62
Processing Difficulty and Structural Uncertainty in Relative Clauses across East Asian Languages Zhong Chen and John Hale Department of Linguistics Cornell University Thursday, October 11, 2012

Zhong Chen and John Hale Department of Linguistics Cornell

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Processing Difficulty and Structural Uncertainty in Relative Clauses across East Asian Languages

Zhong Chen and John HaleDepartment of Linguistics

Cornell University

Thursday, October 11, 2012

Incremental parsing ...

0

Thursday, October 11, 2012

0

1Vi:����

1

Vt:��

Incremental parsing ...

Thursday, October 11, 2012

0

1Vi:����

1

Vt:�

2DE:�

2N:��

2

DE:�

Incremental parsing ...

Thursday, October 11, 2012

0

1Vi:���

1

Vt:��

2DE:�

2N:��

2

DE:�

3N:��

3N:�

3DE:�

3N:��

3N:�

3

Vt:�

3

Vi:���

Incremental parsing ...

Thursday, October 11, 2012

0

1Vi:��

1

Vt:��

2DE:

2N:��

2

DE:

3N:��

3N:��

3DE:

3N:��

3N:��

3

Vt:��

3

Vi:��

4

N:��

4N:��

4N:��

4

Vt:��

4

Vi:��

Incremental parsing ...

Thursday, October 11, 2012

0

1Vi:��

1

Vt:��

2DE:

2N:��

2

DE:

3N:��

3N:��

3DE:

3N:��

3N:��

3

Vt:��

3

Vi:��

4

N:��

4N:��

4N:��

4

Vt:��

4

Vi:��

Incremental parsing ...

Thursday, October 11, 2012

0

1Vi:��

1

Vt:��

2DE:

2N:��

2

DE:

3N:��

3N:��

3DE:

3N:��

3N:��

3

Vt:��

3

Vi:��

4

N:��

4N:��

4N:��

4

Vt:��

4

Vi:��

Incremental parsing ...

Thursday, October 11, 2012

Expectations after the first wordProb Remainder

1. 0.678 ������ ��2. 0.083 ������ �� � ��3. 0.052 ������ �� � �� �� ��4. 0.039 ������ �� � �� ����5. 0.018 ������ �� � �� ��6. 0.015 ������ �� �� � ��7. 0.013 ������ �� � ����8. 0.011 ������ � �� �� ��9. 0.011 ������ � �� �� ��10. 0.010 ������ �� �� � ��11. 0.009 ������ � �� ����12. 0.009 ������ � �� ����13. 0.006 ������ �� � �� �� �� � ��14. 0.005 ������ �� �� �15. 0.004 ������ � �� ��16. 0.004 ������ � �� ��17. 0.003 ������ �� � ��18. 0.003 ������ �� � ��19. 0.003 ������ �� �� �20. 0.003 ������ � ����21. 0.003 ������ � ����22. 0.002 ������ �� � �� �� � ��23. 0.001 ������ � �� �� �� � ��24. 0.001 ������ � �� �� �� � ��25. 0.001 ������ �� � �� �� �� �� � ��26. 0.001 ������ �� �27. 0.001 ������ �� �

Thursday, October 11, 2012

Expectations after the first wordProb Remainder

1. 0.678 Vt N2. 0.083 Vt N de N3. 0.052 Vt N de N Vt N4. 0.039 Vt N de N Vi5. 0.018 Vt N de Vt N6. 0.015 Vt Vt N de N7. 0.013 Vt N de Vi8. 0.011 Vt de N Vt N9. 0.011 Vt de N Vt N10. 0.010 Vt N Vt de N11. 0.009 Vt de N Vi12. 0.009 Vt de N Vi13. 0.006 Vt N de N Vt N de N14. 0.005 Vt Vt N de15. 0.004 Vt de Vt N16. 0.004 Vt de Vt N17. 0.003 Vt Vt de N18. 0.003 Vt Vt de N19. 0.003 Vt N Vt de20. 0.003 Vt de Vi21. 0.003 Vt de Vi22. 0.002 Vt N de Vt N de N23. 0.001 Vt de N Vt N de N24. 0.001 Vt de N Vt N de N25. 0.001 Vt N de N Vt Vt N de N26. 0.001 Vt Vt de27. 0.001 Vt Vt de

(a) SRC prefix Vt

Prob Remainder1. 0.471 N Vt N2. 0.358 N Vi3. 0.057 N Vt N de N4. 0.026 N de N Vt N5. 0.017 N de N Vi6. 0.013 N Vt de N Vt N7. 0.010 N Vt Vt N de N8. 0.010 N Vt de N Vi9. 0.007 N Vt N Vt de N10. 0.004 N Vt de Vt N11. 0.004 N Vt Vt N de12. 0.003 N Vt de Vi13. 0.003 N de N Vt N de N14. 0.002 N Vt Vt de N15. 0.002 N Vt Vt de N16. 0.002 N Vt N Vt de17. 0.002 N Vt de N Vt N de N

(b) ORC prefix N

Thursday, October 11, 2012

V1(src)/N1(orc) N1(orc)/V1(src) DE N2(head)

600

800

1000

1200

1400

Read

ing

Tim

e (m

s)

S−SRS−ORO−SRO−OR

Observed: Chinese SRC < ORC

Lin & Bever 2006Thursday, October 11, 2012

Predicted: Chinese SRC < ORC0.

00.

20.

40.

60.

81.

01.

21.

4En

tropy

Red

uctio

n (b

it)

Vt(SR)/N(OR) N(SR)/Vt(OR) de N(head)

0.97

1.07

0.650.72

0 0

0.62

0.82

SRCORC

Thursday, October 11, 2012

Plan

1.Entropy reduction

2.Relative clausesa.Koreanb.Japanesec.Chinese

Thursday, October 11, 2012

Expectations after the first wordSRC: Vt... entropy = 2.157 bits

Prob Remainder1. 0.678 Vt N2. 0.083 Vt N de N3. 0.052 Vt N de N Vt N4. 0.039 Vt N de N Vi5. 0.018 Vt N de Vt N6. 0.015 Vt Vt N de N7. 0.013 Vt N de Vi8. 0.011 Vt de N Vt N9. 0.011 Vt de N Vt N10. 0.010 Vt N Vt de N11. 0.009 Vt de N Vi12. 0.009 Vt de N Vi13. 0.006 Vt N de N Vt N de N14. 0.005 Vt Vt N de15. 0.004 Vt de Vt N16. 0.004 Vt de Vt N17. 0.003 Vt Vt de N18. 0.003 Vt Vt de N19. 0.003 Vt N Vt de20. 0.003 Vt de Vi21. 0.003 Vt de Vi22. 0.002 Vt N de Vt N de N23. 0.001 Vt de N Vt N de N24. 0.001 Vt de N Vt N de N25. 0.001 Vt N de N Vt Vt N de N26. 0.001 Vt Vt de27. 0.001 Vt Vt de

ORC: N... entropy = 2.052 bits

Prob Remainder1. 0.471 N Vt N2. 0.358 N Vi3. 0.057 N Vt N de N4. 0.026 N de N Vt N5. 0.017 N de N Vi6. 0.013 N Vt de N Vt N7. 0.010 N Vt Vt N de N8. 0.010 N Vt de N Vi9. 0.007 N Vt N Vt de N10. 0.004 N Vt de Vt N11. 0.004 N Vt Vt N de12. 0.003 N Vt de Vi13. 0.003 N de N Vt N de N14. 0.002 N Vt Vt de N15. 0.002 N Vt Vt de N16. 0.002 N Vt N Vt de17. 0.002 N Vt de N Vt N de N

Thursday, October 11, 2012

Ingredients

Brown

corpus

1430 subject RC929 direct object167 indirect object41 oblique34 genitive subject4 genitive object

2. construction frequencies

1. formal grammar

e.g. Minimalist Grammars (Stabler 97)

CP

C’✭✭✭✭✭✭✭✭C

❤❤❤❤❤❤❤❤TP

DP(4)

D’✘✘✘✘✘D

the

RelP✥✥✥✥✥✥

DP(1)✧✧

NP(0)

N’

N

boy

❜❜D’

✚✚D

who

NumP

Num’✱✱

NumNP

t(0)

Rel’✘✘✘✘✘

Rel

TP✭✭✭✭✭✭✭

DP(3)

D’✚✚

D

the

NumP

Num’✱✱

Num❧❧NP

N’

N

sailor

❤❤❤❤❤❤❤T’✘✘✘✘✘

T✧✧

v✚✚

V

tell

v

❜❜T

-ed

vP✦✦✦

DP

t(3)

❛❛❛v’✏✏✏✏

v

t

����VP✏✏✏✏

DP(2)

D’✚✚

D

the

NumP

Num’✱✱

Num❧❧NP

N’

N

story

����V’✧✧

DP

t(2)

❜❜V’

✚✚V

t

p toP

p to’✏✏✏✏p to✚✚

Pto

to

p to

����PtoP✟✟✟

DP(1)

t(1)

❍❍❍Pto’✱✱

Pto

t

❧❧DP

t(1)

T’✦✦✦T

✱✱Be

be

❧❧T

-ed

❛❛❛BeP

Be’✧✧

Be

t

❜❜aP

✧✧DP

t(4)

❜❜a’

a AP

A’

A

interesting

1

Thursday, October 11, 2012

Entropy

H(X) = −�

x∈Xp(x) log2 p(x)

Thursday, October 11, 2012

Entropy example I# sides binary names entropy

4

00011011

2 bits

8

000001010011100101110111

3 bits

16

000000010010...

4 bits

7Thursday, October 11, 2012

Entropy example II

0.01

0.1

1

pro

ba

bili

ty

entropy = 2.1026594864876187

0.01

0.1

1

pro

ba

bili

ty

entropy = 2.765974425769394

Thursday, October 11, 2012

Entropy Reduction

expectations about as-yet-unheard words. As new words come in, given what one has already read, the probability of grammatical alternatives fluctuates. The idea of ER is that decreased uncertainty about the whole sentence, including probabilistic expectations, correlates with observed processing difficulty.1 Such processing difficulty reflects the amount of information that a word supplies about the overall disambiguation task in which the reader is engaged.

The average uncertainty of specified alternatives can be quantified using the fundamental information-theoretic notion, entropy, as formulated below in definition (1). In a language-processing scenario, the random variable X in (1) might take values that are derivations on a probabilistic grammar G. We could further specialize X to reflect derivations proceeding from various categories, e.g., NP, VP, S etc. Since rewriting grammars always have a start symbol, e.g. S, the expression HG(S) reflects the average uncertainty of guessing any derivation that G generates.

!

H(X) = " p(x)log2 p(x)x#X$ (1)

This entropy notation extends naturally to express conditioning events. If w1w2… wi

is an initial substring of a sentence generated by G, the conditional entropy HG(S|w1w2… wi) will be the uncertainty about just those derivations that have w1w2…wi as a prefix.2 By abbreviating HG(S|w1w2… wi) with Hi, the cognitive load ER(i) reflects the difference between conditional entropies before and after wi, a particular word in a particular position in a sentence.

!

ER(i) =Hi"1 "Hi when this difference is positive0 otherwise# $ % (2)

Formula (2) defines the ER complexity metric. It says that cognitive work is

predicted whenever uncertainty about the sentence’s structure, as generated by the grammar G, goes down after reading in a new word.

Intuitively, disambiguation occurs when the uncertainty about the rest of the sentence decreases. In such a situation, readers’ “beliefs” in various syntactic alternatives take on a more concentrated probability distribution (Jurafsky, 1996). The disambiguation work spent on this change is exactly the entropy reduction. By contrast when beliefs about syntactic alternatives become more disorganized, e.g. there exist many equiprobable syntactic expectations, then disambiguation work has not been done and the parser has gotten more confused. The background assumption of ER is that human sentence comprehension is making progress towards a peaked, disambiguated parser state and that the disambiguation efforts made during this process can be quantified by the reductions of structural uncertainty conveyed by words.

The ER proposal is not to be confused with another widely applied complexity metric, Surprisal (Hale, 2001; Levy, 2008), which is the conditional expectation of the log-ratio between forward probabilities of string prefixes before and after a word. 1 The ER is a generalization of Narayanan and Jurafsky’s (2002) idea of the “flipping the preferred interpretation”. Here the flip only counts if the reader moves towards a less-confused state of mind. 2 Conditional entropies can be calculated using standard techniques from computational linguistics such as chart parsing (Bar-Hillel, Perles & Shamir, 1964; Nederhof & Satta, 2008). See Chapter 13 of Jurafsky and Martin (2008) for more details.

Let w1w2…wi be a prefix of a sentence

generated by the grammar.

Thursday, October 11, 2012

Plan

1.Entropy reduction

2.Relative clausesa.Koreanb.Japanesec.Chinese

Thursday, October 11, 2012

RC processing principlesBroad Categories General Proposals

Memory

Burden

Linear Distance:Wanner and Maratsos (1978);Gibson (2000);Lewis and Vasishth (2005)

ORCs are harder than SRCsbecause they impose a greaterworking memory burden.

Structural Distance:O’Grady (1997); Hawkins (2004)

Structural

Frequency

Tuning Hypothesis:Mitchell et al (1995);Jurafsky (1996)

SRCs occur more frequently thanORCs and therefore are more ex-pected and easier to process.

Surprisal:Hale (2001); Levy (2008)

ORCs are more difficult becausethey require a low-probability rule.

Entropy Reduction:Hale (2006)

ORCs are harder because they forcethe comprehender through moreconfusing intermediate states.

Thursday, October 11, 2012

RC processing principlesBroad Categories General Proposals

Memory

Burden

Linear Distance:Wanner and Maratsos (1978);Gibson (2000);Lewis and Vasishth (2005)

ORCs are harder than SRCsbecause they impose a greaterworking memory burden.

Structural Distance:O’Grady (1997); Hawkins (2004)

Structural

Frequency

Tuning Hypothesis:Mitchell et al (1995);Jurafsky (1996)

SRCs occur more frequently thanORCs and therefore are more ex-pected and easier to process.

Surprisal:Hale (2001); Levy (2008)

ORCs are more difficult becausethey require a low-probability rule.

Entropy Reduction:Hale (2006)

ORCs are harder because they forcethe comprehender through moreconfusing intermediate states.

Thursday, October 11, 2012

e.g. Wanner, Maratsos & Kaplan’s HOLD hypothesis (1970s)or Gibson’s DLT (1990s) or Lewis & Vasishth ACT-R model (2000s)

Memory load in English RCs

a.�

The reporteri [ who ei attacked the senator ] disliked the editor.

b.�

The reporteri [ who the senator attacked ei ] disliked the editor.

Thursday, October 11, 2012

RC processing principlesBroad Categories General Proposals

Memory

Burden

Linear Distance:Wanner and Maratsos (1978);Gibson (2000);Lewis and Vasishth (2005)

ORCs are harder than SRCsbecause they impose a greaterworking memory burden.

Structural Distance:O’Grady (1997); Hawkins (2004)

Structural

Frequency

Tuning Hypothesis:Mitchell et al (1995);Jurafsky (1996)

SRCs occur more frequently thanORCs and therefore are more ex-pected and easier to process.

Surprisal:Hale (2001); Levy (2008)

ORCs are more difficult becausethey require a low-probability rule.

Entropy Reduction:Hale (2006)

ORCs are harder because they forcethe comprehender through moreconfusing intermediate states.

Thursday, October 11, 2012

RC processing principlesBroad Categories General Proposals

Memory

Burden

Linear Distance:Wanner and Maratsos (1978);Gibson (2000);Lewis and Vasishth (2005)

ORCs are harder than SRCsbecause they impose a greaterworking memory burden.

Structural Distance:O’Grady (1997); Hawkins (2004)

Structural

Frequency

Tuning Hypothesis:Mitchell et al (1995);Jurafsky (1996)

SRCs occur more frequently thanORCs and therefore are more ex-pected and easier to process.

Surprisal:Hale (2001); Levy (2008)

ORCs are more difficult becausethey require a low-probability rule.

Entropy Reduction:Hale (2006)

ORCs are harder because they forcethe comprehender through moreconfusing intermediate states.

Thursday, October 11, 2012

___ t senator-ACC criticize-REL reporter ‘the reporter who criticized the senator’

___

senator-NOM t criticize-REL reporter ‘the reporter whom the senator criticized’

Korean relative clauses

SRC

ORC

Thursday, October 11, 2012

!"

#!!"

$!!"

%!!"

&!!"

'!!!"

'#!!"

'$!!"

()*+,-"

.+/)01-234556789"

4:.;"

1<.12=:34>7"

/+<:,/2+?3789

"

-=<)2+?3455"

@,A01/0B"

1<-,02=:"

CD"

8D"

Observed: Korean SRC < ORC

Kwon et alLanguage 86(3) p546 2010

Thursday, October 11, 2012

Uncertainty and Prediction in Relativized Structures across East Asian LanguagesZhong Chen, Jiwon Yun, John Whitman, John Hale

Department of Linguistics, Cornell University

Korean Chinese Japanese

Our modeling derives an SR advantage at the head noun in line with structural frequencies (SR 55%/OR 45%). It also implicates headless RCs as a grammatical alternative whose exis-tence makes processing easier at the head noun in SRs. A corpus study reveals that 14% of SRs have a null head whereas 31% of ORs are headless. This asymmetry suggests that an overt head is more predictable in SRs and less work needs to be done.

Our modeling derives a pattern consistent with the empirical !nding in Kahraman et al. (2011) that at the “-no-wa” marked embedded verb, subject clefts are read more slowly than object clefts. Upon reaching the topic marker “-wa”, complement clauses with SBJ-pro are still in play in case of the SC pre!x, which causes more amount of uncertainties re-duced around that point. On the other hand, the OC pre!x is less ambiguous because complement clauses with object-pro are extremely rare.

Our modeling con!rms the SR preference in Korean reported by Kwon et al. (2010) and fur-ther shows that this e"ect could emerge as early as the accusative/nominative marker. This re#ects, among other factors, a greater entropy reduction brought by sentence-initial nominative noun phrases.

Analysis

0.38 “Vt N de N” pro in matrix SBJ & Poss-OBJ0.25 “Vt N de N Vt N” SR in matrix SBJ0.19 “Vt N de N Vi” SR in matrix SBJ0.06 “Vt N de Vt N” headless SR in matrix SBJ0.05 “Vt N de Vi” headless SR in matrix SBJ

0.37 “Vt N de N”0.28 “Vt N de N Vt N”0.22 “Vt N de N Vi”SR

W3 “Vt N de” W4 “Vt N de N”

0.35 “N Vt de N Vt N” OR in matrix SBJ0.27 “N Vt de N Vi” OR in matrix SBJ0.17 “N Vt de Vt N” headless OR in matrix SBJ0.13 “N Vt de Vi” headless OR in matrix SBJ0.04 “N Vt de N Vt N de N” OR in matrix SBJ & Poss-OBJ

0.51 “N Vt de N Vt N”0.39 “N Vt de N Vi”0.06 “N Vt de N Vt N de N”OR

Subject Relatives (SR)

Object Relatives (OR)

0.51 “N Nom N Acc Vt” whole matrix C0.09 “N Acc Vt” pro in matrix SBJ0.05 “N Acc Vadj N Nom N Acc Vt” pro in adjunct SBJ0.03 “N Nom N Acc Vadn N Acc Vt” SR in matrix OBJ0.03 “N Acc Vadn N Nom N Acc Vt” SR in matrix SBJ

0.27 “N Acc Vt”0.17 “N Acc Vadj N Nom N Acc Vt”0.11 “N Acc Vadn N Nom N Acc Vt”SR

W1 “N” W2 “N Acc”

0.75 “N Nom N Acc Vt”0.05 “N Nom N Acc Vadn N Acc Vt”

OR

W4 “N Acc Vt no” W5 “N Acc Vt no wa”

Grammatical phenomena such as case-marking, head-omission, and object-drop create inferential problems that must be solved by any parsing mechanism. The Entropy Reductions brought about by "solving" these problems -- moving towards more concentrated distributions on derivations -- correspond with observed processing di$culty.

Hale, J. (2006). Uncertainty about the rest of the sentence. Cognitive Science, 30(4). Hsiao, F., & Gibson, E. (2003). Processing relative clauses in Chinese. Cognition, 90, 3–27.Kahraman, B., Sato, A., Ono, H. & Sakai, H. (2011). Incremental processing of gap-!ller dependencies: Evidence from the processing of subject and object clefts in Japanese. In

Proceedings of the 12th Tokyo Conference on Psycholinguistics.Kwon, N., Lee, Y., Gordon, P. C., Kluender, R., & Polinsky, M. (2010). Cognitive and linguistic factors a"ecting subject/object asymmetry: An eye-tracking study of pre-nominal relative

clauses in korean. Language, 86(3), 546–582.Lin, C.-J. C., & Bever, T. G. (2006). Subject preference in the processing of relative clauses in Chinese. In Proceedings of the 25th WCCFL (p. 254-260). Nederhof, M.-J. & Satta, G. (2008). Computation of distances for regular and context-free probabilistic languages. Theoretical Computer Science, 395, 235–254.Stabler, E. (1997). Derivational minimalism. In C. Retore (Ed.), Logical aspects of computational linguistics. Springer-Verlag.

Conclusion Selected References

0.51 “N Nom N Acc Vt” whole matrix C0.09 “N Acc Vt” SBJ-pro in matrix C0.05 “N Acc Vadj N Nom N Acc Vt” SBJ-pro in adjunct C0.03 “N Nom N Acc Vadn N Acc Vt” SR in matrix OBJ0.03 “N Acc Vadn N Nom N Acc Vt” SR in matrix SBJ

SC

OC

0.08 “N Acc Vt no Nom N Acc Vt” SR in matrix SBJ0.08 “N Acc Vt no wa N Acc Vt” SR in matrix Topic0.05 “N Acc Vt no Acc Vt” SR in matrix OBJ0.05 “N Acc Vt no Acc Vt” SBJ-pro in Comp C0.05 “N Acc Vt no Nom Vi” SR in matrix SBJ

0.15 “N Nom Vt no wa N Acc Vt” OR in matrix SBJ0.09 “N Nom Vt no Acc Vt” OR in matrix OBJ0.09 “N Nom Vt no wa Vi” OR in matrix Topic0.08 “N Nom Vt no Nom N Acc Vt” OR in matrix SBJ0.05 “N Nom Vt no Acc N Nom Vt” OR in matrix SBJ

0.39 “N Acc Vt no wa N Acc Vt”

0.39 “N Nom Vt no wa N Acc Vt”0.23 “N Nom Vt no wa Vi”

MinimalistGrammar

(Stabler, 1997)

WeightedContext-Free Grammar

‘Intersection’ Grammar conditioned on pre!xes(Nederhof & Satta, 2008)

Weighted, predictive syntactic analysisweighting constructions

with corpus counts

IntroductionEntropy Reduction (Hale, 2006) is a complexity metric that quanti!es the amount of information a word contributes towards reducing structural uncertainty. This certainty level depends on weighted, predictive syntactic analyses that are "still in play" at a given point. This poster uses Entropy Reduction to derive reported processing contrasts in Korean, Chinese and Japanese relativized structures.

Modeling procedure

Experimental Observation: SBJ Relatives > OBJ Relatives (Kwon et al., 2010)

Experimental Observations: SBJ Relatives > OBJ Relatives (Lin & Bever, 2006; Wu, 2009; Chen et al., 2012) SBJ Relatives < OBJ Relatives (Hsiao & Gibson, 2003; Gibson & Wu, in press)

Experimental Observation: Subject Clefts < Object Clefts (Kahraman et al., 2011)

ER Modeling:ER Modeling:Subject Relatives (SR)

Object Relatives (OR)

Analysis

Subject Clefts (SC)

Object Clefts (OC)

Analysis

Comprehension di"culty prediction

ER Modeling:

!"

#$

%&'()*+,-./012(3*'-453(6

7" 7# 7$ 7% 78 79

!:" !:"!:!

":;#

!:! !:!

!:%9!:$#

#:8#:9$

$:#;

$:8<=.>.

!"

#$

%&'()*+,-./012(3*'-453(6

7" 7# 7$ 7% 78 79 7:

!;!:!;!:

!;88

";:"

!;"%!;! !;! !;!

$;98

#;:9

!;8:!;8:

#;#%#;#%

<=>=

parse each pre!xin the sentence

Uncertainty at this word

set of derivations

derivation

!"# !$# !%# !&# !'# !(# !)#

e 祖母 を 介抱した の は 親戚 だ。 (SBJ) grandma ACC nursed NO WA relative COP ‘It was the relative who nursed the grandmother.’ #

!"# !$# !%# !&# !'# !(# !)#

祖母 が e 介抱した の は 親戚 だ。 grandma NOM (OBJ) nursed NO WA relative COP ‘It was the relative who the grandmother nursed.’ #

!"# !$# !%# !&# !'# !(#

e 邀 富豪 的 (官 ) 打了 者 SBJ invite tycoon DE official hit reporter ‘The official/Someone who invited the tycoon hit the reporter.’ #

!"# !$# !%# !&# !'# !(#

富豪 邀 e 的 (官 ) 打了 者 tycoon invite OBJ DE official hit reporter ‘The official/Someone who the tycoon invited hit the reporter.’ #

!"# !$# !%# !&# !'# !(#

e 기자 를 협박한 의원 이 유명해졌다. (SBJ) reporter ACC threaten-ADN senator NOM became famous ‘The senator who threatened the reporter became famous.’ #

!"# !$# !%# !&# !'# !(#

기자 가 e 협박한 의원 이 유명해졌다. reporter NOM (OBJ) threaten-ADN senator NOM became famous ‘The senator who the reporter threatened became famous.’ #

Comprehension di"culty predictionComprehension di"culty prediction

W1 “N” W2 “N Nom” W3 “N Vt de” W4 “N Vt de N” W4 “N Nom Vt no” W5 “N Nom Vt no wa”

!"!

!"#

$"!

$"#

%&'()*+,-./01'2)&,342'5

6$ 67 68 69 6# 6:

!";8

$"!<

!"#;

!"=

!"! !"!

!"99

!";$

$"8#

!"#;

!"8< !"8<

>-?-

The 25th Annual CUNY Conference on Human Sentence Processing, March 14-16, 2012 {zc77, jy249, jbw2, jthale}@cornell.edu

Korean

Thursday, October 11, 2012

Movement analysis in Korean SRCs

Kayne (1994)

C-DeclP

C-Decl’✭✭✭✭✭✭✭C-Decl

❤❤❤❤❤❤❤T-DeclP✭✭✭✭✭✭✭✭✭✭

CaseP(6)✭✭✭✭✭✭✭✭✭✭✭✭DP(5)

T-RelP(4)✏✏✏✏CaseP(3)

t(3)

����T-Rel’✏✏✏✏

T-Rel

����v-RelP✘✘✘✘✘

CaseP

t(3)

v-Rel’✘✘✘✘✘

v-Rel

V-RelP✥✥✥✥✥✥

CaseP(2)✟✟✟

DP(1)

D’

D NP

N’

N

uywonsenator

❍❍❍Case’✚✚

Case

ul-acc

DP

t(1)

V-Rel’✦✦✦

V-Rel

kongkyekhanattack.adn

❛❛❛CaseP

t(2)

D’✘✘✘✘✘D

C-RelP✘✘✘✘✘

CaseP(3)✟✟✟

DP(0)

D’✱✱D NP

N’

N

kicareporter

❍❍❍Case’✚✚

CaseDP

t(0)

C-Rel’✟✟✟

C-Rel❍❍❍T-RelP

t(4)

❤❤❤❤❤❤❤❤❤❤❤❤Case’✚✚

Case

ka-nom

DP

t(5)

❤❤❤❤❤❤❤❤❤❤T-Decl’✏✏✏✏

T-Decl

����v-DeclP✏✏✏✏

CaseP

t(6)

����v-Decl’✟✟✟

v-Decl❍❍❍V-DeclP

V-Decl’

V-Decl

yumyenghaycyesstabecome.famous

Thursday, October 11, 2012

Uncertainty in processing relative clauses across East Asian languages 25

(1952), Attneave (1959) and Garner (1962). What differs in the present applicationof information theory is the use of generative grammars to specify the sentence-structural expectations that hearers have. The conditional probabilities in dia-grams like Figure 5 are calculated over grammatical alternatives, not just singlesuccessor words. In this regard our method integrates both information-processingpsychology and generative grammar.

This integration can be viewed also a defense of the view that all humansare bound by the same kinds of processing limitations. Namely, when faced witha flatter distribution on a greater number of grammatical alternatives, we shouldexpect slower reading times. Although such a limitation may perhaps reflect some-thing deep about cognition, something that constrains both humans and machines,the precise implications of this limit depend crucially on the grammar of particu-lar languages.

A Attestation counts

Attestation counts for selected construction types in three corpora are listed below.

Table 5 Attestation counts from Chinese Treebank 7.0

Count Construction Type4387 Simple sentence4206 Simple sentence with SBJ-pro366 Headed subject relatives123 Headless subject relatives203 Headed object relatives149 Headless object relatives

Table 6 Attestation counts from Korean Treebank 2.0

Count Construction Type511 Simple sentence96 Simple sentence with SBJ-pro2 Simple sentence with OBJ-pro631 Noun complement clause685 Noun complement clause with SBJ-pro6 Noun complement clause with OBJ-pro2854 Subject relative clause125 Object relative clause14 Relative clause with a pro

B A note on the infinity of possible remainders

Reference to the 100 most likely sentence-remainders in Figure 13, and listings of dozens ofpossible remainders consistent with various sentence prefixes, might prompt the question ofwhether our account assumes some degree of parallelism in the parsing process. It is true that,

Thursday, October 11, 2012

Morpheme level...

# simple transitive474 N Nom N Acc Vtd

# pro-drop264 N Acc Vtd

# relative clauses w/transitive verb543 N Acc Vtn N Nom N Acc Vtd125 N Nom Vtn N Nom N Acc Vtd

# noun complement clauses547 N Acc Vtn fact Nom N Acc Vtd6 N Nom Vtn fact Nom N Acc Vtd

...

Thursday, October 11, 2012

Predicted: Korean SRC < ORC0.

00.

51.

01.

52.

02.

5En

tropy

Red

uctio

n (b

it)

N Acc(SR)/Nom(OR) V N(head)

2.02 2.02

0

0.77

0.01 0

1.53

2.13

SRCORC

Thursday, October 11, 2012

Predicted: Korean SRC < ORC0.

00.

51.

01.

52.

02.

5En

tropy

Red

uctio

n (b

it)

N Acc(SR)/Nom(OR) V N(head)

2.02 2.02

0

0.77

0.01 0

1.53

2.13

SRCORC

Thursday, October 11, 2012

Uncertainty in processing relative clauses across East Asian languages 17

Probability Remainder Type

0.272 [e N Acc Vtn] fact Nom Vid NCC with Sbj-pro0.239 [e N Acc Vtn] N Nom Vid SRC

0.052 [e N Acc Vtn] [e Vin] N Nom Vid stacked SRCs

0.033 [e N Acc Vtn] fact Nom N Acc Vtd NCC with Sbj-pro0.032 e N Acc Vtd simple SOV sentence with Sbj-pro. . . . . . . . .

entropy = 5.930

(a) SRC prefix N Acc

Probability Remainder Type

0.764 N nom Vid simple SV sentence

0.094 N nom N Acc Vtd simple SOV sentence

0.021 [N nom Vin] fact Nom Vid NCC

0.020 N nom [eVin] N Acc Vtd SRC

0.014 [N nom N Acc Vtn] fact Nom Vid NCC

. . . . . . . . .

entropy = 2.072

(b) ORC prefix N Nom

Fig. 6 Possible remainders at the second word for Korean RCs

both SRC and ORC prefixes. The fact that one of the tables is much shorter than

the other makes clear, visually, that the cardinality of non-trivial remainders is

greater in the ORC prefix. This formalizes the idea of greater sentence-medial

ambiguity mentioned in the Introduction (section 1).

This explanation of the Subject Advantage at the head noun accords with that

given in Yun et al (2010). These authors attribute the ORC processing penalty

to additional possible remainders. The derivations numbered in 15, 16, and 17 in

Table 3 correspond to the additional structures for the ORC prefix presented in

Yun et al (2010).

(7) kica

reporter

ka

Nom

[e e kongkyekhan]

t pro attack.Adn

uywon

senator

ul

Acc

manassta.

meet.Decl

‘The reporter met the senator who attacked someone.’

(8) kica

reporter

ka

Nom

[e e kongkyekhan]

pro t attack.Adn

uywon

senator

ul

Acc

manassta.

meet.Decl

‘The reporter met the senator whom someone attacked.’

(9) kica

reporter

ka

Nom

[e e kongkyekhan]

pro pro attack.Adn

sasil

fact

ul

Acc

alkoissta.

know.Decl

‘The reporter knows the fact that someone attacked someone.’

5.2 Japanese

The Japanese processing difficulty predictions are shown in Figure 7. The pattern

here is very similar to the Korean difficulty predictions given in subsection 5.1

As shown in Figure 7, the Subject Advantage is observed at the same structural

position as in the Korean examples: at the second word (i.e. case marker) and at

the fourth word (i.e. head noun).

As in Korean, the the Subject Advantage at the case marker is attributable

to the lower entropy value associated with the ORC prefix N Nom, albeit the

Thursday, October 11, 2012

Uncertainty in processing relative clauses across East Asian languages 17

Probability Remainder Type

0.272 [e N Acc Vtn] fact Nom Vid NCC with Sbj-pro0.239 [e N Acc Vtn] N Nom Vid SRC

0.052 [e N Acc Vtn] [e Vin] N Nom Vid stacked SRCs

0.033 [e N Acc Vtn] fact Nom N Acc Vtd NCC with Sbj-pro0.032 e N Acc Vtd simple SOV sentence with Sbj-pro. . . . . . . . .

entropy = 5.930

(a) SRC prefix N Acc

Probability Remainder Type

0.764 N nom Vid simple SV sentence

0.094 N nom N Acc Vtd simple SOV sentence

0.021 [N nom Vin] fact Nom Vid NCC

0.020 N nom [eVin] N Acc Vtd SRC

0.014 [N nom N Acc Vtn] fact Nom Vid NCC

. . . . . . . . .

entropy = 2.072

(b) ORC prefix N Nom

Fig. 6 Possible remainders at the second word for Korean RCs

both SRC and ORC prefixes. The fact that one of the tables is much shorter than

the other makes clear, visually, that the cardinality of non-trivial remainders is

greater in the ORC prefix. This formalizes the idea of greater sentence-medial

ambiguity mentioned in the Introduction (section 1).

This explanation of the Subject Advantage at the head noun accords with that

given in Yun et al (2010). These authors attribute the ORC processing penalty

to additional possible remainders. The derivations numbered in 15, 16, and 17 in

Table 3 correspond to the additional structures for the ORC prefix presented in

Yun et al (2010).

(7) kica

reporter

ka

Nom

[e e kongkyekhan]

t pro attack.Adn

uywon

senator

ul

Acc

manassta.

meet.Decl

‘The reporter met the senator who attacked someone.’

(8) kica

reporter

ka

Nom

[e e kongkyekhan]

pro t attack.Adn

uywon

senator

ul

Acc

manassta.

meet.Decl

‘The reporter met the senator whom someone attacked.’

(9) kica

reporter

ka

Nom

[e e kongkyekhan]

pro pro attack.Adn

sasil

fact

ul

Acc

alkoissta.

know.Decl

‘The reporter knows the fact that someone attacked someone.’

5.2 Japanese

The Japanese processing difficulty predictions are shown in Figure 7. The pattern

here is very similar to the Korean difficulty predictions given in subsection 5.1

As shown in Figure 7, the Subject Advantage is observed at the same structural

position as in the Korean examples: at the second word (i.e. case marker) and at

the fourth word (i.e. head noun).

As in Korean, the the Subject Advantage at the case marker is attributable

to the lower entropy value associated with the ORC prefix N Nom, albeit the

Thursday, October 11, 2012

entropy = 4.862

0.483 N Nom Vid0.104 Vin N Nom Vid0.059 N Nom N Acc Vtd0.024 Vin fact Nom Vid0.022 Vin Vin N Nom Vid. . . . . .

entropy = 2.840

0.697 N Nom Vid0.086 N Nom N Acc Vtd0.024 N Acc Vtn fact Nom Vid0.021 N Acc Vtn N Nom Vid0.019 N Nom Vin fact Nom Vid. . . . . .

entropy = 2.840

0.697 N Nom Vid0.086 N Nom N Acc Vtd0.024 N Acc Vtn fact Nom Vid0.021 N Acc Vtn N Nom Vid0.019 N Nom Vin fact Nom Vid. . . . . .

entropy = 5.930

0.272 N Acc Vtn fact Nom Vid0.239 N Acc Vtn N Nom Vid0.052 N Acc Vtn Vin N Nom Vid0.033 N Acc Vtn fact Nom N Acc Vtd0.032 N Acc Vtd. . . . . .

entropy = 2.072

0.764 N Nom Vid0.094 N Nom N Acc Vtd0.021 N Nom Vin fact Nom Vid0.020 N Nom Vin N Acc Vtd0.014 N Nom N Acc Vtn fact Nom Vid. . . . . .

entropy = 5.915

0.281 N Acc Vtn fact Nom Vid0.247 N Acc Vtn N Nom Vid0.053 N Acc Vtn Vin N Nom Vid0.035 N Acc Vtn fact Nom N Acc Vtd0.030 N Acc Vtn N Nom N Acc Vtd. . . . . .

entropy = 6.813

0.367 N Nom Vtn N Nom Vid0.079 N Nom Vtn Vin N Nom Vid0.045 N Nom Vtn N Nom N Acc Vtd0.042 N Nom Vtn fact Nom Vid0.018 N Nom Vtn Vin fact Nom Vid. . . . . .

entropy = 4.384

0.588 N Acc Vtn N Nom Vid0.072 N Acc Vtn N Nom N Acc Vtd0.020 N Acc Vtn N Acc Vtn fact Nom Vid0.020 N Acc Vtn N Acc Vtn fact Nom Vid0.018 N Acc Vtn N Acc Vtn N Nom Vid. . . . . .

entropy = 4.686

0.562 N Nom Vtn N Nom Vid0.069 N Nom Vtn N Nom N Acc Vtd0.019 N Nom Vtn N Acc Vtn fact Nom Vid0.019 N Nom Vtn N Acc Vtn fact Nom Vid0.017 N Nom Vtn N Acc Vtn N Nom Vid. . . . . .

SRC ORC

w0

w1

w2

w3

w4

ER=2.02ER=2.02

ER=0 ER=0.77

ER=0.01 ER=0

ER=1.53 ER=2.13

Thursday, October 11, 2012

entropy = 4.862

0.483 N Nom Vid0.104 Vin N Nom Vid0.059 N Nom N Acc Vtd0.024 Vin fact Nom Vid0.022 Vin Vin N Nom Vid. . . . . .

entropy = 2.840

0.697 N Nom Vid0.086 N Nom N Acc Vtd0.024 N Acc Vtn fact Nom Vid0.021 N Acc Vtn N Nom Vid0.019 N Nom Vin fact Nom Vid. . . . . .

entropy = 2.840

0.697 N Nom Vid0.086 N Nom N Acc Vtd0.024 N Acc Vtn fact Nom Vid0.021 N Acc Vtn N Nom Vid0.019 N Nom Vin fact Nom Vid. . . . . .

entropy = 5.930

0.272 N Acc Vtn fact Nom Vid0.239 N Acc Vtn N Nom Vid0.052 N Acc Vtn Vin N Nom Vid0.033 N Acc Vtn fact Nom N Acc Vtd0.032 N Acc Vtd. . . . . .

entropy = 2.072

0.764 N Nom Vid0.094 N Nom N Acc Vtd0.021 N Nom Vin fact Nom Vid0.020 N Nom Vin N Acc Vtd0.014 N Nom N Acc Vtn fact Nom Vid. . . . . .

entropy = 5.915

0.281 N Acc Vtn fact Nom Vid0.247 N Acc Vtn N Nom Vid0.053 N Acc Vtn Vin N Nom Vid0.035 N Acc Vtn fact Nom N Acc Vtd0.030 N Acc Vtn N Nom N Acc Vtd. . . . . .

entropy = 6.813

0.367 N Nom Vtn N Nom Vid0.079 N Nom Vtn Vin N Nom Vid0.045 N Nom Vtn N Nom N Acc Vtd0.042 N Nom Vtn fact Nom Vid0.018 N Nom Vtn Vin fact Nom Vid. . . . . .

entropy = 4.384

0.588 N Acc Vtn N Nom Vid0.072 N Acc Vtn N Nom N Acc Vtd0.020 N Acc Vtn N Acc Vtn fact Nom Vid0.020 N Acc Vtn N Acc Vtn fact Nom Vid0.018 N Acc Vtn N Acc Vtn N Nom Vid. . . . . .

entropy = 4.686

0.562 N Nom Vtn N Nom Vid0.069 N Nom Vtn N Nom N Acc Vtd0.019 N Nom Vtn N Acc Vtn fact Nom Vid0.019 N Nom Vtn N Acc Vtn fact Nom Vid0.017 N Nom Vtn N Acc Vtn N Nom Vid. . . . . .

SRC ORC

w0

w1

w2

w3

w4

ER=2.02ER=2.02

ER=0 ER=0.77

ER=0.01 ER=0

ER=1.53 ER=2.13

Thursday, October 11, 2012

Predicted: Korean SRC < ORC0.

00.

51.

01.

52.

02.

5En

tropy

Red

uctio

n (b

it)

N Acc(SR)/Nom(OR) V N(head)

2.02 2.02

0

0.77

0.01 0

1.53

2.13

SRCORC

Thursday, October 11, 2012

Predicted: Korean SRC < ORC0.

00.

51.

01.

52.

02.

5En

tropy

Red

uctio

n (b

it)

N Acc(SR)/Nom(OR) V N(head)

2.02 2.02

0

0.77

0.01 0

1.53

2.13

SRCORC

Thursday, October 11, 2012

16 anonymized running head

entropy = 4.862

0.483 N Nom Vid0.104 Vin N Nom Vid0.059 N Nom N Acc Vtd0.024 Vin fact Nom Vid0.022 Vin Vin N Nom Vid. . . . . .

entropy = 2.840

0.697 N Nom Vid0.086 N Nom N Acc Vtd0.024 N Acc Vtn fact Nom Vid0.021 N Acc Vtn N Nom Vid0.019 N Nom Vin fact Nom Vid. . . . . .

entropy = 2.840

0.697 N Nom Vid0.086 N Nom N Acc Vtd0.024 N Acc Vtn fact Nom Vid0.021 N Acc Vtn N Nom Vid0.019 N Nom Vin fact Nom Vid. . . . . .

entropy = 5.930

0.272 N Acc Vtn fact Nom Vid0.239 N Acc Vtn N Nom Vid0.052 N Acc Vtn Vin N Nom Vid0.033 N Acc Vtn fact Nom N Acc Vtd0.032 N Acc Vtd. . . . . .

entropy = 2.072

0.764 N Nom Vid0.094 N Nom N Acc Vtd0.021 N Nom Vin fact Nom Vid0.020 N Nom Vin N Acc Vtd0.014 N Nom N Acc Vtn fact Nom Vid. . . . . .

entropy = 5.915

0.281 N Acc Vtn fact Nom Vid0.247 N Acc Vtn N Nom Vid0.053 N Acc Vtn Vin N Nom Vid0.035 N Acc Vtn fact Nom N Acc Vtd0.030 N Acc Vtn N Nom N Acc Vtd. . . . . .

entropy = 6.813

0.367 N Nom Vtn N Nom Vid0.079 N Nom Vtn Vin N Nom Vid0.045 N Nom Vtn N Nom N Acc Vtd0.042 N Nom Vtn fact Nom Vid0.018 N Nom Vtn Vin fact Nom Vid. . . . . .

entropy = 4.384

0.588 N Acc Vtn N Nom Vid0.072 N Acc Vtn N Nom N Acc Vtd0.020 N Acc Vtn N Acc Vtn fact Nom Vid0.020 N Acc Vtn N Acc Vtn fact Nom Vid0.018 N Acc Vtn N Acc Vtn N Nom Vid. . . . . .

entropy = 4.686

0.562 N Nom Vtn N Nom Vid0.069 N Nom Vtn N Nom N Acc Vtd0.019 N Nom Vtn N Acc Vtn fact Nom Vid0.019 N Nom Vtn N Acc Vtn fact Nom Vid0.017 N Nom Vtn N Acc Vtn N Nom Vid. . . . . .

SRC ORC

w0

w1

w2

w3

w4

ER=2.02 ER=2.02

ER=0 ER=0.77

ER=0.01 ER=0

ER=1.53 ER=2.13

Fig. 5 Likely derivations and their conditional probabilities in Korean RCs

As shown in Figure 5, the Subject Advantage at the head noun is mainly

because the ORC prefix before the head noun, N Nom Vtn, is associated with

higher entropy value (6.813 bits) than the corresponding SRC prefix N acc Vtn(5.915 bits); since the entropy at w4 is similar in both cases (4.38 and 4.67 bits), the

higher entropy at w3 in the ORC case corresponds to a greater reduction in entropy.

Since the difference at w3 is not big enough to be clearly reflected in the in the top

five parses, it is necessary to examine more derivations to characterize the source

of the difference. As mentioned in section 4, a higher entropy is associated with

a flatter distribution; for any given threshold, say 0.001, higher entropy therefore

corresponds to having a greater number of derivations whose probabilities are

above the threshold. Table 3 shows all parses with a probability over 0.001 for

Thursday, October 11, 2012

16 anonymized running head

entropy = 4.862

0.483 N Nom Vid0.104 Vin N Nom Vid0.059 N Nom N Acc Vtd0.024 Vin fact Nom Vid0.022 Vin Vin N Nom Vid. . . . . .

entropy = 2.840

0.697 N Nom Vid0.086 N Nom N Acc Vtd0.024 N Acc Vtn fact Nom Vid0.021 N Acc Vtn N Nom Vid0.019 N Nom Vin fact Nom Vid. . . . . .

entropy = 2.840

0.697 N Nom Vid0.086 N Nom N Acc Vtd0.024 N Acc Vtn fact Nom Vid0.021 N Acc Vtn N Nom Vid0.019 N Nom Vin fact Nom Vid. . . . . .

entropy = 5.930

0.272 N Acc Vtn fact Nom Vid0.239 N Acc Vtn N Nom Vid0.052 N Acc Vtn Vin N Nom Vid0.033 N Acc Vtn fact Nom N Acc Vtd0.032 N Acc Vtd. . . . . .

entropy = 2.072

0.764 N Nom Vid0.094 N Nom N Acc Vtd0.021 N Nom Vin fact Nom Vid0.020 N Nom Vin N Acc Vtd0.014 N Nom N Acc Vtn fact Nom Vid. . . . . .

entropy = 5.915

0.281 N Acc Vtn fact Nom Vid0.247 N Acc Vtn N Nom Vid0.053 N Acc Vtn Vin N Nom Vid0.035 N Acc Vtn fact Nom N Acc Vtd0.030 N Acc Vtn N Nom N Acc Vtd. . . . . .

entropy = 6.813

0.367 N Nom Vtn N Nom Vid0.079 N Nom Vtn Vin N Nom Vid0.045 N Nom Vtn N Nom N Acc Vtd0.042 N Nom Vtn fact Nom Vid0.018 N Nom Vtn Vin fact Nom Vid. . . . . .

entropy = 4.384

0.588 N Acc Vtn N Nom Vid0.072 N Acc Vtn N Nom N Acc Vtd0.020 N Acc Vtn N Acc Vtn fact Nom Vid0.020 N Acc Vtn N Acc Vtn fact Nom Vid0.018 N Acc Vtn N Acc Vtn N Nom Vid. . . . . .

entropy = 4.686

0.562 N Nom Vtn N Nom Vid0.069 N Nom Vtn N Nom N Acc Vtd0.019 N Nom Vtn N Acc Vtn fact Nom Vid0.019 N Nom Vtn N Acc Vtn fact Nom Vid0.017 N Nom Vtn N Acc Vtn N Nom Vid. . . . . .

SRC ORC

w0

w1

w2

w3

w4

ER=2.02 ER=2.02

ER=0 ER=0.77

ER=0.01 ER=0

ER=1.53 ER=2.13

Fig. 5 Likely derivations and their conditional probabilities in Korean RCs

As shown in Figure 5, the Subject Advantage at the head noun is mainly

because the ORC prefix before the head noun, N Nom Vtn, is associated with

higher entropy value (6.813 bits) than the corresponding SRC prefix N acc Vtn(5.915 bits); since the entropy at w4 is similar in both cases (4.38 and 4.67 bits), the

higher entropy at w3 in the ORC case corresponds to a greater reduction in entropy.

Since the difference at w3 is not big enough to be clearly reflected in the in the top

five parses, it is necessary to examine more derivations to characterize the source

of the difference. As mentioned in section 4, a higher entropy is associated with

a flatter distribution; for any given threshold, say 0.001, higher entropy therefore

corresponds to having a greater number of derivations whose probabilities are

above the threshold. Table 3 shows all parses with a probability over 0.001 for

Thursday, October 11, 2012

Japanese predictions0.

00.

20.

40.

60.

81.

01.

21.

4En

tropy

Red

uctio

n (b

it)

N Acc(SR)/Nom(OR) V N(head)

1.05 1.05

0.15

0.45

0 0 0

0.87

SRCORC

Thursday, October 11, 2012

Plan

1.Entropy reduction

2.Relative clausesa.Koreanb.Japanesec.Chinese

Thursday, October 11, 2012

Chinese relative clauses

SRC [[

eiei

��yaoqinginvite

��fuhaotycoon

�deDE

]]

(��i)guanyuaniofficial

��da-lehit

��jizhereporter

‘The official who invited the tycoon hit the reporter.’

ORC [

[

��fuhaotycoon

��yaoqinginvite

eiei

�deDE

]

]

(��i)guanyuaniofficial

��da-lehit

��jizhereporter

‘The official who the tycoon invited hit the reporter.’

Thursday, October 11, 2012

V1(src)/N1(orc) N1(orc)/V1(src) DE N2(head)

600

800

1000

1200

1400

Read

ing

Tim

e (m

s)

S−SRS−ORO−SRO−OR

Observed: Chinese SRC < ORC

Lin & Bever 2006Thursday, October 11, 2012

Predicted: Chinese SRC < ORC0.

00.

20.

40.

60.

81.

01.

21.

4En

tropy

Red

uctio

n (b

it)

Vt(SR)/N(OR) N(SR)/Vt(OR) de N(head)

0.97

1.07

0.650.72

0 0

0.62

0.82

SRCORC

Thursday, October 11, 2012

Why?entropy = 3.126

0.311 N Vt N0.237 N Vi0.179 Vt N0.073 Vi0.038 N Vt N de N. . . . . .

entropy = 2.157

0.678 Vt N0.083 Vt N de N0.052 Vt N de N Vt N0.039 Vt N de N Vi0.018 Vt N de Vt N. . . . . .

entropy = 2.052

0.471 N Vt N0.358 N Vi0.057 N Vt N de N0.026 N de N Vt N0.017 N de N Vi. . . . . .

entropy = 1.505

0.745 Vt N0.091 Vt N de N0.057 Vt N de N Vt N0.043 Vt N de N Vi0.019 Vt N de Vt N. . . . . .

entropy = 1.330

0.794 N Vt N0.097 N Vt N de N0.022 N Vt de N Vt N0.018 N Vt Vt N de N0.017 N Vt de N Vi. . . . . .

entropy = 2.460

0.377 Vt N de N0.237 Vt N de N Vt N0.180 Vt N de N Vi0.080 Vt N de Vt N0.061 Vt N de Vi. . . . . .

entropy = 2.342

0.384 N Vt de N Vt N0.292 N Vt de N Vi0.130 N Vt de Vt N0.099 N Vt de Vi0.047 N Vt de N Vt N de N. . . . . .

entropy = 1.841

0.449 Vt N de N0.283 Vt N de N Vt N0.215 Vt N de N Vi0.034 Vt N de N Vt N de N0.006 Vt N de N Vt Vt N de N. . . . . .

entropy = 1.526

0.514 N Vt de N Vt N0.391 N Vt de N Vi0.063 N Vt de N Vt N de N0.011 N Vt de N Vt Vt N de N0.007 N Vt de N Vt N Vt de N. . . . . .

SRC ORC

w0

w1

w2

w3

w4

ER=0.97ER=1.07

ER=0.65 ER=0.72

ER=0 ER=0

ER=0.62 ER=0.82

Thursday, October 11, 2012

Why?entropy = 3.126

0.311 N Vt N0.237 N Vi0.179 Vt N0.073 Vi0.038 N Vt N de N. . . . . .

entropy = 2.157

0.678 Vt N0.083 Vt N de N0.052 Vt N de N Vt N0.039 Vt N de N Vi0.018 Vt N de Vt N. . . . . .

entropy = 2.052

0.471 N Vt N0.358 N Vi0.057 N Vt N de N0.026 N de N Vt N0.017 N de N Vi. . . . . .

entropy = 1.505

0.745 Vt N0.091 Vt N de N0.057 Vt N de N Vt N0.043 Vt N de N Vi0.019 Vt N de Vt N. . . . . .

entropy = 1.330

0.794 N Vt N0.097 N Vt N de N0.022 N Vt de N Vt N0.018 N Vt Vt N de N0.017 N Vt de N Vi. . . . . .

entropy = 2.460

0.377 Vt N de N0.237 Vt N de N Vt N0.180 Vt N de N Vi0.080 Vt N de Vt N0.061 Vt N de Vi. . . . . .

entropy = 2.342

0.384 N Vt de N Vt N0.292 N Vt de N Vi0.130 N Vt de Vt N0.099 N Vt de Vi0.047 N Vt de N Vt N de N. . . . . .

entropy = 1.841

0.449 Vt N de N0.283 Vt N de N Vt N0.215 Vt N de N Vi0.034 Vt N de N Vt N de N0.006 Vt N de N Vt Vt N de N. . . . . .

entropy = 1.526

0.514 N Vt de N Vt N0.391 N Vt de N Vi0.063 N Vt de N Vt N de N0.011 N Vt de N Vt Vt N de N0.007 N Vt de N Vt N Vt de N. . . . . .

SRC ORC

w0

w1

w2

w3

w4

ER=0.97ER=1.07

ER=0.65 ER=0.72

ER=0 ER=0

ER=0.62 ER=0.82

Thursday, October 11, 2012

Expectations at a given prefixSRC: Vt... entropy = 2.157 bits

Prob Remainder1. 0.678 Vt N2. 0.083 Vt N de N3. 0.052 Vt N de N Vt N4. 0.039 Vt N de N Vi5. 0.018 Vt N de Vt N6. 0.015 Vt Vt N de N7. 0.013 Vt N de Vi8. 0.011 Vt de N Vt N9. 0.011 Vt de N Vt N10. 0.010 Vt N Vt de N11. 0.009 Vt de N Vi12. 0.009 Vt de N Vi13. 0.006 Vt N de N Vt N de N14. 0.005 Vt Vt N de15. 0.004 Vt de Vt N16. 0.004 Vt de Vt N17. 0.003 Vt Vt de N18. 0.003 Vt Vt de N19. 0.003 Vt N Vt de20. 0.003 Vt de Vi21. 0.003 Vt de Vi22. 0.002 Vt N de Vt N de N23. 0.001 Vt de N Vt N de N24. 0.001 Vt de N Vt N de N25. 0.001 Vt N de N Vt Vt N de N26. 0.001 Vt Vt de27. 0.001 Vt Vt de

ORC: N... entropy = 2.052 bits

Prob Remainder1. 0.471 N Vt N2. 0.358 N Vi3. 0.057 N Vt N de N4. 0.026 N de N Vt N5. 0.017 N de N Vi6. 0.013 N Vt de N Vt N7. 0.010 N Vt Vt N de N8. 0.010 N Vt de N Vi9. 0.007 N Vt N Vt de N10. 0.004 N Vt de Vt N11. 0.004 N Vt Vt N de12. 0.003 N Vt de Vi13. 0.003 N de N Vt N de N14. 0.002 N Vt Vt de N15. 0.002 N Vt Vt de N16. 0.002 N Vt N Vt de17. 0.002 N Vt de N Vt N de N

Thursday, October 11, 2012

More uncertainty aboutsentence-initial verb

Thursday, October 11, 2012

Why? entropy = 3.126

0.311 N Vt N0.237 N Vi0.179 Vt N0.073 Vi0.038 N Vt N de N. . . . . .

entropy = 2.157

0.678 Vt N0.083 Vt N de N0.052 Vt N de N Vt N0.039 Vt N de N Vi0.018 Vt N de Vt N. . . . . .

entropy = 2.052

0.471 N Vt N0.358 N Vi0.057 N Vt N de N0.026 N de N Vt N0.017 N de N Vi. . . . . .

entropy = 1.505

0.745 Vt N0.091 Vt N de N0.057 Vt N de N Vt N0.043 Vt N de N Vi0.019 Vt N de Vt N. . . . . .

entropy = 1.330

0.794 N Vt N0.097 N Vt N de N0.022 N Vt de N Vt N0.018 N Vt Vt N de N0.017 N Vt de N Vi. . . . . .

entropy = 2.460

0.377 Vt N de N0.237 Vt N de N Vt N0.180 Vt N de N Vi0.080 Vt N de Vt N0.061 Vt N de Vi. . . . . .

entropy = 2.342

0.384 N Vt de N Vt N0.292 N Vt de N Vi0.130 N Vt de Vt N0.099 N Vt de Vi0.047 N Vt de N Vt N de N. . . . . .

entropy = 1.841

0.449 Vt N de N0.283 Vt N de N Vt N0.215 Vt N de N Vi0.034 Vt N de N Vt N de N0.006 Vt N de N Vt Vt N de N. . . . . .

entropy = 1.526

0.514 N Vt de N Vt N0.391 N Vt de N Vi0.063 N Vt de N Vt N de N0.011 N Vt de N Vt Vt N de N0.007 N Vt de N Vt N Vt de N. . . . . .

SRC ORC

w0

w1

w2

w3

w4

ER=0.97ER=1.07

ER=0.65 ER=0.72

ER=0 ER=0

ER=0.62 ER=0.82

Thursday, October 11, 2012

Why? entropy = 3.126

0.311 N Vt N0.237 N Vi0.179 Vt N0.073 Vi0.038 N Vt N de N. . . . . .

entropy = 2.157

0.678 Vt N0.083 Vt N de N0.052 Vt N de N Vt N0.039 Vt N de N Vi0.018 Vt N de Vt N. . . . . .

entropy = 2.052

0.471 N Vt N0.358 N Vi0.057 N Vt N de N0.026 N de N Vt N0.017 N de N Vi. . . . . .

entropy = 1.505

0.745 Vt N0.091 Vt N de N0.057 Vt N de N Vt N0.043 Vt N de N Vi0.019 Vt N de Vt N. . . . . .

entropy = 1.330

0.794 N Vt N0.097 N Vt N de N0.022 N Vt de N Vt N0.018 N Vt Vt N de N0.017 N Vt de N Vi. . . . . .

entropy = 2.460

0.377 Vt N de N0.237 Vt N de N Vt N0.180 Vt N de N Vi0.080 Vt N de Vt N0.061 Vt N de Vi. . . . . .

entropy = 2.342

0.384 N Vt de N Vt N0.292 N Vt de N Vi0.130 N Vt de Vt N0.099 N Vt de Vi0.047 N Vt de N Vt N de N. . . . . .

entropy = 1.841

0.449 Vt N de N0.283 Vt N de N Vt N0.215 Vt N de N Vi0.034 Vt N de N Vt N de N0.006 Vt N de N Vt Vt N de N. . . . . .

entropy = 1.526

0.514 N Vt de N Vt N0.391 N Vt de N Vi0.063 N Vt de N Vt N de N0.011 N Vt de N Vt Vt N de N0.007 N Vt de N Vt N Vt de N. . . . . .

SRC ORC

w0

w1

w2

w3

w4

ER=0.97ER=1.07

ER=0.65 ER=0.72

ER=0 ER=0

ER=0.62 ER=0.82

Thursday, October 11, 2012

at headnoun

entropy = 3.126

0.311 N Vt N0.237 N Vi0.179 Vt N0.073 Vi0.038 N Vt N de N. . . . . .

entropy = 2.157

0.678 Vt N0.083 Vt N de N0.052 Vt N de N Vt N0.039 Vt N de N Vi0.018 Vt N de Vt N. . . . . .

entropy = 2.052

0.471 N Vt N0.358 N Vi0.057 N Vt N de N0.026 N de N Vt N0.017 N de N Vi. . . . . .

entropy = 1.505

0.745 Vt N0.091 Vt N de N0.057 Vt N de N Vt N0.043 Vt N de N Vi0.019 Vt N de Vt N. . . . . .

entropy = 1.330

0.794 N Vt N0.097 N Vt N de N0.022 N Vt de N Vt N0.018 N Vt Vt N de N0.017 N Vt de N Vi. . . . . .

entropy = 2.460

0.377 Vt N de N0.237 Vt N de N Vt N0.180 Vt N de N Vi0.080 Vt N de Vt N0.061 Vt N de Vi. . . . . .

entropy = 2.342

0.384 N Vt de N Vt N0.292 N Vt de N Vi0.130 N Vt de Vt N0.099 N Vt de Vi0.047 N Vt de N Vt N de N. . . . . .

entropy = 1.841

0.449 Vt N de N0.283 Vt N de N Vt N0.215 Vt N de N Vi0.034 Vt N de N Vt N de N0.006 Vt N de N Vt Vt N de N. . . . . .

entropy = 1.526

0.514 N Vt de N Vt N0.391 N Vt de N Vi0.063 N Vt de N Vt N de N0.011 N Vt de N Vt Vt N de N0.007 N Vt de N Vt N Vt de N. . . . . .

SRC ORC

w0

w1

w2

w3

w4

ER=0.97ER=1.07

ER=0.65 ER=0.72

ER=0 ER=0

ER=0.62 ER=0.82

Thursday, October 11, 2012

at headnoun

c

entropy = 3.126

0.311 N Vt N0.237 N Vi0.179 Vt N0.073 Vi0.038 N Vt N de N. . . . . .

entropy = 2.157

0.678 Vt N0.083 Vt N de N0.052 Vt N de N Vt N0.039 Vt N de N Vi0.018 Vt N de Vt N. . . . . .

entropy = 2.052

0.471 N Vt N0.358 N Vi0.057 N Vt N de N0.026 N de N Vt N0.017 N de N Vi. . . . . .

entropy = 1.505

0.745 Vt N0.091 Vt N de N0.057 Vt N de N Vt N0.043 Vt N de N Vi0.019 Vt N de Vt N. . . . . .

entropy = 1.330

0.794 N Vt N0.097 N Vt N de N0.022 N Vt de N Vt N0.018 N Vt Vt N de N0.017 N Vt de N Vi. . . . . .

entropy = 2.460

0.377 Vt N de N0.237 Vt N de N Vt N0.180 Vt N de N Vi0.080 Vt N de Vt N0.061 Vt N de Vi. . . . . .

entropy = 2.342

0.384 N Vt de N Vt N0.292 N Vt de N Vi0.130 N Vt de Vt N0.099 N Vt de Vi0.047 N Vt de N Vt N de N. . . . . .

entropy = 1.841

0.449 Vt N de N0.283 Vt N de N Vt N0.215 Vt N de N Vi0.034 Vt N de N Vt N de N0.006 Vt N de N Vt Vt N de N. . . . . .

entropy = 1.526

0.514 N Vt de N Vt N0.391 N Vt de N Vi0.063 N Vt de N Vt N de N0.011 N Vt de N Vt Vt N de N0.007 N Vt de N Vt N Vt de N. . . . . .

SRC ORC

w0

w1

w2

w3

w4

ER=0.97ER=1.07

ER=0.65 ER=0.72

ER=0 ER=0

ER=0.62 ER=0.82

Thursday, October 11, 2012

Is it headless?

24 anonymized running head

0.00

0001

0.00

0100

0.01

0000

1.00

0000

0 20 40 60 80 100

nth best derivationPr

obab

ility

Vt ...Noun ...

Fig. 13 Probabilities of top 100 derivations at the first word in Chinese RCs

ture is easier in SRCs than in ORCs because less uncertainty about the overallstructure is eliminated.

Prob Remainder Type

0.377 Vt N de N Sbj-pro & Poss Obj

0.237 Vt N de N Vt N SRC & matrix Vt

0.180 Vt N de N Vi SRC & matrix Vi

0.080 Vt N de Vt N headless SRC & matrix Vt

0.061 Vt N de Vi headless SRC & matrix Vi

. . . . . . . . .

entropy = 2.460

Prob Remainder Type

0.449 Vt N de N Sbj-pro & Poss Obj

0.283 Vt N de N Vt N SRC & matrix Vt

0.215 Vt N de N Vi SRC & matrix Vi

0.034 Vt N de N Vt N de N SRC & Poss Obj

0.006 Vt N de N Vt Vt N de N Sbj SRC & Obj SRC

. . . . . . . . .

entropy = 1.841

Prob Remainder Type

0.384 N Vt de N Vt N ORC & matrix Vt

0.292 N Vt de N Vi ORC & matrix Vi

0.130 N Vt de Vt N headless ORC & matrix Vt

0.099 N Vt de Vi headless ORC & matrix Vi

0.047 N Vt de N Vt N de N ORC & Poss Obj

. . . . . . . . .

entropy = 2.342

Prob Remainder Type

0.514 N Vt de N Vt N ORC & matrix Vt

0.391 N Vt de N Vi ORC & matrix Vi

0.063 N Vt de N Vt N de N ORC & Poss Obj

0.011 N Vt de N Vt Vt N de N Sbj ORC & Obj SRC

0.007 N Vt de N Vt N Vt de N Sbj ORC & Obj ORC

. . . . . . . . .

entropy = 1.526

ER=0.62

ER=0.82

Fig. 14 ER at the head noun in Chinese RCs (zoomed in from Figure 11)

6 Conclusion

Asymmetries in processing difficulty across CJK relative clauses can be understoodas differential degrees of confusion about sentence structure. On the one hand, thisidea has a certain intuitive obviousness about it: a harder information-processingproblem ought to be associated with greater observable processing difficulty. Butit is not a foregone conclusion. It could have been the case that the sentence struc-tures motivated by generative syntax do not derive these “harder” vs “easier”information processing problems in just the cases where human readers seem tohave trouble. But in fact, as section 5 details, they do.

By suggesting that human listeners are information-processors subject to in-formation theory, this methodology revives the approach of psychologists like Hick

ORC

SRC

Thursday, October 11, 2012

Reflects distributional facts

The Entropy Reduction complexity metric derives processing difficulty, in part, from probabilities. This means we need to weight the prepared MG grammar with help from language resources.

The methodology of the grammar weighting is to estimate probabilistic context-free rules of MG derivations by parsing a “mini-Treebank.” We obtain corpus counts8 for relevant structural types in the Chinese Treebank 7.0 (Xue et al., 2010) and treat these counts as attestation counts of certain construction in a mini-Treebank. For example, Table 3 lists corpus counts of four RC constructions. It suggests that SRs are more frequent than ORs when they modify matrix subjects. In addition, ORs tend to allow more covert heads than SRs. Through parsing each of these sentence types in the mini-Treebank, we estimate the weight of particular grammar rules by adding up the number of time such a rule is used in sentence construction while also considering how often each sentence type occurs in the mini-Treebank (Chi, 1999). However, for structurally stricter sentence types such as the RC with a determiner-classifier and a frequency phrase in (2), we could not get enough corpus counts from the Chinese Treebank. We then estimate their counts proportionally based on their counterparts in a simpler version such as regular RCs in (1).

Table 3. A fragment of the “Mini-Treebank” that includes corpus counts on Chinese RCs

Strings Construction Types Corpus Counts

Vt Noun de Noun Vt Noun Vt Noun de Vt Noun Noun Vt de Noun Vt Noun Noun Vt de Vt Noun

Subject-modifying SR with Vt Subject-modifying headless SR with Vt Subject-modifying OR with Vt Subject-modifying headless OR with Vt

366 123 203 149

3.3 Prefix Parsing as Intersection Grammars

The weighted grammar allows us to calculate the probability of constructing a complete sentence. But since we are more interested in predicting human comprehension difficulty word-by-word, it is necessary for us to determine the entropy of a prefix string.

Based on a weighted grammar G obtained after the training stage, we use chart parsing to recover probabilistic “intersection” grammars G’ conditioned on each prefix of the sentences of interest (Nederhof & Satta, 2008). An intersection grammar derives all and only the sentences in the language of G that are consistent with the initial prefix. It implicitly defines comprehenders’ expectations about how the sentence continues. Given the prefix string, the conditional entropy of the start symbol models a reader’s degree of confusion about which construction he or she is in at that point in the sentence. Comparing the conditional entropies before and after adding a new word, any decrease will quantify disambiguation work that, ideally, could have been done at that word.

Besides computing entropies, our system also samples syntactic alternatives from intersection grammars to get an intuitive picture of how uncertainties are reduced during parsing. These syntactic alternatives are discussed further in Section 3.4. 8 Corpus inquiries about construction types were done by using the pattern-matching tool Tregex (Levy & Andrew, 2006). For an example of Tregex queries for Chinese RCs, see Table 4 in Chen et al. In Press.

Thursday, October 11, 2012

Conclusions

Thursday, October 11, 2012

Conclusions

entropy reduction:derives processing consequencesfrom generative grammars

Thursday, October 11, 2012

Conclusions

entropy reduction:derives processing consequencesfrom generative grammars

providesa new account of the Subject Advantage

Thursday, October 11, 2012

Conclusions

entropy reduction:derives processing consequencesfrom generative grammars

key ideasentence-medial ambiguity levels

providesa new account of the Subject Advantage

Thursday, October 11, 2012

Write to us for the paper and the software:

[email protected]

Cornell Conditional Probability Calculator

Thursday, October 11, 2012

Joint work with

John Whitman

Tim Hunter

Jiwon Yun

Thursday, October 11, 2012