽ๐œ–2 )๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘) โˆ’ {๐‘Œ๐‘›๐‘ž๐‘

๐‘‡ ๐‘„๐‘›๐‘ž๐‘๐‘Œ๐‘›๐‘ž๐‘}

where

๐‘„๐‘›๐‘ž๐‘ = 1

(๐‘›๐‘ž๐‘)2๐‘€๐‘›๐‘ž๐‘

[ 0 01ร—๐‘ž 01ร—๐‘ 01ร—๐‘ž๐‘ 01ร—๐‘›๐‘ž

0๐‘žร—1 0๐‘žร—๐‘ž 0๐‘žร—๐‘ 0๐‘žร—๐‘ž๐‘ 0๐‘žร—๐‘›๐‘ž

0๐‘ร—1

0๐‘ž๐‘ร—1

0๐‘›๐‘žร—1

0๐‘ร—๐‘ž

0๐‘ž๐‘ร—๐‘ž

0๐‘›๐‘žร—๐‘ž

0๐‘ร—๐‘ 0๐‘ร—๐‘ž๐‘ 0๐‘žร—๐‘›๐‘ž 0๐‘ž๐‘ร—๐‘ 0๐‘ž๐‘ร—๐‘ž๐‘ 0๐‘ž๐‘ร—๐‘›๐‘ž

0๐‘›๐‘žร—๐‘ 0๐‘›๐‘žร—๐‘ž๐‘ ( (๐‘›๐‘ž๐‘)2๐œŽ๐›ฟ

2

(๐œŽ๐œ–2+๐‘›๐‘ž๐‘๐œŽ๐›ฟ

2)๐œŽ๐œ–2 )๐ผ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)]

๐‘›๐‘ž๐‘ร—๐‘›๐‘ž๐‘

๐‘€๐‘›๐‘ž๐‘๐‘‡ .

The Bayes factor for testing the model in (5) satisfy is consistent if [6]

๐‘™๐‘–๐‘š๐‘›๐‘ž๐‘โ†’โˆž ๐ต01 = โˆž , ๐‘Ž๐‘™๐‘š๐‘œ๐‘ ๐‘ก ๐‘ ๐‘ข๐‘Ÿ๐‘’๐‘™๐‘ฆ ๐‘–๐‘› ๐‘๐‘Ÿ๐‘œ๐‘๐‘Ž๐‘๐‘™๐‘–๐‘ก๐‘ฆ ๐‘ƒ0โˆž under ๐ป0, (17)

๐‘™๐‘–๐‘š๐‘›๐‘ž๐‘โ†’โˆž ๐ต01 = 0 , ๐‘Ž๐‘™๐‘š๐‘œ๐‘ ๐‘ก ๐‘ ๐‘ข๐‘Ÿ๐‘’๐‘™๐‘ฆ ๐‘–๐‘› ๐‘๐‘Ÿ๐‘œ๐‘๐‘Ž๐‘๐‘™๐‘–๐‘ก๐‘ฆ ๐‘ƒ1โˆž under ๐ป1, (18)

Lemma(2):let ๐‘Œ๐‘›๐‘ž๐‘ = (๐‘ฆ111 , โ€ฆ , ๐‘ฆ๐‘›๐‘ž๐‘)๐‘‡ where ๐‘ฆ๐‘–๐‘—๐‘˜ โ€ฒ๐‘  are independent normal random variable

with mean ฮผ + ฯ„j + ฮณk+ (ฯ„ฮณ)jk and variance ๐œŽ๐œ–

2 = 1, then there exist a positive constant ๐ถ1 such that 1

๐‘†๐‘›๐‘ž๐‘,1[โˆ‘ log(1 + ๐‘›๐‘ž๐‘๐œŽ๐›ฟ

2) โˆ’ ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)๐‘–=1 ๐‘Œ๐‘›๐‘ž๐‘

๐‘‡ ๐‘„๐‘›๐‘ž๐‘๐‘Œ๐‘›๐‘ž๐‘] > ๐ถ1 , with probability tending to 1, i.e. log๏ฟฝฬƒ๏ฟฝ01

๐‘›๐‘ž๐‘โ†’โˆžโ†’ โˆž, in probability, where Snqp,1 = โˆ‘

nqpฯƒฮด2

(1+nqpฯƒฮด2)

nqpi=1 .

Proof:

Let Xnqp = ( X111, X121, โ€ฆ , Xnqp) are independent standard normal random variables, Note that Ynqp Xnqp=d +

๐‘‹๐›ฝ and

YnqpT QnqpYnqp = (Xnqp + ๐‘‹๐›ฝ)

TQnqp (Xnqp + ๐‘‹๐›ฝ)

= XnqpT QnqpXnqp + (๐‘‹๐›ฝ)

TQnqp(๐‘‹๐›ฝ) + XnqpT Qnqp(๐‘‹๐›ฝ) + (๐‘‹๐›ฝ)

TQnqpXnqp.

By the property of the design matrix (4) get

(๐‘‹๐›ฝ)TQnqp = (๐‘‹๐›ฝ)T 1

(nqp)2 Mnqp

[ 0 01ร—๐‘ž 01ร—๐‘ 01ร—๐‘ž๐‘ 01ร—๐‘›๐‘ž

0๐‘žร—1 0๐‘žร—๐‘ž 0๐‘žร—๐‘ 0๐‘žร—๐‘ž๐‘ 0๐‘žร—๐‘›๐‘ž

0๐‘ร—1

0๐‘ž๐‘ร—1

0๐‘›๐‘žร—1

0๐‘ร—๐‘ž

0๐‘ž๐‘ร—๐‘ž

0๐‘›๐‘žร—๐‘ž

0๐‘ร—๐‘ 0๐‘ร—๐‘ž๐‘ 0๐‘žร—๐‘›๐‘ž 0๐‘ž๐‘ร—๐‘ 0๐‘ž๐‘ร—๐‘ž๐‘ 0๐‘ž๐‘ร—๐‘›๐‘ž

0๐‘›๐‘žร—๐‘ 0๐‘›๐‘žร—๐‘ž๐‘ ( (๐‘›๐‘ž๐‘)2๐œŽ๐›ฟ

2

(๐œŽ๐œ–2+๐‘›๐‘ž๐‘๐œŽ๐›ฟ

2)๐œŽ๐œ–2 )๐ผ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)]

MnqpT =

1

(๐‘›๐‘ž๐‘)2[๐œ‡, ๐œ, ๐›พ, (๐œ๐›พ)]๐‘›๐‘ž๐‘ (๐ผ1+๐‘ž+๐‘+๐‘ž๐‘ , 0๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

[ 0 01ร—๐‘ž 01ร—๐‘ 01ร—๐‘ž๐‘ 01ร—๐‘›๐‘ž

0๐‘žร—1 0๐‘žร—๐‘ž 0๐‘žร—๐‘ 0๐‘žร—๐‘ž๐‘ 0๐‘žร—๐‘›๐‘ž

0๐‘ร—1

0๐‘ž๐‘ร—1

0๐‘›๐‘žร—1

0๐‘ร—๐‘ž

0๐‘ž๐‘ร—๐‘ž

0๐‘›๐‘žร—๐‘ž

0๐‘ร—๐‘ 0๐‘ร—๐‘ž๐‘ 0๐‘žร—๐‘›๐‘ž 0๐‘ž๐‘ร—๐‘ 0๐‘ž๐‘ร—๐‘ž๐‘ 0๐‘ž๐‘ร—๐‘›๐‘ž

0๐‘›๐‘žร—๐‘ 0๐‘›๐‘žร—๐‘ž๐‘ ( (๐‘›๐‘ž๐‘)

2๐œŽ๐›ฟ2

(๐œŽ๐œ–2+๐‘›๐‘ž๐‘๐œŽ

๐›ฟ

2)๐œŽ๐œ–2 )๐ผ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

]

๐‘›๐‘ž๐‘(๐ผ1+๐‘ž+๐‘+๐‘ž๐‘ , 0๐‘›๐‘žโˆ’(1+๐‘ž+๐‘+๐‘ž๐‘) [๐œ‡, ๐œ, ๐›พ, (๐œ๐›พ)]๐‘‡ = 0.

Then YnqpT QnqpYnqp = Xnqp

T QnqpXnqp.

Now by using the expectation formula of the quadratic form[4],[10],[12],[14], get

0 < ๐ธ(XnqpT QnqpXnqp) = tr(Qnqp) = โˆ‘

nqpฯƒฮด2

(1+nqpฯƒฮด2)

nqpi=1 = Snqp,1

Note that

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.11, 2014

150

Qnqp2 =

1

(nqp)4Mnqp

[ 0 01ร—๐‘ž 01ร—๐‘ 01ร—๐‘ž๐‘ 01ร—๐‘›๐‘ž

0๐‘žร—1 0๐‘žร—๐‘ž 0๐‘žร—๐‘ 0๐‘žร—๐‘ž๐‘ 0๐‘žร—๐‘›๐‘ž

0๐‘ร—1

0๐‘ž๐‘ร—1

0๐‘›๐‘žร—1

0๐‘ร—๐‘ž

0๐‘ž๐‘ร—๐‘ž

0๐‘›๐‘žร—๐‘ž

0๐‘ร—๐‘ 0๐‘ร—๐‘ž๐‘ 0๐‘žร—๐‘›๐‘ž 0๐‘ž๐‘ร—๐‘ 0๐‘ž๐‘ร—๐‘ž๐‘ 0๐‘ž๐‘ร—๐‘›๐‘ž

0๐‘›๐‘žร—๐‘ 0๐‘›๐‘žร—๐‘ž๐‘ ( (๐‘›๐‘ž๐‘)2๐œŽ๐›ฟ

2

(๐œŽ๐œ–2+๐‘›๐‘ž๐‘๐œŽ๐›ฟ

2)๐œŽ๐œ–2 )๐ผ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)]

MnqpT Mnqp

[ 0 01ร—๐‘ž 01ร—๐‘ 01ร—๐‘ž๐‘ 01ร—๐‘›๐‘ž

0๐‘žร—1 0๐‘žร—๐‘ž 0๐‘žร—๐‘ 0๐‘žร—๐‘ž๐‘ 0๐‘žร—๐‘›๐‘ž

0๐‘ร—1

0๐‘ž๐‘ร—1

0๐‘›๐‘žร—1

0๐‘ร—๐‘ž

0๐‘ž๐‘ร—๐‘ž

0๐‘›๐‘žร—๐‘ž

0๐‘ร—๐‘ 0๐‘ร—๐‘ž๐‘ 0๐‘žร—๐‘›๐‘ž 0๐‘ž๐‘ร—๐‘ 0๐‘ž๐‘ร—๐‘ž๐‘ 0๐‘ž๐‘ร—๐‘›๐‘ž

0๐‘›๐‘žร—๐‘ 0๐‘›๐‘žร—๐‘ž๐‘ ( (๐‘›๐‘ž๐‘)

2๐œŽ๐›ฟ2

(๐œŽ๐œ–2+๐‘›๐‘ž๐‘๐œŽ

๐›ฟ

2)๐œŽ๐œ–2 )๐ผ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

]

MnqpT

= 1

(nqp)3Mnqp

[ 0 01ร—๐‘ž 01ร—๐‘ 01ร—๐‘ž๐‘ 01ร—๐‘›๐‘ž

0๐‘žร—1 0๐‘žร—๐‘ž 0๐‘žร—๐‘ 0๐‘žร—๐‘ž๐‘ 0๐‘žร—๐‘›๐‘ž

0๐‘ร—1

0๐‘ž๐‘ร—1

0๐‘›๐‘žร—1

0๐‘ร—๐‘ž

0๐‘ž๐‘ร—๐‘ž

0๐‘›๐‘žร—๐‘ž

0๐‘ร—๐‘ 0๐‘ร—๐‘ž๐‘ 0๐‘žร—๐‘›๐‘ž 0๐‘ž๐‘ร—๐‘ 0๐‘ž๐‘ร—๐‘ž๐‘ 0๐‘ž๐‘ร—๐‘›๐‘ž

0๐‘›๐‘žร—๐‘ 0๐‘›๐‘žร—๐‘ž๐‘ ( (๐‘›๐‘ž๐‘)2๐œŽ๐›ฟ

2

(๐œŽ๐œ–2+๐‘›๐‘ž๐‘๐œŽ๐›ฟ

2)๐œŽ๐œ–2 )

2๐ผ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘) ]

MnqpT

and

tr(Qnqp2 ) =

1

(nqp)2โˆ‘ (

(nqp)2ฯƒฮด2

1+nqpฯƒฮด2)2nqp

i=1 = โˆ‘ (nqpฯƒฮด

2

1+nqpฯƒฮด2)2 = nqp3(

ฯƒฮด2

1+nqpฯƒฮด2)2 = Snqp,2

nqpi=1 .

Using the variance formula of the quadratic form[4],[10],[12],[14], get

var(XnqpT QnqpXnqp) = 2tr(Qnqp

2 ) = 2Snqp,2 = 2โˆ‘ (nqpฯƒฮด

2

1+nqpฯƒฮด2)2nqp

i=1 .

Let cnqp = Snqp,3โˆ’Snqp,1

2Snqp,1 , where Snqp,3 = โˆ‘ log(1 + ๐‘›๐‘ž๐‘๐œŽ๐›ฟ

2)๐‘›๐‘ž๐‘๐‘–=1 = ๐‘›๐‘ž๐‘ log(1 + ๐‘›๐‘ž๐‘๐œŽ๐›ฟ

2) . Then,

Pr { 1

Snqp,1[โˆ‘ log(1 + nqpฯƒฮด

2)2 โˆ’ nqpโˆ’(1+q+p+qp)i=1 Ynqp

T QnqpYnqp] โ‰ค cnqp } = Pr [ {YnqpT QnqpYnqp}

Snqp,1 โ‰ฅ

Snqp,3

Snqp,1โˆ’

cnqp ]

= Pr [ {YnqpT QnqpYnqp}

Snqp,1โˆ’

E(YnqpT QnqpYnqp)

Snqp,1โ‰ฅSnqp,3

Snqp,1โˆ’ cnqp โˆ’

E(YnqpT QnqpYnqp)

Snqp,1 ]

= Pr [ 1

Snqp,1{(Ynqp

T QnqpYnqp) โˆ’ E(YnqpT QnqpYnqp)} โ‰ฅ

Snqp,3โˆ’E(YnqpT QnqpYnqp)

Snqp,1โˆ’ cnqp ]

โ‰ค1

Snqp,12

var(YnqpT QnqpYnqp)

(Snqp,2โˆ’Snqp,1

2Snqp,1)2

= 8Snqp,2

(Snqp,3โˆ’Snqp,1)2

nqpโ†’โˆžโ†’ 0, from the Chebyshev inequality[13] .

Since Snqp,3 โˆ’ Snqp,1 โ‰ฅ c1Snqp,1 for some c1 > 0 and let cnqp โ‰ฅ c1/2.

Then, there exists a positive constant C1 = c1/2 such as 1

Snqp,1[โˆ‘ log(1 + nqpฯƒฮด

2)2 โˆ’ nqpโˆ’(1+q+p+qp)i=1 Ynqp

T QnqpYnqp] > C1, with probability tending to 1.

Then,

2logBฬƒ01 = โˆ‘ log(1 + nqpฯƒฮด2)2 โˆ’

nqpโˆ’(1+q+p+qp)i=1 Ynqp

T QnqpYnqpnqpโ†’โˆžโ†’ โˆž in probability under H0 i.e.

logBฬƒ01nqpโ†’โˆžโ†’ โˆž

Lemma 3: Suppose we have the one- way repeated measurements model, then

1

๐‘†๐‘›๐‘ž๐‘,1๐‘ก๐‘Ÿ (

1

๐‘›๐‘ž๐‘2๐‘€๐‘›๐‘ž๐‘ [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡ โˆ’ [๐‘‹ ๐‘] [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐บ๐‘›๐‘ž๐‘]

โˆ’1

[๐‘‹ ๐‘]๐‘‡)๐‘›๐‘ž๐‘โ†’โˆžโ†’ 0

Proof:

Since[๐‘‹ ๐‘] [๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐บ๐‘›๐‘ž๐‘] [๐‘‹ ๐‘]

๐‘‡ โˆ’๐‘€๐‘›๐‘ž๐‘ [๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]๐‘€๐‘›๐‘ž๐‘

๐‘‡ is the covariance matrix of

๐œ‰โˆ— = ๐›ฟ๐พโˆ— = ๐‘๐‘ ๐‘, ๐พโˆ— = ๐‘›๐‘ž๐‘ โˆ’ (1 + ๐‘ž + ๐‘ + ๐‘ž๐‘), โ€ฆ , ๐‘›๐‘ž๐‘ + ๐‘ , it is a positive definite matrix. Thus

1

๐‘›๐‘ž๐‘2๐‘€๐‘›๐‘ž๐‘ [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡ โˆ’

1

๐‘›๐‘ž๐‘2[๐‘‹ ๐‘] [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐บ๐‘›๐‘ž๐‘]

โˆ’1

[๐‘‹ ๐‘]๐‘‡is also a positive definite matrix.

Thus, ๐‘ก๐‘Ÿ (1

๐‘›๐‘ž๐‘2๐‘€๐‘›๐‘ž๐‘ [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡ ) โ‰ฅ ๐‘ก๐‘Ÿ(

1

๐‘›๐‘ž๐‘2[๐‘‹ ๐‘] [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐บ๐‘›๐‘ž๐‘]

โˆ’1

[๐‘‹ ๐‘]๐‘‡ ), also

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.11, 2014

151

๐‘ก๐‘Ÿ (๐‘๐‘ ๐‘‡ 1

๐‘›๐‘ž๐‘2๐‘€๐‘›๐‘ž๐‘ [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡ ) โ‰ค โˆš๐‘ก๐‘Ÿ(๐‘๐‘ 

๐‘‡๐‘๐‘ )๐‘ก๐‘Ÿ (1

๐‘›๐‘ž๐‘2๐‘€๐‘›๐‘ž๐‘ [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡ )

= โ€–๐‘๐‘ โ€– โ€–1

๐‘›๐‘ž๐‘2๐‘€๐‘›๐‘ž๐‘ [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡ โ€– by the Cauchy-Schwarz inequality, where

โ€–1

๐‘›๐‘ž๐‘2๐‘€๐‘›๐‘ž๐‘ [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡ โ€– = { ๐‘ก๐‘Ÿ ((

1

๐‘›๐‘ž๐‘2๐‘€๐‘›๐‘ž๐‘ [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]๐‘€๐‘›๐‘ž๐‘

๐‘‡ )โˆ’2)}1

2

= [1

๐‘›๐‘ž๐‘2{ ((

๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐œ‡

2) + โˆ‘ (๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐œ

2) + โˆ‘ (๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐›พ

2) + โˆ‘ (๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ(๐œ๐›พ)

2 )๐‘ž๐‘๐‘–=1

๐‘๐‘–=1

๐‘ž๐‘–=1 )

โˆ’2

+

โˆ‘ (๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐›ฟ

2)โˆ’2

๐‘›๐‘ž๐‘โˆ’(1+๐‘ž=๐‘+๐‘ž๐‘)๐‘–=1 }]

1

2

.

Since

((๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐œ‡

2) + โˆ‘ (๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐œ

2) + โˆ‘ (๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐›พ

2) + โˆ‘ (๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ(๐œ๐›พ)

2 )๐‘ž๐‘๐‘–=1

๐‘๐‘–=1

๐‘ž๐‘–=1 )

โˆ’2

= 1

((๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ‡

2)+๐‘ž(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ

2)+๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐›พ

2)+๐‘ž๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ(๐œ๐›พ)

2 ))

2 =

๐‘›๐‘ž๐‘2

((๐œŽ๐œ–2+๐‘›๐‘ž๐‘๐œŽ๐œ‡

2)+๐‘ž(๐œŽ๐œ–2+๐‘›๐‘ž๐‘๐œŽ๐œ

2)+๐‘(๐œŽ๐œ–2+๐‘›๐‘ž๐‘๐œŽ๐›พ

2)+๐‘ž๐‘(๐œŽ๐œ–2+๐‘›๐‘ž๐‘๐œŽ(๐œ๐›พ)

2 ))2 โ‰ค

๐‘›๐‘ž๐‘2

((๐‘›๐‘ž๐‘๐œŽ๐œ‡2)+๐‘ž(๐‘›๐‘ž๐‘๐œŽ๐œ

2)+๐‘(๐‘›๐‘ž๐‘๐œŽ๐›พ2)+๐‘ž๐‘(๐‘›๐‘ž๐‘๐œŽ(๐œ๐›พ)

2 ))2

= 1

((๐œŽ๐œ‡2)+๐‘ž(๐œŽ๐œ

2)+๐‘(๐œŽ๐›พ2)+๐‘ž๐‘(๐œŽ(๐œ๐›พ)

2 ))2 = ๐‘‚(1), and

โˆ‘ (๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐›ฟ

2)โˆ’2

๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)๐‘–=1 =

๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐›ฟ

2)2 โ‰ค

๐‘›๐‘ž๐‘

(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐›ฟ

2)2 =

(๐‘›๐‘ž๐‘)3

(๐œŽ๐œ–2+๐‘›๐‘ž๐‘๐œŽ๐›ฟ

2)2 โ‰ค

(๐‘›๐‘ž๐‘)3

(๐‘›๐‘ž๐‘๐œŽ๐›ฟ2)2 = ๐‘‚(๐‘›๐‘ž๐‘).

Then, โ€–1

๐‘›๐‘ž๐‘2๐‘€๐‘›๐‘ž๐‘ [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡ โ€– = ๐‘‚{(๐‘›๐‘ž๐‘)

1

2 }.

Since ๐‘ ๐‘ข๐‘โ€–๐‘๐‘ โ€– = 1 from the distances between the elements of design matrix ๐‘, then โ€–๐‘๐‘ โ€–2 โ‰ค ๐‘›๐‘ž๐‘.

Thus , 1

๐‘†๐‘›๐‘ž๐‘,1๐‘ก๐‘Ÿ (

1

๐‘›๐‘ž๐‘2๐‘€๐‘›๐‘ž๐‘ [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡ โˆ’

1

๐‘›๐‘ž๐‘2[๐‘‹ ๐‘] [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐บ๐‘›๐‘ž๐‘]

โˆ’1

[๐‘‹ ๐‘]๐‘‡) =

1

๐‘†๐‘›๐‘ž๐‘,1๐‘ก๐‘Ÿ (

1

๐‘›๐‘ž๐‘2๐‘€๐‘›๐‘ž๐‘ [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡ {

1

๐‘›๐‘ž๐‘2[๐‘‹ ๐‘] [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐บ๐‘›๐‘ž๐‘] [๐‘‹ ๐‘]

๐‘‡ โˆ’1

๐‘›๐‘ž๐‘2๐‘€๐‘›๐‘ž๐‘ [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ +

๐ท๐‘›๐‘ž๐‘]๐‘€๐‘›๐‘ž๐‘๐‘‡ } [๐‘‹ ๐‘] [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐บ๐‘›๐‘ž๐‘]

โˆ’1

[๐‘‹ ๐‘]๐‘‡ )

= 1

๐‘†๐‘›๐‘ž๐‘,1โˆ‘ ๐œŽ๐›ฟ

2(๐‘๐พโˆ—๐‘‡ 1

๐‘›๐‘ž๐‘2๐‘€๐‘›๐‘ž๐‘ [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡ (๐‘๐พโˆ—

๐‘‡ 1

๐‘›๐‘ž๐‘2[๐‘‹ ๐‘] [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ +

๐‘›๐‘ž๐‘+๐‘ ๐พโˆ—=๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

๐บ๐‘›๐‘ž๐‘]โˆ’1

[๐‘‹ ๐‘]๐‘‡)๐‘‡) โ‰ค ๐œŽ๐›ฟ2

๐‘†๐‘›๐‘ž๐‘,1โ€–

1

๐‘›๐‘ž๐‘2๐‘€๐‘›๐‘ž๐‘ [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡ โ€–

2

โˆ‘ โ€–๐‘ง๐พโˆ—โ€–2๐‘›๐‘ž๐‘+๐‘ 

๐พโˆ—=๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

โ‰ค๐‘›๐‘ž๐‘๐œŽ๐›ฟ

2

๐‘›๐‘ž๐‘๐‘†๐‘›๐‘ž๐‘,1โˆ‘ 1๐‘›๐‘ž๐‘+๐‘ ๐พโˆ—=๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘) โ‰ค

๐พโˆ—๐œŽ๐›ฟ2

๐‘›๐‘ž๐‘ ๐‘†๐‘›๐‘ž๐‘,1=

๐พโˆ—๐œŽ๐›ฟ2

(๐‘›๐‘ž๐‘)2๐œŽ๐›ฟ2

(1+๐‘›๐‘ž๐‘๐œŽ๐›ฟ2)

=๐พโˆ—(1+๐‘›๐‘ž๐‘๐œŽ๐›ฟ

2)

(๐‘›๐‘ž๐‘)2

Thus

1

๐‘†๐‘›๐‘ž๐‘,1๐‘ก๐‘Ÿ (

1

๐‘›๐‘ž๐‘2๐‘€๐‘›๐‘ž๐‘ [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡ โˆ’

1

๐‘›๐‘ž๐‘2[๐‘‹ ๐‘] [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐บ๐‘›๐‘ž๐‘]

โˆ’1

[๐‘‹ ๐‘]๐‘‡) โ‰ค ๐พโˆ—(1+๐‘›๐‘Ž๐‘๐œŽ๐›ฟ

2)

(๐‘›๐‘ž๐‘)2

๐‘›๐‘ž๐‘โ†’โˆžโ†’ 0

Theorem(1): Suppose that the true model is the one- way repeated measurements model with fixed effect

only (the model under ๐ป0 in 5), and let ๐‘ƒ0๐‘›๐‘ž๐‘

denote the true distribution of the data, with probability density

function ๐‘ƒ0( yijk|ฮผ, ฯ„j, ฮณk, (ฯ„ฮณ)jk) = ๐›ท{(๐‘ฆ๐‘–๐‘—๐‘˜ โˆ’ ฮผ โˆ’ ฯ„j โˆ’ ฮณkโˆ’ (ฯ„ฮณ)jk)/ ๐œŽ๐œ–} , where ๐›ท(โˆ™) is the standard normal

density, then, the Bayes factor is consistent under the null hypothesis ๐ป0 i.e

lim๐‘›๐‘ž๐‘โ†’โˆž ๐ต01 = โˆž in probability ๐‘ƒ0๐‘›๐‘ž๐‘

.

Proof:

log ๐ต01 = 1

2log

det (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡+๐‘โˆ‘1๐‘๐‘‡)

det (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡)โˆ’1

2๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ( (๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡)โˆ’1โˆ’(๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡ + ๐‘โˆ‘1๐‘

๐‘‡)โˆ’1)๐‘Œ๐‘›๐‘ž๐‘

=1

2log

det (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡+๐‘โˆ‘1๐‘๐‘‡)

det (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡+๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡)+

1

2log

det (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡+๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡)

det (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡)โˆ’1

2๐‘Œ๐‘›๐‘ž๐‘๐‘‡ (๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡) โˆ’1

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.11, 2014

152

โˆ’(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡)โˆ’1)๐‘Œ๐‘›๐‘ž๐‘ โˆ’

1

2๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ((๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ

๐‘‡)โˆ’1โˆ’(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ +

๐‘โˆ‘1๐‘๐‘‡)โˆ’1)๐‘Œ๐‘›๐‘ž๐‘

= log๏ฟฝฬƒ๏ฟฝ01 +1

2log

det (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡+๐‘โˆ‘1๐‘๐‘‡)

det (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡+๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡) โˆ’

1

2๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ((๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ

๐‘‡)โˆ’1โˆ’(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ +

๐‘โˆ‘1๐‘๐‘‡)โˆ’1)๐‘Œ๐‘›๐‘ž๐‘

Since (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘โˆ‘1๐‘๐‘‡) โˆ’ (๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ

๐‘‡) is a positive definite matrix,

๐‘‘๐‘’๐‘ก (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘โˆ‘1๐‘๐‘‡) โ‰ฅ ๐‘‘๐‘’๐‘ก (๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ

๐‘‡), thus

1

2log

det (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡+๐‘โˆ‘1๐‘๐‘‡)

det (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡+๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡) โ‰ฅ 0

๐ธ( ๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ((๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ

๐‘‡)โˆ’1โˆ’(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘โˆ‘1๐‘๐‘‡)โˆ’1)๐‘Œ๐‘›๐‘ž๐‘) = ๐œŽ๐œ–

2 ๐‘ก๐‘Ÿ((๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ +

๐‘‹โˆ‘0๐‘‹๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ

๐‘‡)โˆ’1 โˆ’ (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘โˆ‘1๐‘๐‘‡)โˆ’1) + (๐‘‹๐›ฝ)๐‘‡((๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ

๐‘‡)โˆ’1 โˆ’

(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘โˆ‘1๐‘๐‘‡)โˆ’1)(๐‘‹๐›ฝ) ,

since (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡)โˆ’1 โˆ’ (๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡ + ๐‘โˆ‘1๐‘

๐‘‡)โˆ’1 , (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡)โˆ’1

and (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘โˆ‘1๐‘๐‘‡)โˆ’1 are all nonnegative definite matrices, it follows that

0 โ‰ค (๐‘‹๐›ฝ)๐‘‡((๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡)โˆ’1 โˆ’ (๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + (๐‘‹โˆ‘0๐‘‹๐‘‡ + ๐‘โˆ‘1๐‘

๐‘‡)โˆ’1)(๐‘‹๐›ฝ) โ‰ค (๐‘‹๐›ฝ)๐‘‡

(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡)โˆ’1 (๐‘‹๐›ฝ).

By the property of design matrix (4), we get

๐‘‹๐‘‡๐‘€๐‘›๐‘ž๐‘ = ๐‘€๐‘›๐‘ž๐‘๐‘‡ ๐‘‹ = ๐‘›๐‘ž๐‘ (๐ผ1+๐‘ž+๐‘+๐‘ž๐‘ , 0๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘).

Now as the proof of lemma (3), we get:

(๐‘‹๐›ฝ)๐‘‡(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡)โˆ’1(๐‘‹๐›ฝ) =

1

(๐‘›๐‘ž๐‘)2(๐‘‹๐›ฝ)๐‘‡๐‘€๐‘›๐‘ž๐‘ [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡ (๐‘‹๐›ฝ)

=1

(๐‘›๐‘ž๐‘)2[๐œ‡, ๐œ, ๐›พ, (๐œ๐›พ)]๐‘›๐‘ž๐‘ (๐ผ1+๐‘ž+๐‘+๐‘ž๐‘ , 0๐‘›๐‘žโˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

[ (๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐œ‡

2) 01ร—๐‘ž 01ร—๐‘ 01ร—๐‘ž๐‘ 01ร—๐‘›๐‘ž

0๐‘žร—1 (๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐œ

2)๐ผ๐‘ž 0๐‘žร—๐‘ 0๐‘žร—๐‘ž๐‘ 0๐‘žร—๐‘›๐‘ž

0๐‘ร—1

0๐‘ž๐‘ร—1

0๐‘›๐‘žร—1

0๐‘ร—๐‘ž

0๐‘ž๐‘ร—๐‘ž

0๐‘›๐‘žร—๐‘ž

(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐›พ

2)๐ผ๐‘ 0๐‘ร—๐‘ž๐‘ 0๐‘ร—๐‘›๐‘ž

0๐‘ž๐‘ร—๐‘ (๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ(๐œ๐›พ)

2 )๐ผ๐‘ž๐‘ 0๐‘ž๐‘ร—๐‘›๐‘ž

0๐‘›๐‘žร—๐‘ 0๐‘›๐‘žร—๐‘ž๐‘ (๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐›ฟ

2)๐ผ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘) ] โˆ’1

๐‘›๐‘ž๐‘

(๐ผ1+๐‘ž+๐‘+๐‘ž๐‘ , 0๐‘›๐‘žโˆ’(1+๐‘ž+๐‘+๐‘ž๐‘) [๐œ‡, ๐œ, ๐›พ, (๐œ๐›พ)]๐‘‡

= ๐œ‡2 [๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐œ‡

2]โˆ’1

+ โˆ‘ ๐œ๐‘–2๐‘ž

๐‘–=1 [๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐œ

2]โˆ’1

+ โˆ‘ ๐›พ๐‘–2๐‘

๐‘–=1 [๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐›พ

2]โˆ’1

+ โˆ‘ (๐œ๐›พ)๐‘–2๐‘ž๐‘

๐‘–=1 [๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ(๐œ๐›พ)

2 ]โˆ’1

= ๐‘‚(1).

Since ๐‘๐‘Ÿ { 1

๐‘†๐‘›๐‘ž๐‘,1๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ((๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ

๐‘‡)โˆ’1โˆ’(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘โˆ‘1๐‘๐‘‡)โˆ’1)๐‘Œ๐‘›๐‘ž๐‘ > ํœ€ } โ‰ค

1

๐‘†๐‘›๐‘ž๐‘,1 {

๐ธ( ๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ((๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹๐‘‡+๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ

๐‘‡)โˆ’1โˆ’(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡+๐‘โˆ‘1๐‘๐‘‡)โˆ’1)๐‘Œ๐‘›๐‘ž๐‘)

}

โ‰ค 1

๐‘†๐‘›๐‘ž๐‘,1

๐‘ก๐‘Ÿ((๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡+๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡)โˆ’1โˆ’(๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹๐‘‡+๐‘โˆ‘1๐‘

๐‘‡)โˆ’1

+ 1

๐‘†๐‘›๐‘ž๐‘,1

(๐‘‹๐›ฝ)๐‘‡(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡+๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡)โˆ’1 (๐‘‹๐›ฝ)

๐‘›๐‘ž๐‘โ†’โˆžโ†’ 0 (by the Markov inequality[13], where ํœ€ > 0) .

Since (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡)โˆ’1 โˆ’ (๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡ + ๐‘โˆ‘1๐‘

๐‘‡)โˆ’1 is nonnegative definite โ†’

๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ((๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ

๐‘‡)โˆ’1โˆ’(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘โˆ‘1๐‘๐‘‡)โˆ’1)๐‘Œ๐‘›๐‘ž๐‘ is nonnegative .

Therefore,

โˆ’1

2๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ((๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ

๐‘‡)โˆ’1โˆ’(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘โˆ‘1๐‘๐‘‡)โˆ’1)๐‘Œ๐‘›๐‘ž๐‘ = ๐‘œ(๐‘†๐‘›๐‘ž๐‘,1)

โ‡’ โˆ’

1

2๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ((๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ

๐‘‡)โˆ’1โˆ’(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘โˆ‘1๐‘๐‘‡)โˆ’1)๐‘Œ๐‘›๐‘ž๐‘

๐‘†๐‘›๐‘ž๐‘,1

= ๐‘œ(1)

Then, as in lemma (2) there exists a constant ๐ถ1 such that

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.11, 2014

153

1

๐‘†๐‘›๐‘ž๐‘,1log ๐ต01 โ‰ฅ

1

๐‘†๐‘›๐‘ž๐‘,1log ๏ฟฝฬƒ๏ฟฝ01 + ๐‘œ(1) > ๐ถ1 + ๐‘œ(1).

That is,

๐ต01 โ‰ฅ exp( ๐‘†๐‘›๐‘ž๐‘,1{ ๐ถ1 + ๐‘œ(1)}) ๐‘›๐‘ž๐‘โ†’โˆžโ†’ โˆž in probability ๐‘ƒ0

๐‘›๐‘ž๐‘.โˆŽ

Lemma(4):

Assuming that the true model is the mixed one-way repeated measurements model (the model under ๐ป1in 5). Let

๐‘Œ๐‘›๐‘ž๐‘ = (๐‘ฆ1 , โ€ฆ , ๐‘ฆ๐‘›๐‘ž๐‘) where ๐‘ฆ๐‘–๐‘—๐‘˜ โ€ฒ๐‘  are independent normal random variables with mean ฮผ+ ฯ„j + ฮดi(j) + ฮณk+

(ฯ„ฮณ)jk and variance ๐œŽ๐œ–2 = 1 and let ๐‘ค๐‘›๐‘ž๐‘ = ๐ธ(๐‘Œ๐‘›๐‘ž๐‘)

๐‘‡๐‘„๐‘›๐‘ž๐‘ ๐ธ(๐‘Œ๐‘›๐‘ž๐‘).

Then, lim๐‘›๐‘ž๐‘โ†’โˆž1

๐‘ค๐‘›๐‘ž๐‘๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ๐‘„๐‘›๐‘ž๐‘๐‘Œ๐‘›๐‘ž๐‘ = 1, in probability ๐‘ƒ1

โˆž.

Proof:

From the moment formula of the quadratic form of normal random variables, the expectation and variance of

quadratic form ๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ๐‘„๐‘›๐‘ž๐‘๐‘Œ๐‘›๐‘ž๐‘ are given by:

๐ธ(๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ๐‘„๐‘›๐‘ž๐‘๐‘Œ๐‘›๐‘ž๐‘ ) = ๐‘ก๐‘Ÿ (๐‘„๐‘›๐‘ž๐‘) + ๐ธ(๐‘Œ๐‘›๐‘ž๐‘)

๐‘‡๐‘„๐‘›๐‘ž๐‘ ๐ธ(๐‘Œ๐‘›๐‘ž๐‘)

= โˆ‘๐‘›๐‘ž๐‘๐œŽ๐›ฟ

2

(1+๐‘›๐‘ž๐‘๐œŽ๐›ฟ2)

๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)๐‘–=1 + ๐ธ(๐‘Œ๐‘›๐‘ž๐‘)

๐‘‡๐‘„๐‘›๐‘ž๐‘ ๐ธ(๐‘Œ๐‘›๐‘ž๐‘)

= ๐‘†๐‘›๐‘ž๐‘,1 + ๐‘ค๐‘›๐‘ž๐‘ , and

๐‘ฃ๐‘Ž๐‘Ÿ(๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ๐‘„๐‘›๐‘ž๐‘๐‘Œ๐‘›๐‘ž๐‘ ) = 2๐‘ก๐‘Ÿ (๐‘„๐‘›๐‘ž๐‘

2) + 4๐ธ(๐‘Œ๐‘›๐‘ž๐‘)๐‘‡๐‘„๐‘›๐‘ž๐‘

2 ๐ธ(๐‘Œ๐‘›๐‘ž๐‘).

Note

๐‘ค๐‘›๐‘ž๐‘ = ๐ธ(๐‘Œ๐‘›๐‘ž๐‘)๐‘‡๐‘„๐‘›๐‘ž๐‘ ๐ธ(๐‘Œ๐‘›๐‘ž๐‘)

= (๐œ‡, ๐œ๐‘‡ , ๐›พ๐‘‡ , (๐œ๐›พ)๐‘‡ , ๐›ฟ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)๐‘‡ )๐‘€๐‘›๐‘ž๐‘

๐‘‡1

๐‘›๐‘ž๐‘2๐‘€๐‘›๐‘ž๐‘

[ 0 01ร—๐‘ž 01ร—๐‘ 01ร—๐‘ž๐‘ 01ร—๐‘›๐‘ž

0๐‘žร—1 0๐‘žร—๐‘ž 0๐‘žร—๐‘ 0๐‘žร—๐‘ž๐‘ 0๐‘žร—๐‘›๐‘ž

0๐‘ร—1

0๐‘ž๐‘ร—1

0๐‘›๐‘žร—1

0๐‘ร—๐‘ž

0๐‘ž๐‘ร—๐‘ž

0๐‘›๐‘žร—๐‘ž

0๐‘ร—๐‘ 0๐‘ร—๐‘ž๐‘ 0๐‘žร—๐‘›๐‘ž 0๐‘ž๐‘ร—๐‘ 0๐‘ž๐‘ร—๐‘ž๐‘ 0๐‘ž๐‘ร—๐‘›๐‘ž

0๐‘›๐‘žร—๐‘ 0๐‘›๐‘žร—๐‘ž๐‘ ( (๐‘›๐‘ž๐‘)

2๐œŽ๐›ฟ2

(๐œŽ๐œ–2+๐‘›๐‘ž๐‘๐œŽ

๐›ฟ

2)๐œŽ๐œ–2 )๐ผ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

]

๐‘€๐‘›๐‘ž๐‘๐‘‡ ๐‘€๐‘›๐‘ž๐‘ (๐œ‡, ๐œ๐‘‡, ๐›พ๐‘‡, (๐œ๐›พ)

๐‘‡, ๐›ฟ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)๐‘‡

)๐‘‡

= (๐œ‡, ๐œ๐‘‡ , ๐›พ๐‘‡ , (๐œ๐›พ)๐‘‡ , ๐›ฟ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)๐‘‡ )

[ 0 01ร—๐‘ž 01ร—๐‘ 01ร—๐‘ž๐‘ 01ร—๐‘›๐‘ž

0๐‘žร—1 0๐‘žร—๐‘ž 0๐‘žร—๐‘ 0๐‘žร—๐‘ž๐‘ 0๐‘žร—๐‘›๐‘ž

0๐‘ร—1

0๐‘ž๐‘ร—1

0๐‘›๐‘žร—1

0๐‘ร—๐‘ž

0๐‘ž๐‘ร—๐‘ž

0๐‘›๐‘žร—๐‘ž

0๐‘ร—๐‘ 0๐‘ร—๐‘ž๐‘ 0๐‘žร—๐‘›๐‘ž

0๐‘ž๐‘ร—๐‘ 0๐‘ž๐‘ร—๐‘ž๐‘ 0๐‘ž๐‘ร—๐‘›๐‘ž

0๐‘›๐‘žร—๐‘ 0๐‘›๐‘žร—๐‘ž๐‘ ( (๐‘›๐‘ž๐‘)2๐œŽ๐›ฟ

2

(๐œŽ๐œ–2+๐‘›๐‘ž๐‘๐œŽ๐›ฟ

2)๐œŽ๐œ–2 ) ๐ผ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)]

(๐œ‡, ๐œ๐‘‡ , ๐›พ๐‘‡ , (๐œ๐›พ)๐‘‡ , ๐›ฟ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)๐‘‡ )

๐‘‡

= ๐›ฟ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)๐‘‡ (

(๐‘›๐‘ž๐‘)2๐œŽ๐›ฟ2

(๐œŽ๐œ–2+๐‘›๐‘ž๐‘๐œŽ๐›ฟ

2)๐œŽ๐œ–2 ) ๐ผ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)๐›ฟ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘) = โˆ‘

(๐‘›๐‘ž๐‘)2๐œŽ๐›ฟ2๐›ฟ๐‘–2

1+๐‘›๐‘ž๐‘๐œŽ๐›ฟ2

๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)๐‘–=1 ,

since ๐‘ ๐‘ข๐‘๐‘– ๐›ฟ๐‘– < โˆž , we have

๐‘ค๐‘›๐‘ž๐‘ โ‰ค ๐‘ ๐‘ข๐‘๐‘– ๐›ฟ๐‘–2 ๐‘›๐‘ž๐‘โˆ‘

๐‘›๐‘ž๐‘๐œŽ๐›ฟ2

1+๐‘›๐‘ž๐‘๐œŽ๐›ฟ2

๐‘›๐‘ž๐‘๐‘–=1 = ๐‘‚(๐‘›๐‘ž๐‘ ๐‘†๐‘›๐‘ž๐‘,1), then ๐‘ค๐‘›๐‘ž๐‘ = ๐‘‚(๐‘›๐‘ž๐‘

2).

Now we can consider ๐›ฟ๐‘š2 > 0 , where ๐‘š โ‰ฅ 1 is a fixed positive integer and a sufficiently large ๐‘›๐‘ž๐‘ with

๐‘›๐‘ž๐‘๐œŽ๐›ฟ2

1+๐‘›๐‘ž๐‘๐œŽ๐›ฟ2 โ‰ฅ

1

2 . Then for such ๐‘›๐‘ž๐‘ and ๐‘š.

๐‘ค๐‘›๐‘ž๐‘ = โˆ‘๐‘›๐‘ž๐‘2๐œŽ๐›ฟ

2๐›ฟ๐‘–2

1+๐‘›๐‘ž๐‘๐œŽ๐›ฟ2

๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)๐‘–=1 โ‰ฅ

๐‘›๐‘ž๐‘2๐œŽ๐›ฟ2

1+๐‘›๐‘ž๐‘๐œŽ๐›ฟ2 ๐›ฟ๐‘š

2

= ๐‘›๐‘ž๐‘ ๐‘›๐‘ž๐‘๐œŽ๐›ฟ

2

1+๐‘›๐‘ž๐‘๐œŽ๐›ฟ2 ๐›ฟ๐‘š

2 โ‰ฅ ๐‘›๐‘ž๐‘๐›ฟ๐‘š2

2.

Similarly to the previous calculation, we have

๐ธ(๐‘Œ๐‘›๐‘ž๐‘)๐‘‡๐‘„๐‘›๐‘ž๐‘2 ๐ธ(๐‘Œ๐‘›๐‘ž๐‘) = (๐œ‡, ๐œ

๐‘‡ , ๐›พ๐‘‡ , (๐œ๐›พ)๐‘‡ , ๐›ฟ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)๐‘‡ )๐‘€๐‘›๐‘ž๐‘

๐‘‡1

(๐‘›๐‘ž๐‘)3๐‘€๐‘›๐‘ž๐‘

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.11, 2014

154

[ 0 01ร—๐‘ž 01ร—๐‘ 01ร—๐‘ž๐‘ 01ร—๐‘›๐‘ž

0๐‘žร—1 0๐‘žร—๐‘ž 0๐‘žร—๐‘ 0๐‘žร—๐‘ž๐‘ 0๐‘žร—๐‘›๐‘ž

0๐‘ร—1

0๐‘ž๐‘ร—1

0๐‘›๐‘žร—1

0๐‘ร—๐‘ž

0๐‘ž๐‘ร—๐‘ž

0๐‘›๐‘žร—๐‘ž

0๐‘ร—๐‘ 0๐‘ร—๐‘ž๐‘ 0๐‘žร—๐‘›๐‘ž 0๐‘ž๐‘ร—๐‘ 0๐‘ž๐‘ร—๐‘ž๐‘ 0๐‘ž๐‘ร—๐‘›๐‘ž

0๐‘›๐‘žร—๐‘ 0๐‘›๐‘žร—๐‘ž๐‘ ( (๐‘›๐‘ž๐‘)

2๐œŽ๐›ฟ2

(๐œŽ๐œ–2+๐‘›๐‘ž๐‘๐œŽ

๐›ฟ

2)๐œŽ๐œ–2 )2

๐ผ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)]

๐‘€๐‘›๐‘ž๐‘๐‘‡ ๐‘€๐‘›๐‘ž๐‘ (๐œ‡, ๐œ๐‘‡, ๐›พ๐‘‡, (๐œ๐›พ)

๐‘‡, ๐›ฟ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)๐‘‡

)๐‘‡

=1

๐‘›๐‘ž๐‘๐›ฟ๐‘›๐‘ž๐‘โˆ’((1+๐‘ž+๐‘+๐‘ž๐‘)๐‘‡ (

(๐‘›๐‘ž๐‘)2๐œŽ๐›ฟ2

(๐œŽ๐œ–2+๐‘›๐‘ž๐‘๐œŽ๐›ฟ

2)๐œŽ๐œ–2 )

2๐ผ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)๐›ฟ๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

=1

๐‘›๐‘ž๐‘โˆ‘

(๐‘›๐‘ž๐‘)4๐œŽ๐›ฟ4๐›ฟ๐‘–2

(1+๐‘›๐‘ž๐‘๐œŽ๐›ฟ2)2

๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)๐‘–=1 .

Since ๐ธ(๐‘Œ๐‘›๐‘ž๐‘)๐‘‡๐‘„๐‘›๐‘ž๐‘2 ๐ธ(๐‘Œ๐‘›๐‘ž๐‘) โ‰ค โˆ‘

(๐‘›๐‘ž๐‘)3๐œŽ๐›ฟ4๐›ฟ๐‘–2

(1+๐‘›๐‘ž๐‘๐œŽ๐›ฟ2)2

๐‘›๐‘ž๐‘๐‘–=1 โ‰ค ๐‘›๐‘ž๐‘ ๐‘ ๐‘ข๐‘๐‘– ๐›ฟ๐‘–

2โˆ‘(๐‘›๐‘ž๐‘)2๐œŽ๐›ฟ

4

(1+๐‘›๐‘ž๐‘๐œŽ๐›ฟ2)2

๐‘›๐‘ž๐‘๐‘–=1 = ๐‘‚( ๐‘›๐‘ž๐‘๐‘†๐‘›๐‘ž๐‘,2) (as in case

of ๐ธ(๐‘Œ๐‘›๐‘ž๐‘)๐‘‡๐‘„๐‘›๐‘ž๐‘ ๐ธ(๐‘Œ๐‘›๐‘ž๐‘)).

Now for previous ๐‘›๐‘ž๐‘ and ๐‘š we can find

๐ธ(๐‘Œ๐‘›๐‘ž๐‘)๐‘‡๐‘„๐‘›๐‘ž๐‘2 ๐ธ(๐‘Œ๐‘›๐‘ž๐‘) = โˆ‘

(๐‘›๐‘ž๐‘)3๐œŽ๐›ฟ4๐›ฟ๐‘–2

(1+๐‘›๐‘ž๐‘๐œŽ๐›ฟ2)2

๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)๐‘–=1 โ‰ฅ ๐‘›๐‘ž๐‘ ๐›ฟ๐‘š

2 (๐‘›๐‘ž๐‘๐œŽ๐›ฟ

2

1+๐‘›๐‘ž๐‘๐œŽ๐›ฟ2)2

โ‰ฅ ๐›ฟ๐‘š2

4 ๐‘›๐‘ž๐‘.

By combining value of ๐‘†๐‘›๐‘ž๐‘,1 and the previous result, get

๐‘ฃ๐‘Ž๐‘Ÿ(๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ๐‘„๐‘›๐‘ž๐‘๐‘Œ๐‘›๐‘ž๐‘ ) โ‰ค ๐‘‚(๐‘›๐‘ž๐‘ ๐‘†๐‘›๐‘ž๐‘,1).

Furthermore, note that ๐ธ(๐‘Œ๐‘›๐‘ž๐‘)๐‘‡๐‘„๐‘›๐‘ž๐‘ ๐ธ(๐‘Œ๐‘›๐‘ž๐‘) โ‰ฅ ๐ธ(๐‘Œ๐‘›๐‘ž๐‘)

๐‘‡๐‘„๐‘›๐‘ž๐‘

2 ๐ธ(๐‘Œ๐‘›๐‘ž๐‘).

By the Chebshev inequality[13] get

๐‘๐‘Ÿ {|1

๐‘ค๐‘›๐‘ž๐‘๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ๐‘„๐‘›๐‘ž๐‘๐‘Œ๐‘›๐‘ž๐‘ โˆ’

๐ธ(๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ๐‘„๐‘›๐‘ž๐‘๐‘Œ๐‘›๐‘ž๐‘)

๐‘ค๐‘›๐‘ž๐‘| > ํœ€ } โ‰ค

๐‘ฃ๐‘Ž๐‘Ÿ(๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ๐‘„๐‘›๐‘ž๐‘๐‘Œ๐‘›๐‘ž๐‘)

๐‘ค๐‘›๐‘ž๐‘2 2 = ๐‘‚(๐‘›๐‘ž๐‘โˆ’2)

๐‘›๐‘ž๐‘โ†’โˆžโ†’ 0, where ํœ€ > 0 .

Since lim๐‘›๐‘ž๐‘โ†’โˆž๐ธ(๐‘Œ๐‘›๐‘ž๐‘

๐‘‡ ๐‘„๐‘›๐‘ž๐‘๐‘Œ๐‘›๐‘ž๐‘)

๐‘ค๐‘›๐‘ž๐‘= lim๐‘›๐‘ž๐‘โ†’โˆž (

๐‘†๐‘›๐‘ž๐‘,1

๐‘ค๐‘›๐‘ž๐‘+๐‘ค๐‘›๐‘ž๐‘

๐‘ค๐‘›๐‘ž๐‘) = 1

โˆด lim๐‘›๐‘ž๐‘โ†’โˆž1

๐‘ค๐‘›๐‘ž๐‘๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ๐‘„๐‘›๐‘ž๐‘๐‘Œ๐‘›๐‘ž๐‘ = 1 , in probability โˆŽ

Lemma(5):

Suppose we have the mixed one- way repeated measurements model, then

lim๐‘›๐‘ž๐‘โ†’โˆž1

๐‘ค๐‘›๐‘ž๐‘log

det(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡+๐‘โˆ‘1๐‘๐‘‡)

det(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡+๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡)= 0

Proof:

Since det(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘โˆ‘1๐‘๐‘‡) โ‰ค โˆ (๐œŽ๐œ–

2 + ๐œŽ๐œ‡2๐‘ฅ๐‘–2 + โˆ‘ ๐œŽ๐œ

2๐‘ฅ๐‘–๐‘˜2 + โˆ‘ ๐œŽ๐›พ

2๐‘ฅ๐‘–๐‘˜2 + โˆ‘ ๐œŽ(๐œ๐›พ)

2๐‘ฅ๐‘–๐‘˜2๐‘ž๐‘

๐‘˜=1

๐‘

๐‘˜=1

๐‘ž

๐‘˜=1 +๐‘›๐‘ž๐‘๐‘–=1

โˆ‘ ๐œŽ๐›ฟ2๐‘›๐‘ž

๐‘˜=1 ๐‘ฅ๐‘–๐‘˜2 ) (from the property of the determinant of the positive definite matrix)

= (๐‘›๐‘ž๐‘)๐‘›๐‘ž๐‘โˆ (๐œŽ๐œ–2

๐‘›๐‘ž๐‘+(๐œŽ๐œ‡2๐‘ฅ๐‘–2+โˆ‘ ๐œŽ๐œ

2๐‘ฅ๐‘–๐‘˜2 +โˆ‘ ๐œŽ๐›พ

2๐‘ฅ๐‘–๐‘˜2 +โˆ‘ ๐œŽ(๐œ๐›พ)

2 ๐‘ฅ๐‘–๐‘˜2๐‘ž๐‘

๐‘˜=1๐‘๐‘˜=1

๐‘ž๐‘˜=1 +โˆ‘ ๐œŽ๐›ฟ

2๐‘›๐‘ž๐‘˜=1 ๐‘ฅ๐‘–๐‘˜

2

๐‘›๐‘ž๐‘ )

๐‘›๐‘ž๐‘๐‘–=1 .

And we have

det(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡) = (๐‘›๐‘ž๐‘)๐‘›๐‘ž๐‘(

๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐œ‡

2)(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐œ

2)๐‘ž(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐›พ

2)๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ(๐œ๐›พ)

2 )๐‘ž๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+

๐œŽ๐›ฟ2)๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘) (from lemma 1).

โ†’ logdet(๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹๐‘‡+๐‘โˆ‘1๐‘

๐‘‡)

det(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡+๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡)= logdet(๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡ + ๐‘โˆ‘1๐‘

๐‘‡) โˆ’ log det(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ +

๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡)

โ‰ค {(๐‘›๐‘ž๐‘)log(๐‘›๐‘ž๐‘) + โˆ‘ log (๐œŽ๐œ–2

๐‘›๐‘ž๐‘+(๐œŽ๐œ‡2๐‘ฅ๐‘–2+โˆ‘ ๐œŽ๐œ

2๐‘ฅ๐‘–๐‘˜2 +โˆ‘ ๐œŽ๐›พ

2๐‘ฅ๐‘–๐‘˜2 +โˆ‘ ๐œŽ(๐œ๐›พ)

2 ๐‘ฅ๐‘–๐‘˜2๐‘ž๐‘

๐‘˜=1๐‘๐‘˜=1

๐‘ž๐‘˜=1 +โˆ‘ ๐œŽ๐›ฟ

2๐‘›๐‘ž๐‘˜=1 ๐‘ฅ๐‘–๐‘˜

2

๐‘›๐‘ž๐‘ )

๐‘›๐‘ž๐‘๐‘–=1 } โˆ’ {๐‘›๐‘ž๐‘log(๐‘›๐‘ž๐‘) +

log (๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐œ‡

2) + ๐‘žlog (๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐œ

2) + ๐‘log (๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐›พ

2) + ๐‘ž๐‘log (๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ(๐œ๐›พ)

2 ) + ๐‘›๐‘ž๐‘ โˆ’ (1 + ๐‘ž + ๐‘ +

๐‘ž๐‘)log (๐œŽ๐œ–2

๐‘›๐‘ž๐‘+ ๐œŽ๐›ฟ

2)} = ๐‘‚(1) โˆ’ ๐‘‚(1) = ๐‘‚(1).

Then

1

๐‘ค๐‘›๐‘ž๐‘log

det(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡+๐‘โˆ‘1๐‘๐‘‡)

det(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡+๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡)

๐‘›๐‘ž๐‘โ†’โˆžโ†’ 0

Theorem(2):

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.11, 2014

155

Suppose that the true model is the mixed one- way repeated measurements model (the model under ๐ป1in 5),

and let ๐‘ƒ1๐‘›๐‘ž๐‘

denote the true distribution of the data, with probability density function

๐‘1(yijk|ฮผฯ„j, ฮดi(j), ฮณk, (ฯ„ฮณ)jk) = ๐›ท{(yijk โˆ’ (ฮผ + ฯ„j + ฮดi(j) + ฮณk+ (ฯ„ฮณ)jk))/๐œŽ๐œ–}, where ๐›ท(โˆ™) is the standard normal

density. Then the Bayes factor is consistent under the alternative hypothesis ๐ป1 i.e

lim๐‘›๐‘ž๐‘โ†’โˆž ๐ต01 = 0 in probability ๐‘ƒ1๐‘›๐‘ž๐‘

.

Proof:

log ๐ต01 = 1

2log

det(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡+๐‘โˆ‘1๐‘๐‘‡)

det (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡)โˆ’1

2๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ((๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡) โˆ’1โˆ’(๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡ + ๐‘โˆ‘1๐‘

๐‘‡)โˆ’1)๐‘Œ๐‘›๐‘ž๐‘

=

1

2log

det (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡+๐‘โˆ‘1๐‘๐‘‡)

det(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡+๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡)+

1

2log

det(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡+๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡)

det (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡)โˆ’1

2๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ((๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡) โˆ’1โˆ’(๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ +

๐‘‹โˆ‘0๐‘‹๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ

๐‘‡)โˆ’1)๐‘Œ๐‘›๐‘ž๐‘ โˆ’

1

2๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ((๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ

๐‘‡)โˆ’1

โˆ’(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘โˆ‘1๐‘๐‘‡)โˆ’1)๐‘Œ๐‘›๐‘ž๐‘

= log๏ฟฝฬƒ๏ฟฝ01 โˆ’1

2๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ((๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡) โˆ’1โˆ’(๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ

๐‘‡)โˆ’1)๐‘Œ๐‘›๐‘ž๐‘ โˆ’

1

2๐‘Œ๐‘›๐‘ž๐‘๐‘‡

((๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡)โˆ’1โˆ’(๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡ + ๐‘โˆ‘1๐‘

๐‘‡)โˆ’1)๐‘Œ๐‘›๐‘ž๐‘ , where

log๏ฟฝฬƒ๏ฟฝ01 =

1

2log

det (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡+๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡)

det (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡)โˆ’1

2๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ((๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡) โˆ’1โˆ’(๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ

๐‘‡)โˆ’1)๐‘Œ๐‘›๐‘ž๐‘ .

From lemma (1), we have

det(๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹๐‘‡+๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ

๐‘‡)

det(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡)=

(๐‘›๐‘ž๐‘)๐‘›๐‘ž๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ‡

2)(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ

2)๐‘ž(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐›พ

2)๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ(๐œ๐›พ)

2 )๐‘ž๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐›ฟ

2)๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

๐‘›๐‘ž๐‘1+๐‘ž+๐‘+๐‘ž๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ‡

2)(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ

2)๐‘ž(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐›พ

2)๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ(๐œ๐›พ)

2 )๐‘ž๐‘(๐œŽ๐œ–2)๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

=๐‘›๐‘ž๐‘๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)(

๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐›ฟ

2)

๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

๐œŽ๐œ–2๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

= (๐œŽ๐œ–2+๐‘›๐‘ž๐‘๐œŽ๐›ฟ

2

๐œŽ๐œ–2 )

๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

=(1 +๐‘›๐‘ž๐‘๐œŽ๐›ฟ

2

๐œŽ๐œ–2 )

๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

= ๐‘‚(๐‘›๐‘ž๐‘)

โŸน log (1 +๐‘›๐‘ž๐‘๐œŽ๐›ฟ

2

๐œŽ๐œ–2 )

๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

= ๐‘‚(๐‘›๐‘ž๐‘).

And from lemma (4) ๐‘ค๐‘›๐‘ž๐‘ = ๐‘‚(๐‘›๐‘ž๐‘2). Then

1

๐‘ค๐‘›๐‘ž๐‘log

det(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡+๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡)

det (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡)= ๐‘‚(๐‘›๐‘ž๐‘โˆ’1)

๐‘›๐‘ž๐‘โ†’โˆžโ†’ 0.

Then,

1

๐‘ค๐‘›๐‘ž๐‘log๏ฟฝฬƒ๏ฟฝ01 =

1

2(

1

๐‘ค๐‘›๐‘ž๐‘ log

det(๐‘‰1,๐‘›๐‘ž๐‘)

det(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡)โˆ’

1

๐‘ค๐‘›๐‘ž๐‘๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ((๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡) โˆ’1โˆ’(๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡ +

๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡)โˆ’1)๐‘Œ๐‘›๐‘ž๐‘).

Since (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡) โˆ’1 โˆ’ (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡)โˆ’1= ๐‘„๐‘›๐‘ž๐‘, then

1

๐‘ค๐‘›๐‘ž๐‘๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ((๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡) โˆ’1โˆ’(๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ

๐‘‡)โˆ’1)๐‘Œ๐‘›๐‘ž๐‘ =

1

๐‘ค๐‘›๐‘ž๐‘๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ๐‘„๐‘›๐‘ž๐‘๐‘Œ๐‘›๐‘ž๐‘. from lemma

(4), lim๐‘›๐‘ž๐‘โ†’โˆž1

๐‘ค๐‘›๐‘ž๐‘๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ๐‘„๐‘›๐‘ž๐‘๐‘Œ๐‘›๐‘ž๐‘ = 1 , then

1

๐‘ค๐‘›๐‘ž๐‘log๏ฟฝฬƒ๏ฟฝ01

๐‘›๐‘ž๐‘โ†’โˆžโ†’ =

1

2(

1

๐‘ค๐‘›๐‘ž๐‘ log

det(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡+๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡)

det(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡)โˆ’

1

๐‘ค๐‘›๐‘ž๐‘๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ((๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡) โˆ’1โˆ’(๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡ +

๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡)โˆ’1)๐‘Œ๐‘›๐‘ž๐‘)

๐‘›๐‘ž๐‘โ†’โˆžโ†’ =

1

2(0 โˆ’ 1) =

โˆ’1

2

โˆด1

๐‘ค๐‘›๐‘ž๐‘log๏ฟฝฬƒ๏ฟฝ01

๐‘›๐‘ž๐‘โ†’โˆžโ†’

โˆ’1

2 , in probability ๐‘ƒ1

๐‘›๐‘ž๐‘.

Now from lemma (5),

1

๐‘ค๐‘›๐‘ž๐‘ 1

2log

det (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡+๐‘โˆ‘1๐‘๐‘‡)

det (๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡+๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡) ๐‘›๐‘ž๐‘โ†’โˆžโ†’ 0, and โˆ’

1

2๐‘Œ๐‘›๐‘ž๐‘๐‘‡ ((๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ

๐‘‡)โˆ’1โˆ’(๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ +

๐‘‹โˆ‘0๐‘‹๐‘‡ + ๐‘โˆ‘1๐‘

๐‘‡)โˆ’1)๐‘Œ๐‘›๐‘ž๐‘ is nonpositive random variable since (๐œŽ๐œ–

2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹๐‘‡ + ๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ

๐‘‡)โˆ’1โˆ’

(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘ + ๐‘‹โˆ‘0๐‘‹

๐‘‡ + ๐‘โˆ‘1๐‘๐‘‡)โˆ’1

is a nonnegative definite matrix.

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.11, 2014

156

Therefore, by combining the above results, there exist ๐ถ2 > 0 such that

lim๐‘›๐‘ž๐‘โ†’โˆž sup1

๐‘ค๐‘›๐‘ž๐‘log ๐ต01 โ‰ค

โˆ’๐ถ2

2, with probability tending to 1.

Then , ๐ต01๐‘›๐‘ž๐‘โ†’โˆžโ†’ 0, in probability ๐‘ƒ1

๐‘›๐‘ž๐‘. โˆŽ

4.Conclusions

1- The posterior distribution ๐œ‹1(๐œ‰๐‘›๐‘ž๐‘|๐‘Œ๐‘›๐‘ž๐‘) is the multivariate normal with

๐ธ(๐œ‰๐‘›๐‘ž๐‘|๐‘Œ๐‘›๐‘ž๐‘ , ๐œŽ๐œ–2) = โˆ‘2(โˆ‘2 + ๐œŽ๐œ–

2๐ผ๐‘)โˆ’1๐‘Œ๐‘›๐‘ž๐‘ , where N=1+q+p+qp+nq and

๐‘‰๐‘Ž๐‘Ÿ(๐œ‰๐‘›๐‘ž๐‘|๐‘Œ๐‘›๐‘ž๐‘, ๐œŽ๐œ–2) = (โˆ‘2

โˆ’1 + (๐œŽ๐œ–2๐ผ๐‘)

โˆ’1)โˆ’1 = โˆ‘2(โˆ‘2 + ๐œŽ๐œ–2๐ผ๐‘ )

โˆ’1๐œŽ๐œ–2๐ผ๐‘, where

๐œ‰๐‘–๐‘—๐‘˜ = ฮผ+ ฯ„j + ฮดi(j) + ฮณk+ (ฯ„ฮณ)jk + eijk,for, ๐‘– = 1,2, โ€ฆ , ๐‘›, ๐‘— = 1,โ€ฆ , ๐‘ž ๐‘Ž๐‘›๐‘‘ ๐‘˜ = 1,โ€ฆ , ๐‘, and

โˆ‘2 = ๐‘‹โˆ‘0๐‘‹๐‘‡ + ๐‘โˆ‘1๐‘

๐‘‡ = ๐‘‹

[

๐œŽ๐œ‡2 01ร—๐‘ž 01ร—๐‘

0๐‘žร—1 ๐œŽ๐œ2๐ผ๐‘žร—๐‘ž 0๐‘žร—๐‘

0๐‘ร—1 0๐‘ร—๐‘ž ๐œŽ๐›พ2๐ผ๐‘ร—๐‘

01ร—๐‘ž๐‘ 0๐‘žร—๐‘ž๐‘ 0๐‘ร—๐‘ž๐‘

0๐‘ž๐‘ร—1 0๐‘ž๐‘ร—๐‘ž 0๐‘ž๐‘ร—๐‘ ๐œŽ(๐œ๐›พ)2 ๐ผ๐‘ž๐‘ร—๐‘ž๐‘]

๐‘‹๐‘‡ + ๐‘

[ ๐œŽ๐›ฟ112 0 โ‹ฏ 0

0 ๐œŽ๐›ฟ122 โ‹ฏ 0

โ‹ฎ0

โ‹ฎ0

โ‹ฑ โ‹ฎโ‹ฏ ๐œŽ๐›ฟ๐‘›๐‘ž

2]

๐‘๐‘‡

2-The Bayes factor for testing problem ๐ป0: yijk = ฮผ + ฯ„j + ฮณk + (ฯ„ฮณ)jk + eijk versus

๐ป1: yijk= ฮผ + ฯ„j + ฮดi(j) + ฮณk + (ฯ„ฮณ)jk + eijk is given by:

๐ต01 =

โˆš(๐‘›๐‘ž๐‘)๐‘›๐‘ž๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ‡

2)(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ

2)๐‘ž

(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐›พ

2)๐‘

(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ(๐œ๐›พ)

2 )๐‘ž๐‘

(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐›ฟ

2)๐‘›๐‘ž

โˆš๐‘›๐‘ž๐‘1+๐‘ž+๐‘+๐‘ž๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ‡

2)(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ

2)๐‘ž(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐›พ

2)๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ(๐œ๐›พ)

2 )๐‘ž๐‘(๐œŽ๐œ–2)๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

exp{ โˆ’1

2๐‘›๐‘ž๐‘2๐‘Œ๐‘›๐‘ž๐‘๐‘‡

(๐‘€๐‘›๐‘ž๐‘ [๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ถ๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡ โˆ’๐‘€๐‘›๐‘ž๐‘ [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐บ๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡ )๐‘Œ๐‘›๐‘ž๐‘}.

3-The approximation of ๐ต01 with design matrix of the random effects (๐‘) to the first ๐‘›๐‘ž๐‘ terms as following

๏ฟฝฬƒ๏ฟฝ01 =

โˆš(๐‘›๐‘ž๐‘)๐‘›๐‘ž๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ‡

2)(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ

2)๐‘ž(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐›พ

2)๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ(๐œ๐›พ)

2 )๐‘ž๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐›ฟ

2)๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

โˆš๐‘›๐‘ž๐‘1+๐‘ž+๐‘+๐‘ž๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ‡

2)(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐œ

2)๐‘ž(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ๐›พ

2)๐‘(๐œŽ๐œ–2

๐‘›๐‘ž๐‘+๐œŽ(๐œ๐›พ)

2 )๐‘ž๐‘(๐œŽ๐œ–2)๐‘›๐‘ž๐‘โˆ’(1+๐‘ž+๐‘+๐‘ž๐‘)

exp{โˆ’1

2๐‘›๐‘ž๐‘2๐‘Œ๐‘›๐‘ž๐‘๐‘‡

(๐‘€๐‘›๐‘ž๐‘ [๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ถ๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡ โˆ’๐‘€๐‘›๐‘ž๐‘ [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡ )๐‘Œ๐‘›๐‘ž๐‘}.

4- If we have the one- way repeated measurements model, then

1

๐‘†๐‘›๐‘ž๐‘,1๐‘ก๐‘Ÿ (

1

๐‘›๐‘ž๐‘2๐‘€๐‘›๐‘ž๐‘ [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐ท๐‘›๐‘ž๐‘]

โˆ’1

๐‘€๐‘›๐‘ž๐‘๐‘‡ โˆ’ [๐‘‹ ๐‘] [

๐œŽ๐œ–2

๐‘›๐‘ž๐‘๐ผ๐‘›๐‘ž๐‘ + ๐บ๐‘›๐‘ž๐‘]

โˆ’1

[๐‘‹ ๐‘]๐‘‡)๐‘›๐‘ž๐‘โ†’โˆžโ†’ 0

5-If the true model is the one-way repeated measurement model with fixed effects only then the Bayes factor is

consistent under the null hypothesis ๐ป0 . This implies that, lim๐‘›๐‘ž๐‘โ†’โˆž ๐ต01 = โˆž in probability ๐‘ƒ0๐‘›๐‘ž๐‘

.

6- If we have the mixed one- way repeated measurements model, then

lim๐‘›๐‘ž๐‘โ†’โˆž1

๐‘ค๐‘›๐‘ž๐‘log

det(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡+๐‘โˆ‘1๐‘๐‘‡)

det(๐œŽ๐œ–2๐ผ๐‘›๐‘ž๐‘+๐‘‹โˆ‘0๐‘‹

๐‘‡+๐‘๐‘Ÿโˆ‘1,๐‘Ÿ๐‘๐‘Ÿ๐‘‡)= 0.

7- If the true model is the mixed one- way repeated measurements model, then the Bayes factor is consistent

under the alternative hypothesis ๐ป1.This implies that, lim๐‘›๐‘ž๐‘โ†’โˆž ๐ต01 = 0 in probability ๐‘ƒ1๐‘›๐‘ž๐‘

.

5.References

[1] Aerts, M. , Claeskens, G. and Hart, J.D., (2004). Bayesian โ€“motivated tests of function fit and their

asymptotic frequentist properties, Ann. Statist. 32 (6), 2580-2615.

[2] Al-Mouel, A.H.S.,(2004) . Multivariate Repeated Measures Models and Comparison of Estimators, h. D.

Thesis, East China Normal University, China.

[3] Al-Mouel , A.H.S., and Wang, J.L,(2004). One โ€“Way Multivariate Repeated Measurements analysis of

Variance Model, Applied Mathematics a Journal of Chinese Universities, 19,4,pp435- 448.

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.11, 2014

157

[4] Arnold, Steven F., (1981). The theory of linear models and multivariate analysis. John Wiley and

Sons, New York. Chichester. Brisbane. Toronto .

[5] Berger, J. O., (1985). Statistical Decision Theory and Bayesian Analysis. Springer, New York.

[6] Choi, T., Lee, J. and Roy, A., (2008). A note on the Bayes factor in a semiparametric regression

model, Journal of Multivariate Analysis. 1316-1327.

[7] Dass, S.C. and Lee, J., (2004). A note on the consistency of Bayes factors for testing point null versus

non-parametric alternatives, J. Statist. plan. Inference 119 (1) 143-152.

[8] Ghosh, J.K. , Delampady, M. and Samanta, T., (2006). Introduction to Bayesian Analysis: Theory and

Methods, Springer, New York.

[9] Gosal, G., Lember, J. and Van der Vaart, A., (2008). Nonparametric Bayesian model selection and

averaging, Electron. J. Stat. 2 63-89.

[10] Graybill, F.A., (1976). Theory and Application of the linear Model, Duxbury press, North Scituate, Mass,

xiv+704.

[11] Mohaisen, A. J. and Abdulhussain , A. M., (2013). Large Sample Property of The Bayes Factor in a Spline

Semiparametric Regression Model , Mathematical Theory and Modeling www.iiste.org ISSN

(Paper)2224-5804 ISSN (Online)2225-0522 Vol 3, No. 11, 2013.

[12] Neter, J. and Wasserman, W. , (1974). Applied linear statistical models, regression analysis of variance

and experimental designs, Richard. D. IRWIN, INC .

[13] Papoulis,A.,(1997). Markoff Sequences in Probability, Random Variables, and Stochastic Processes,

2nd ed. New York . McGraw-Hill, PP. 528-535, 1984.

[14] Tong, Y.L., (1989). The Multivariate Normal Distribution, Springer series in statistics, Springer.

[15] Verdinelli, I. and Wasserman, L., (1998). Bayesian goodness โ€“of-fit testing using infinite- dimensional

exponential families, Ann. Stat.26 (4) 1215-1241.

[16] Vinish, R. Mc , Rousseau, J. and Mengerson, K., (2008). Bayesian goodness โ€“of-fit testing with

mixtures of triangular distributions, Scand. J, statist. in press (doi:10.1111/j.1467- 9469.2008.00620.x).

[17] Vonesh, E.F. and Chinchilli, V.M., (1997). Linear and Nonlinear Models for the Analysis of Repeated

Measurements, Marcel Dakker, Inc., New York.

Business, Economics, Finance and Management Journals PAPER SUBMISSION EMAIL European Journal of Business and Management [email protected]

Research Journal of Finance and Accounting [email protected] Journal of Economics and Sustainable Development [email protected] Information and Knowledge Management [email protected] Journal of Developing Country Studies [email protected] Industrial Engineering Letters [email protected]

Physical Sciences, Mathematics and Chemistry Journals PAPER SUBMISSION EMAIL Journal of Natural Sciences Research [email protected] Journal of Chemistry and Materials Research [email protected] Journal of Mathematical Theory and Modeling [email protected] Advances in Physics Theories and Applications [email protected] Chemical and Process Engineering Research [email protected]

Engineering, Technology and Systems Journals PAPER SUBMISSION EMAIL Computer Engineering and Intelligent Systems [email protected] Innovative Systems Design and Engineering [email protected] Journal of Energy Technologies and Policy [email protected] Information and Knowledge Management [email protected] Journal of Control Theory and Informatics [email protected] Journal of Information Engineering and Applications [email protected] Industrial Engineering Letters [email protected] Journal of Network and Complex Systems [email protected]

Environment, Civil, Materials Sciences Journals PAPER SUBMISSION EMAIL Journal of Environment and Earth Science [email protected] Journal of Civil and Environmental Research [email protected] Journal of Natural Sciences Research [email protected]

Life Science, Food and Medical Sciences PAPER SUBMISSION EMAIL Advances in Life Science and Technology [email protected] Journal of Natural Sciences Research [email protected] Journal of Biology, Agriculture and Healthcare [email protected] Journal of Food Science and Quality Management [email protected] Journal of Chemistry and Materials Research [email protected]

Education, and other Social Sciences PAPER SUBMISSION EMAIL Journal of Education and Practice [email protected] Journal of Law, Policy and Globalization [email protected] Journal of New Media and Mass Communication [email protected] Journal of Energy Technologies and Policy [email protected]

Historical Research Letter [email protected] Public Policy and Administration Research [email protected] International Affairs and Global Strategy [email protected]

Research on Humanities and Social Sciences [email protected] Journal of Developing Country Studies [email protected] Journal of Arts and Design Studies [email protected]

The IISTE is a pioneer in the Open-Access hosting service and academic event management.

The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage:

http://www.iiste.org

CALL FOR JOURNAL PAPERS

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.

Prospective authors of journals can find the submission instruction on the following

page: http://www.iiste.org/journals/ All the journals articles are available online to the

readers all over the world without financial, legal, or technical barriers other than those

inseparable from gaining access to the internet itself. Paper version of the journals is also

available upon request of readers and authors.

MORE RESOURCES

Book publication information: http://www.iiste.org/book/

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open

Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek

EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library , NewJour, Google Scholar


Recommended