Transcript

ANTIDERIVATIVES AND INDEFINITE INTEGRATION

AB Calculus

ANTIDERIVATIVES AND INDEFINITE INTEGRATION

 

Rem:

DEFN: A function F is called an Antiderivative of the function f, if for

every x in f: F /(x) = f(x)

If f (x) = then F(x) =

or since

If f / (x) = then f (x) =

2

2

2

3 7

3 12

3

y x x

y x x

y x x

2 3y x

y

y

23x

3x3 2( ) 3

dx x

dx

23x

3x

2 π‘₯+3

2 π‘₯+3

ANTIDERIVATIVES

Layman’s Idea:

A) What is the function that has f (x) as its derivative?.

-Power Rule:

-Trig:

B) The antiderivative is never unique, all answers must include a

+ C (constant of integration)

1

( ) ( )1

nn x

f x x F xn

( ) cos ( ) sinf x x F x x ( ) sin ( ) cosf x x F x x

The Family of Functions whose derivative is given.

π‘Žπ‘‘π‘‘π‘œπ‘›π‘’π‘‘π‘œ h𝑑 𝑒𝑒π‘₯π‘π‘œπ‘›π‘’π‘›π‘‘π‘›π‘’π‘€π‘’π‘₯π‘π‘œπ‘›π‘’π‘›π‘‘

Family of Graphs +C

The Family of Functions whose derivative is given.

All same equations with different y intercept

𝑑𝑦𝑑π‘₯

=cos (π‘₯)𝑦=βˆ’ sin (π‘₯ )+𝑐

Notation:

Differential Equation

  Differential Form (REM: A Quantity of change)

 Integral symbol =

 Integrand =

 Variable of Integration =  

( )dy

f xdx

( )dy f x dx

( )y f x dx ( )f x

dx

small8-8.1

=sumSumming a bunch of little changes

The Variable of Integration

( )y f x dx

1 22

Gm m

drr

Newton’s Law of gravitational attraction

NOW: dr tells which variable is being integrated r

Will have more meanings later!

The Family of Functions whose derivative is given.

𝑦 β€²=π‘₯3

𝑦=? 𝑦= π‘₯4

4

𝑦 β€²=π‘₯βˆ’ 2

𝑦= π‘₯βˆ’1

βˆ’1

𝑦 β€²=π‘₯12

𝑦=π‘₯

32

32

ΒΏ23π‘₯

32

𝑦 β€²=π‘₯βˆ’ 2

3

𝑦=π‘₯

13

13

=3 π‘₯13

Notation:

Differential Equation

  Differential Form

( REM: A Quantity of change)Increment of change

  Antiderivative or Indefinite Integral

Total (Net) change

3 4dy

xdx

y

(3π‘₯+4 ) 𝑑π‘₯  

(3π‘₯+4 ) 𝑑π‘₯

𝑑𝑦=ΒΏΒΏ

General Solution

A) Indefinite Integration and the Antiderivative are the same thing.  General Solution _________________________________________________________  ILL:

( ) ( )f x dx F x c

(3π‘₯+4 ) 𝑑π‘₯ 3π‘₯𝑑π‘₯+ 4𝑑π‘₯3 (π‘₯

2

2 )+4 π‘₯+𝑐

General Solution: EX 1.

General Solution: The Family of Functions ( ) ( )f x dx F x c

3

1dx

xEX 1:

π‘₯βˆ’3 𝑑π‘₯π‘₯βˆ’ 2

βˆ’2+𝑐

General Solution: EX 2.

General Solution: The Family of Functions ( ) ( )f x dx F x c

(2sin )x dxEX 2:

2 (βˆ’cos π‘₯ )+𝑐

βˆ’2ΒΏ

General Solution: EX 3.

General Solution: The Family of Functions ( ) ( )f x dx F x c / 1( )f x

xEX 3:

Careful !!!!!

ΒΏ π‘₯βˆ’1

π‘₯βˆ’1𝑑π‘₯π‘₯0

0

𝑙𝑛|π‘₯|+𝑐

Verify the statement by showing the derivative of the right side equals the integral of the left side.

(βˆ’ 9

π‘₯4 )𝑑π‘₯

(𝑑2 βˆ’sin (𝑑 ) )𝑑𝑑=ΒΏΒΏ 𝑑3

3+cos (𝑑 )+𝑐

ΒΏ3

π‘₯3 +𝑐

ΒΏπ‘₯3 (0 )βˆ’ 3(3 π‘₯2)

(π‘₯3 )2 ΒΏ βˆ’9 π‘₯2

π‘₯6

ΒΏβˆ’9

π‘₯4 +𝑐

General Solution

A) Indefinite Integration and the Antiderivative are the same thing.  General Solution _________________________________________________________  ILL:

( ) ( )f x dx F x c π‘₯

43

43

=34π‘₯

43 +𝑐

π‘₯βˆ’ 1π‘₯βˆ’12 =

π‘₯βˆ’ 3

2+ 2

2

βˆ’12

=βˆ’ 2π‘₯βˆ’ 1

2 +𝑐

12π‘₯βˆ’ 3=

12 ( π‘₯

βˆ’ 2

βˆ’2 )=βˆ’14π‘₯βˆ’ 2

3√π‘₯ 𝑑π‘₯ 1π‘₯√π‘₯

𝑑π‘₯

1

2 π‘₯3 𝑑π‘₯

Special Considerations

43x dx3π‘₯5

5+𝑐

2( 3)x dx

(π‘₯2 βˆ’6 π‘₯+9 )𝑑π‘₯π‘₯2𝑑π‘₯+βˆ’ 6π‘₯𝑑π‘₯+ 9𝑑π‘₯π‘₯3

3+(βˆ’6 ) π‘₯

2

2+9 π‘₯

π‘₯3

3βˆ’ 3 π‘₯2+9π‘₯+𝑐

π‘₯2βˆ’2 π‘₯+1π‘₯βˆ’1

(π‘₯βˆ’1)(π‘₯βˆ’1)(π‘₯βˆ’ 1)

(π‘₯βˆ’ 1 )𝑑π‘₯

π‘₯𝑑π‘₯βˆ’1𝑑π‘₯π‘₯2

2βˆ’π‘₯+𝑐

Initial Condition Problems:

B) Initial Condition Problems:Particular solution < the single graph of the Family –

through a given point> ILL: through the point (1,1)

-Find General solution

-Plug in Point < Initial Condition >and solve for C

2 1dy

xdx

𝑑𝑦= (2π‘₯βˆ’ 1 )𝑑π‘₯

𝑑𝑦= (2 π‘₯=1 )𝑑π‘₯𝑦=2( π‘₯

2

2 )βˆ’π‘₯+𝑐

𝑦=π‘₯2βˆ’π‘₯+𝑐1= (12 ) βˆ’1+c

1+c

1=𝑐𝑦=π‘₯2βˆ’π‘₯+1

through the point (1,1)

𝑦=π‘₯2βˆ’π‘₯+1

Initial Condition Problems: EX 4.

B) Initial Condition Problems:Particular solution < the single graph of the Family –

through a given point.> Ex 4:

/ 1( )

2f x x

11

2f

𝑦= 12π‘₯𝑑π‘₯

𝑦=12 (π‘₯

2

2 )+𝑐𝑦=

14π‘₯2+𝑐

βˆ’1=14 ( 1

2 )2

+𝑐

βˆ’1=1

16+𝑐

βˆ’1716

=𝑐

𝑦=14π‘₯2βˆ’

1716

Initial Condition Problems: EX 5.

B) Initial Condition Problems:Particular solution < the single graph of the Family –

through a given point.> Ex 5:

/ ( ) cos( )f x x ( ) 13

f

𝑓 (π‘₯ )= cos (π‘₯ )𝑑π‘₯ΒΏ sin π‘₯+𝑐

1=sin( πœ‹3 )+𝑐1=√3

2+𝑐

1 βˆ’ √32

=𝑐

𝑓 (π‘₯ )=sin (π‘₯ )+(1 βˆ’ √32 )

Initial Condition Problems: EX 6.

B) Initial Condition Problems:

A particle is moving along the x - axis such that its acceleration is .

At t = 2 its velocity is 5 and its position is 10.

Find the function, , that models the particle’s motion.

( ) 2a t

( )x tπ‘₯ (𝑑)=𝑣(𝑑)

π‘₯β€² β€² (𝑑 )=π‘Ž(𝑑)

𝑣 (𝑑 )=π‘Ž (𝑑 )𝑑𝑑𝑣 (𝑑 )= 2𝑑𝑑𝑣 (𝑑 )=2𝑑+𝑐5=2 (2 )+𝑐

1=𝑐

𝑣 (𝑑 )=2𝑑+1 π‘₯ (𝑑 )=𝑣 (𝑑 )𝑑𝑑π‘₯ (𝑑 )= (2 𝑑+1 )𝑑𝑑π‘₯ (𝑑 )=2( 𝑑

2

2 )+𝑑+𝑐10=22+2+𝑐

4=𝑐π‘₯ (𝑑 )=𝑑 2+𝑑+4

Initial Condition Problems: EX 7.

B) Initial Condition Problems:

EX 7:

If no Initial Conditions are given: 

Find if/// ( ) 1f x ( )f x

𝑓 β€² β€² (π‘₯ )=1𝑑π‘₯𝑓 β€² β€² (π‘₯ )=π‘₯+𝑐

𝑓 β€² (π‘₯ )= (π‘₯+𝑐 )𝑑π‘₯𝑓 β€² (π‘₯ )= π‘₯2

2+𝑐1π‘₯+𝑐2

𝑓 (π‘₯ )= π‘₯2

2+𝑐1π‘₯+𝑐2

𝑓 (π‘₯ )=12 ( π‘₯

3

3 )+𝑐1(π‘₯2

2 )+𝑐2 π‘₯+𝑐3

Last Update:

β€’ 12/17/10

β€’ Assignment– Xerox


Recommended