62
Zvi Wiener ContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener [email protected] tel: 02-588-3049

Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener [email protected] tel: 02-588-3049

  • View
    217

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 1

Financial Engineering

Zvi [email protected]

tel: 02-588-3049

Page 2: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 2

Main Books

Shimko D. Finance in Continuous Time, A Primer. Kolb Publishing Company, 1992, ISBN 1-878975-07-2 Wilmott P., S. Howison, J. Dewynne, The Mathematics of Financial Derivatives, A Student Introduction, Cambridge University Press, 1996, ISBN 0-521-49789-2

Page 3: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 3

Useful Books

Duffie D., Dynamic Asset Pricing Theory. Duffie D., Security Markets, Stochastic Models. Neftci S., An Introduction to the Mathematics of Financial Derivatives. Steele M., Invitation to Stochastic Differential Equations and Financial Applications. Karatzas I., and S. Shreve, BM and Stochastic Calculus.

Page 4: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 4

Primary Asset Valuation

Discrete-time random walk:

W(t+1) = W(t) + e(t+1);

W(0) = W0;

e~i.i.d. N(0,1)

Page 5: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 5

Primary Asset Valuation

N(0,1)

Page 6: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 6

Primary Asset Valuation

Discrete-time random walk refinement:

W(t+) = W(t) + e(t+);

W(0) = W0;

e~i.i.d. N(0, )

This process has the same expected drift and variance over n periods as the initial process had in one period.

Page 7: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 7

Primary Asset ValuationN(0,1)

t = 0 0.25 0.5 0.75 1

Page 8: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 8

Primary Asset ValuationSet dt

W(t+ dt) = W(t) + e(t+ dt);

W(0) = W0;

e~i.i.d. N(0, dt)

Define dW(t) = W(t+dt) - W(t) white noise,

(dt)a = 0 for any a > 1

Page 9: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 9

Primary Asset Valuation

Needs["Statistics`NormalDistribution`"]

nor[mu_,sig_]:=Random[NormalDistribution[mu,sig]];

tt=NestList[ (#+nor[0, 0.1])&, 0, 300];

ListPlot[tt,PlotJoined->True,PlotLabel->"Random Walk"];

Page 10: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 10

Primary Asset Valuation

50 100 150 200 250 300

-1

-0.5

0.5

Random Walk

Page 11: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 11

Main Properties

1. E[dW(t)] = 0

2. E[dW(t) dt] = E[dW(t)] dt = 0

3. E[dW(t)2] = dt

Page 12: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 12

Main Properties (cont.)

4. Var[dW(t)2] = E[dW(t)4] - E2[dW(t)2] =

3 dt2 - dt2 = 0

5. E[(dW(t)dt)2] = E [dW(t)2] (dt)2 = 0

6. Var[dW(t)dt] =

E[(dW(t)dt)4] - E2[dW(t)dt] = 0

Page 13: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 13

E[dW(t)] = 0

By definition the mean of the normally distributed variable is zero.

Page 14: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 14

E[dW(t) dt] = E[dW(t)] dt = 0

The expectation of the product of a random variable (dW) and a constant (dt) equals the constant times the expected value of the random variable.

Page 15: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 15

E[dW(t)2] = dt

For any distribution with zero mean the expected value of the squared random variable is the same as its variance.

Page 16: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 16

Var[dW(t)2] =

E[dW(t)4] - E2[dW(t)2] =

3 dt2 - dt2 = 0

The fourth central moment of the standard normal distribution is 3, and (dt)2 = 0.

Page 17: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 17

E[(dW(t)dt)2] = E [dW(t)2] (dt)2 = 0

Follows from properties 2 and 3.

Page 18: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 18

Var[dW(t)dt] =

E[(dW(t)dt)4] - E2[dW(t)dt] = 0

Follows from properties 2 and 5.

Page 19: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 19

Important Property

if

Var[f(dW)] = 0then

E[f(dW)] = f(dW)

Page 20: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 20

Multiplication Rules

Rule 1. (dW(t))2 = dt

Rule 2. (dW(t)) dt = 0

Rule 3. dt2 = 0

Page 21: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 21

W(t) is called a standard Wiener process,

or a Brownian motion.

t

dWWtW

WW

0

0

0

)()(

)0(

Page 22: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 22

Major Properties of W

1. W(t) is continuous in t.

2. W(t) is nowhere differentiable.

3. W(t) is a process of unbounded variation.

4. W(t) is a process of bounded quadratic variation.

Page 23: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 23

Major Properties of W

5. The conditional distribution of W(u) given W(t), for u > t, is normal with mean W(t) and variance (u-t).

6. The variance of a forecast W(u) increases indefinitely as u .

Page 24: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 24

Brownian Motion - BM

The standard BM is useful since many general stochastic processes can be written in terms of W.

X(t+1) = X(t) + (X(t),t) + (X(t),t) e(t+1)

X(0) = X0, e~i.i.d. N(0,1)

generalized drift heteroscedastisity (changing variance)

Page 25: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 25

Brownian Motion - BM

Choose a shorter time interval :

X(t+) = X(t) + (X(t),t) + (X(t),t) e(t+ )

X(0) = X0, e~i.i.d. N(0, )

generalized drift heteroscedastisity (changing variance)

Page 26: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 26

Brownian Motion - BM

As we let dt we see that

dX(t) = (X(t),t) dt + (X(t),t) dW(t)

X(0) = X0

generalized univariate Wiener process, (diffusion).

dX = (X,t) dt + (X,t) dW, X(0) = X0

Page 27: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 27

Interpretation

How can we interpret the fact that

dX = dt + dW

the random variable dX has local mean dt and local variance 2dt.

A discrete analogy is X = + z.

Page 28: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 28

Arithmetic BM dX = dt + dW

Let (X,t) = , and (X,t) = two constants.

Then X follows an arithmetic Brownian

Motion with drift and volatility .

This is an appropriate specification for a

process that grows at a linear rate and exhibits

an increasing uncertainty.

Page 29: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 29

Arithmetic BM dX = dt + dW

1. X may be positive or negative.

2. If u > t, then Xu is a future value of the process

relative to time t. The distribution of Xu given Xt

is normal with mean

Xt+ (u-t) and standard deviation (u-t)1/2.

3. The variance of a forecast Xu tends to infinity

as u does (for fixed t and Xt).

Page 30: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 30

Arithmetic BM dX = dt + dW

time

X

Page 31: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 31

Arithmetic BM dX = dt + dW

time

X

Page 32: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 32

Is appropriate for variables that can be positive and negative, have normally distributed forecast errors, and have forecast variance increasing linearly in time.

Example: net cash flows. Is inappropriate for stock price.

Arithmetic BM dX = dt + dW

Page 33: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 33

Geometric BM dX = Xdt + XdW

Let (X,t) = X, and (X,t) = X.

Then X follows an geometric Brownian Motion.

Page 34: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 34

Geometric BM dX = Xdt + XdW

This is an appropriate specification for a process

that

grows exponentially at an average rate of

has volatility proportional to the level of the

variable.

It also exhibits an increasing uncertainty.

Page 35: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 35

Geometric BM dX = Xdt + XdW

1. If X(0) > 0, it will always be positive.

2. X has an absorbing barrier at X = 0. Thus if

X hits zero (a zero probability event) it will

remain there forever.

Page 36: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 36

Geometric BM dX = Xdt + XdW

3. The conditional distribution of Xu given Xt is

lognormal. The conditional mean of ln(Xt) is ln(Xt)

+ (u-t) - 0.5 2(u-t) and conditional standard

deviation of ln(Xt) is (u-t)1/2.

ln(Xt) is normally distributed.

Page 37: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 37

Geometric BM dX = Xdt + XdW

4. The conditional expected value of Xu is

Et[Xu] = Xtexp[ (u-t)]

5. The variance of a forecast Xu tends to

infinity as u does (for fixed t and Xt).

Page 38: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 38

Geometric BM dX = Xdt + XdW

time

X

Page 39: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 39

Geometric BM dX = Xdt + XdW

time

X

Page 40: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 40

Is often used to model security values, since the proportional changes in security price are independent and identically normally distributed (sometimes). Example: currency price, stocks. Is inappropriate for dividends, interest rates.

Geometric BM dX = Xdt + XdW

Page 41: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 41

Mean Reverting Process

dX = (-X)dt + XdWOrnstein-Uhlenbeck when = 1

Let (X,t) = (-X), and (X,t) = X, where

0 - speed of adjustment

- long run mean

- volatility

Page 42: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 42

Mean Reverting Process

dX = (-X)dt + XdW

This is an appropriate specification for a process

that has a long run value but may be beset by

short-term disturbances.

We assume that , , and are positive for

simplicity.

Page 43: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 43

Mean Reverting Process

dX = (-X)dt + XdW

1. If X(0) > 0, it will always be positive.

2. As X approaches zero, the drift is positive

and volatility vanishes.

3. As u becomes infinite, the variance of a

forecast Xu is finite.

Page 44: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 44

Mean Reverting Process

dX = (-X)dt + XdW4. If = 0.5, the distribution of Xu given Xt

for u > t is non-central chi-squared, the mean

of the distribution is:

(Xt- ) exp[-(u-t)] +

the variance of the distribution is (CIR 85):

2)(2

)(2)(2

12

tututut eeeX

Page 45: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 45

Mean Reverting Process

dX = (-X)dt + XdW

time

X

Page 46: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 46

Mean Reverting Process

dX = (-X)dt + XdW

time

X

Page 47: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 47

Mean Reverting Process dX = (-X)dt + XdW

SeedRandom[2]

tt=NestList[

(#+0.3(1-#)+0.1*#*nor[0,0.1])&,

1.01,130];

ListPlot[tt,PlotJoined->True, Axes->False];

Page 48: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 48

Is often used to model economic variables

and do not represent traded assets.

Example: interest rates, volatility.

Mean Reverting Process

dX = (-X)dt + XdW

Page 49: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 49

Ito’s lemma

Consider a real valued function f(X): RR.

Taylor series expansion:

)()(6

1

)(2

1)()()(

33

2

oXf

XfXfXfXf

XXX

XXX

Page 50: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 50

Ito’s lemma

If X is a “standard” variable, then 2 is o()

)()()()( oXfXfXf X

dXXfXdf

dXXfXfdXXf

X

X

)()(

)()()(

Page 51: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 51

Ito’s lemma

If X is a stochastic variable (following diffusion) then the term dX2 does NOT vanish.

dtdX

dWdtdWdtdX

dWdtdX

22

22222 )(2)(

Page 52: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 52

Ito’s lemma

2

2

2

2

1

)(2

1)()(

)(2

1)()()(

dXfdXfdf

dXXfdXXfXdf

dXXfdXXfXfdXXf

XXX

XXX

XXX

Page 53: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 53

Ito’s lemma

If f = f(X,t) and dX = dt + dW, then

dWfdtfffdf XtXXX 25.0

Page 54: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 54

Financial Applications A

Suppose that a security with value V guarantees $1dt every instant of time forever. This is the continuous time equivalent of a risk-free perpetuity of $1. If the risk-free interest rate is constant r, what is the (discounted) value of the security?

Page 55: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 55

Financial Applications A

1. V = V(t), there are NO stochastic variables.

dV = Vtdt

2. The expected capital gain on V is

ECG = E[dV] = Vtdt

3. The expected cash flows to V is ECF = 1 dt

4. The total return on V is

ECG + ECF = (Vt+1)dt

Page 56: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 56

Financial Applications A

5. Since there is no risk, the total return must

be equal to the risk-free return on V, or rVdt.

(Vt+1) dt = r V dt

6. Divide both sides by dt:

Vt = rV - 1

Page 57: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 57

Financial Applications A

Vt = rV - 1

DSolve[ V'[t]==r*V[t]-1, V[t], t ]

V(t) = c Exp[r t] + 1/r

given V(0) one can find c

Page 58: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 58

Financial Applications B

Suppose that X follows a geometric Brownian motion with drift and volatility . A security with value V collects Xdt continuously forever. V represents a perpetuity that grows at an average exponential rate of , but whose risks in cash flow variations are considered diversificable. The economy is risk-neutral, and the risk-free interest rate is constant at r. What is the value of this security?

Page 59: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 59

Financial Applications B1. V = V(X), since V is a perpetual claim, its price does not depend on time.

dV = VxdX + 0.5 VxxdX2,

dX = Xdt + XdW,

dX2= 2X2dt

dV = [XVx+0.5 2X2Vxx]dt +XVxdW

Page 60: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 60

Financial Applications B

2. The expected capital gain:

ECG = E[dV] = [XVx+0.5 2X2Vxx]dt

since E[dW] = 0

3. The Expected cash flow:

ECF = X dt

Page 61: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 61

Financial Applications B

4. Total return:

TR = ECG + ECF = [XVx+X+0.52X2Vxx]dt

5. But the return must be equal to the risk free return on the same investment V.

rVdt = [XVx+X+0.52X2Vxx]dt

6. Thus the PDE:

rV = XVx+X+0.52X2Vxx

Page 62: Zvi WienerContTimeFin - 1 slide 1 Financial Engineering Zvi Wiener mswiener@mscc.huji.ac.il tel: 02-588-3049

Zvi Wiener ContTimeFin - 1 slide 62

Financial Applications B

rV = XVx+X+0.52X2Vxx

there are several ways to solve it. One can guess that doubling X will double the price V.

If V is proportional to X, then V = X, Vx= , and Vxx=0, then the equation becomes

r X= X+X

= 1/(r- )

V(X) = X/(r- )