36
doc.: IEEE 802.11-15-0043-01-00ax Submission January 2015 ETRI In-band Full Duplex Radios and System Performance Date: 2015-01-12 Authors: Slide 1 Name Affiliations Address Phone email Kapseok Chang ETRI 218 Gajeong-ro, Yuseong- gu, Daejeon 305-700, Korea [email protected] Hyungsik Ju ETRI " [email protected] Seon-Ae Kim ETRI " [email protected] Byung-Jae Kwak ETRI " [email protected] Moon-Sik Lee ETRI " [email protected] Jimin Bae KAIST 291 Daehak-ro, Yuseong-gu, Daejeon 305-338, Korea [email protected] Eunhye Park KAIST " [email protected] Youngnam Han KAIST " [email protected] Woojin Ahn Yonsei University [email protected] Ronny Yongho Kim Korea National University of Transportation [email protected]

Youngnam Han KAIST [email protected] - Welcome to … · doc.: IEEE 802.11-15-0043-01-00ax Submission January 2015 ETRI In-band Full Duplex Radios and System Performance Date: 2015-01-12

Embed Size (px)

Citation preview

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

In-band Full Duplex Radios

and System Performance

Date: 2015-01-12

Authors:

Slide 1

Name Affiliations Address Phone email Kapseok Chang ETRI 218 Gajeong-ro, Yuseong-

gu, Daejeon 305-700, Korea

[email protected]

Hyungsik Ju ETRI " [email protected]

Seon-Ae Kim ETRI " [email protected]

Byung-Jae Kwak ETRI " [email protected]

Moon-Sik Lee ETRI " [email protected]

Jimin Bae KAIST 291 Daehak-ro, Yuseong-gu,

Daejeon 305-338, Korea [email protected]

Eunhye Park KAIST " [email protected]

Youngnam Han KAIST " [email protected]

Woojin Ahn Yonsei University [email protected]

Ronny Yongho

Kim

Korea National

University of

Transportation

[email protected]

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

Outline

Feasibility of In-band Full Duplex (IFD) Concept

Merit

Demerit

Classification of self-interference cancellation (SIC) Technology

State of the art in SIC

System Performance Introduction

Duplex mode TDD

3-node form IFD

Pairwise IFD

Residential scenario System-level simulation environment

Evaluation result

Outdoor large BSS scenario System-level simulation environment

Evaluation result

Summary

Slide 2

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

Feasibility of In-band Full Duplex (IFD)

Slide 3

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

What are current wireless radios?

Frequency Division Duplexing (FDD) In other words, Out-band Full Duplex (OFD)

Time Division Duplexing (TDD) In other words, In-band Half Duplex (IHD)

Problem There is no full resource utilization.

FDD wastes frequency resource, i.e. Frequency 2.

TDD wastes time resource, i.e. Timeslot 2.

What is one of solutions to resolve the problem? That is “In-band Full Duplex (IFD)”.

4

Frequency

Time

FDD

Rx

Tx

Tx

Rx

Frequency 1

Frequency 2

Frequency

Time

TDD

Tx/Rx Tx/RxTimeslot 1

Timeslot 2

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

Concept of IFD

IFD radio can simultaneously transmit and receive on thesame frequency channel

IFD does not waste frequency and time resources, i.e. Frequency 2and Timeslot 2.

5

Frequency

Time

Tx/Rx Tx/Rx

Timeslot 1/

Frequency 1

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

Merit: Spectral Efficiency

Basic operating scenario of bi-directional IFDcommunications with single antenna

Theoretical Ergodic capacities of ideal IFD and OFD/IHD

𝑪𝑰𝑭𝑫 = 𝟏 × 𝑪𝒂𝒃(𝟏×𝟏)

+ 𝟏 × 𝑪𝒃𝒂(𝟏×𝟏)

𝑪𝑶𝑭𝑫/𝐈𝐇𝐃 =𝟏

𝟐× 𝑪𝒂𝒃

(𝟏×𝟏)+

𝟏

𝟐× 𝑪𝒃𝒂

(𝟏×𝟏), where 𝑪𝒙𝒚

(𝟏×𝟏)= 𝐥𝐨𝐠𝟐 𝟏 + 𝑺𝑵𝑹𝒙𝒚

(𝟏×𝟏)

The link capacity of IFD is double than that of OFD/IHD.

6

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

Demerit: Self-Interference

Basic transceiver structure

Self-interference (i.e. self transmitted signal) is generated as below.

Very strong self-interference signal [1]

~110dB stronger than desired received signal strength for IEEE

802.11 Wi-Fi and LTE-A Small Cell

AntennaTx

Rx Desired received signal

Self-Interference

Signal

ADCBaseBand

LNA

PADACBaseBand

7

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

Demerit: Co-Channel Interference

Operating scenario of IFD capable AP supporting IHD capableuser nodes [2][3]

It can be a priority for AP only to have IFD capability in terms of powersupplying and backward compatibility.

Co-channel interference (CCI) occurs.

Requires further information (e.g. CCI) to setup the secondary link

8

Co-channel

Interference

(CCI)

Pri

mar

y link

Secon

dary lin

k

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

Classification of Self-Interference Cancellation

(SIC) Technology

9

Encoder Decoder

DAC ADC

Digital SIC in baseband domain

Analog SIC in circuit domain

Propagation SIC in antenna domain

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

Key Issues on SIC

Inefficiency of propagation SIC (PSIC)

Mainly using physical isolation between Tx and Rx antennas [4]

Any propagation SIC technologies are not recommended because

the merit of IFD in terms of spectral efficiency over OFD/IHD disappears

The form-factor size of IFD transceiver becomes larger.

Thus, single antenna is recommended to realize the merit of spectralefficiency

That is to say, no propagation SIC gain in antenna domain

Importance of analog SIC (ASIC)

Protecting analog-to-digital converter (ADC) saturation

Analog SIC technology is the crux of IFD commercialization.

Non-linear component in digital SIC (DSIC)

Dependent on surrounding environment of IFD transceiver, non-linearcomponent self-interference signal cannot be sufficiently cancelled inanalog domain. In this case, there is no successful decoding without thiscomponent cancellation.

10

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

State of the art in SIC [2]

Slide 11

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

State-of-the-art SIC Performance Comparison

InstituteYear

(Standard)

Freq.

(GHz)

BW

(MHz)PSIC ASIC DSIC

Total

SIC

NEC (Japan) 2011 5 10 55dB none 20dB 75dB

Rice University (US)

2011 2.4 10 57dB 24dB none 81dB

2012 2.4 20 65dB 20dB 85dB

2012 2.4 20 71dB 24dB 95dB

Stanford University

Kumu networks [1]

(US)

2010 2.48 5 30dB 25dB 15dB 70dB

2011 2.4 10 45dB 28dB 73dB

2013 2.4 80 none 60dB 50dB 110dB

DUPLO [6] 2014 2.45 6 none 50dB

RF Window (Korea) LTE

WCDMA2 20 60dB none 10dB 70dB

WITHUS (Korea) LTE

WCDMA2 10 35dB none 35dB 70dB

AirPoint (Korea) LTE TDD 2.2 55dB none 35dB 90dB

SOLiD (Korea) 2 65dB none 35dB 100dB

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

ETRI View and Result on SIC

Propagation SIC No need to achieve double spectral efficiency, that is, single shared antenna

Analog SIC Supporting wide bandwidth e.g. 100MHz

Achieving at least stable 80dB SIC to reduce quantization error in digital domain RF analog FIR filter is needed

Digital SIC Designing residual nonlinear component SIC as well as linear-component SIC for successful

decoding

13

0 5 10 15 20 25 3010

-6

10-5

10-4

10-3

10-2

10-1

100

Received desired Es/N0 [dB]

Av

era

ge U

nco

ded

BE

R

MCS Case:1.000000, fading:OFF, AWGN:ON, Over-sampling freq:80.000000 MHz

ETRI

Theoretic BER: AWGN Result based on S/W simulator Condition

Single antenna, Circulator/Antennachannel modelling, Low Pass Filtermodelling, nonlinear amplifier modelling

No consideration in other hardwareimpairments

We see more than 110dB SIC with ourSIC technologies. See the right figure.

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

System Performance

and Summary

Slide 14

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

Introduction

IFD with single antenna is coming

Feasibility of IFD communication now proved [1]

Dream of simultaneous transmission and reception (STR) coming true!!

When IFD is employed in wireless communication networks,

Performance IFD-based wireless communication networks by

system level simulation (SLS)

Slide 15

Up to 2x spectral efficiency

Advanced MAC protocols to

resolve various problems in

half duplex (HD) counterparts

Self-Interference

Increased co-channel

interference (CCI) by

STR

vs.

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

Duplex Mode – TDD

Slide 16

AP2AP2

AP1AP1

: Desired Signal : Co-Channel Interference (CCI)

DL mode

STA1

STA2

STA3

STA4

AP2AP2

AP1AP1

: Desired Signal : Co-Channel Interference (CCI)

UL mode

STA1

STA2

STA3

STA4

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

Duplex Mode – 3 Node Form IFD (3n-IFD) [2][3]

Slide 17

AP2AP2

AP1AP1

: Desired Signal : Co-Channel Interference (CCI)

DL mode

STA1

STA2

STA3

STA4

: Self-Interference AP2AP2

AP1AP1

: Desired Signal : Co-Channel Interference (CCI)

UL mode

STA1

STA2

STA3

STA4

: Self-Interference

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

Duplex Mode – Pairwise IFD [2][3]

Slide 18

AP2AP2

AP1AP1

: Desired Signal : Co-Channel Interference (CCI)

DL mode

STA1

STA2

STA3

STA4

: Self-Interference AP2AP2

AP1AP1

: Desired Signal : Co-Channel Interference (CCI)

UL mode

STA1

STA2

STA3

STA4

: Self-Interference

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

Residential Scenario

SLS Environment [5]

Residential building layout

5 floors, 3m height / floor

2×10 apartments / floor

Apartment size : 10m×10m×3m

Parameter

100 APs in the building (1 AP / room)

2 STAs / room

Carrier frequency : 2.4GHz

Bandwidth : 20MHz

Noise Figure : 7dB

TDD mode

AP: 2 Tx and 2 Rx antennas

STA: 1 Tx and 1 Rx antennas

IFD mode

AP: 2 shared antennas

STA: 1 shared antenna

Slide 19

-50

0

50

100

150

-100

-50

0

50

1000

5

10

15

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

Residential Scenario

SLS Environment (Contd.)

General P-IFD mode

AP : random deployment in room (uniform)

STA : random deployment in room (uniform)

Space-Scheduled (SSC) P-IFD & 3n-IFD mode

AP : random deployment in room (uniform)

STA

Random deployment in room (uniform)

• minimum distance between STAs is 2m

• minimum distance between AP and STA is x m

Slide 20

10m

10m

10

m

10m

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

-20 -10 0 10 20 30 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SINR

CD

F

Downlink SINR

P-IFD, general(120dB)

P-IFD, general(80dB)

P-IFD, general(70dB)

P-IFD, general(50dB)

P-IFD, SSC(120dB)

P-IFD, SSC(80dB)

P-IFD, SSC(70dB)

P-IFD, SSC(50dB)

-20 -10 0 10 20 30 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SINR

CD

F

UPlink SINR

P-IFD, general(120dB)

P-IFD, general(80dB)

P-IFD, general(70dB)

P-IFD, general(50dB)

P-IFD, SSC(120dB)

P-IFD, SSC(80dB)

P-IFD, SSC(70dB)

P-IFD, SSC(50dB)

Residential Scenario

Evaluation Result (1)

Effect of CCI

It means in this CCI level, the achievable

throughput with 80dB SIC case is close

to that with perfect SIC case.

Slide 21

Noise level -90dBm

Signal power 20dBm

300dB SIC

= CCI only-42dB

No need to reduce SI level

much below CCI level

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

Residential Scenario

Evaluation Result (2)

Throughput

Max. throughput of IFD 2 x max. throughput of TDD.

SSC is effective to enhance throughput of IFD.

Slide 22

0 1 2 3 4 5 6 7 8

x 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput (bps)

CD

F

DL Throughput

TDD

P-IFD, general (120dB)

P-IFD, general (70dB)

3n-IFD (120dB)

P-IFD, SSC (120dB)

P-IFD, SSC (70dB)

0 1 2 3 4 5 6 7 8

x 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput (bps)

CD

F

UL Throughput

TDD

P-IFD, general (120dB)

P-IFD, general (70dB)

3n-IFD(120dB)

P-IFD, SSC (120dB)

P-IFD, SSC (70dB)

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

Residential Scenario

Evaluation Result (3)

Areal Throughput

50% enhancement of areal throughput by 3n-IFD with sufficient SIC

300% enhancement of areal throughput by P-IFD with sufficient SIC

Noticeable areal throughput enhancement by SSCSlide 23

1 1.5 2 2.5 3 3.5 4 4.5 50

1

2

3

4

5

6x 10

10 DL Areal Throughput

# of cumulated floors

Are

al th

rou

gh

pu

t (b

ps)

P-IFD, general (120dB)

P-IFD, general (80dB)

P-IFD, general (70dB)

P-IFD, general (50dB)

P-IFD, SSC (120dB)

P-IFD, SSC (80dB)

P-IFD, SSC (70dB)

P-IFD, SSC (50dB)

3n-IFD (120dB)

TDD

1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5x 10

10 UL Areal Throughput

# of cumulated floors

Are

al th

rou

gh

pu

t (b

ps)

P-IFD, general (120dB)

P-IFD, general (80dB)

P-IFD, general (70dB)

P-IFD, general (50dB)

P-IFD, SSC (120dB)

P-IFD, SSC (80dB)

P-IFD, SSC (70dB)

P-IFD, SSC (50dB)

3n-IFD (120dB)

TDD

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

Outdoor Large BSS Scenario

SLS Environment [5]

BSSs’ layout 19 hexagonal grids of cells

Inter cell distance (ICD) = 130m

Location 1 AP at the center of each cell

2 randomly distributed STAs / cell

Heights: ℎ𝐴𝑃=10m, ℎ𝑆𝑇𝐴=1.5m

Parameter Carrier Frequency : 2.4GHz

Bandwidth : 20MHz

Noise Figure : 7dB

TDD mode AP: 2 Tx and 2 Rx antennas

STA: 1 Tx and 1 Rx antennas

IFD mode AP: 2 shared antennas

STA: 1 shared antenna

Slide 24

-400 -300 -200 -100 0 100 200 300 400-400

-300

-200

-100

0

100

200

300

400

1 2

34

5

6 78

9 10 11

12

13

14

151617

18

19 1

2

34

5

6

7

8

9

10

11

12

1314

1516

1718 19

2021

22

23

24

2526

27

28

29

3031 32

33

34

35

36

3738

1

3

2ICD

6

7

4

5

8

9

12

13

14

15 17

18

19

16

11

10

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

Outdoor Large BSS Scenario

SLS Environment (Contd.)

General P-IFD Random deployment (uniform)

Minimum distance b/w AP & STA : 10m

Minimum distance b/w STAs : 10m

SSC P-IFD

Random deployment (uniform)

Distance b/w AP & STA: 10 m ~ y m

Minimum distance b/w STAs : 10m

SSC 3n-IFD Random deployment (uniform)

Odd STA : random deployment within boundary

Even STA : reflection of odd STA

Distance b/w AP & STA: 10 m ~ y m

Slide 25

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

Outdoor Large BSS Scenario

Evaluation Result (1)

Throughput

Max. throughput of IFD 2 x max. throughput of TDD.

SSC is effective to enhance throughput of IFD in low SINR regime

Even with SSC, SIC more than 80dB required

Slide 26

0 1 2 3 4 5 6 7

x 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput (bps)

CD

F

DL Throughput

TDD

P-IFD, general (120dB)

P-IFD, general (80dB)

3n-IFD (120dB)

P-IFD, SSC (120dB)

P-IFD, SSC (80dB)

0 1 2 3 4 5 6 7

x 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput (bps)

CD

F

UL Throughput

TDD

P-IFD, general (120dB)

P-IFD, general (80dB)

3n-IFD (120dB)

P-IFD, SSC (120dB)

P-IFD, SSC (80dB)

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

Outdoor Large BSS Scenario

Evaluation Result (2)

Areal throughput

100% areal throughput enhancement by 3n-IFD with sufficient SIC

300% areal throughput enhancement by P-IFD with sufficient SIC

Noticeable areal throughput enhancement by SSCSlide 27

0 2 4 6 8 10 12 14 16 18 200

2

4

6

8

10

12

14

16

18x 10

9 DL Areal Throughput

# of accumulated cells

Are

al th

rou

gh

pu

t (b

ps)

P-IFD, general (120dB)

P-IFD, general (100dB)

P-IFD, general (80dB)

P-IFD, general (60dB)

P-IFD, SSC (120dB)

P-IFD, SSC (100dB)

P-IFD, SSC (80dB)

P-IFD, SSC (60dB)

3n-IFD (120dB)

TDD

0 2 4 6 8 10 12 14 16 18 200

2

4

6

8

10

12

14x 10

9 UL Areal Throughput

# of accumulated cellsA

rea

l th

rou

gh

pu

t (b

ps)

P-IFD, general (120dB)

P-IFD, general (100dB)

P-IFD, general (80dB)

P-IFD, general (60dB)

P-IFD, SSC (120dB)

P-IFD, SSC (100dB)

P-IFD, SSC (80dB)

P-IFD, SSC (60dB)

3n-IFD (120dB)

TDD

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

Summary

Simultaneous transmission and reception is coming.

When deployed in Wi-Fi networks, the system throughput with 80dB SICcase approached that with perfect SIC case (indoors).

When STA density is low, extra SIC performance can further enhance thesystem throughput (outdoors).

System level simulations show that with sufficient SIC performance, IFDleads to severalfold throughput enhancements compared to conventionalhalf duplex counterpart.

(Spatial) scheduling plays a key role to enhance performance of IFD-based Wi-Fi networks.

If 4 times areal throughput enhancement is desired, adopting IFD is oneof answers.

Slide 28

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRISlide 29

References

1. IEEE 802.11-13/1421r1, “STR radios and STR media access.”

2. IEEE 802.11-13/1122r1, “Considerations for In-Band Simultaneous

Transmit and Receive (STR) Feature in Hew”

3. IEEE 802.11-14/0838r0, “Discussion on Dual-Link STR in IEEE

802.11 ax”

4. E. Everett, A. Sahai, and A. Sabharwal, “Passive self-interference

suppression for full-duplex infrastructure nodes,” IEEE Trans. Wireless

Commun., vol. 13, no. 2, pp. 680-694, Feb. 2014.

5. IEEE 802.11-14/0980r4, “TGax Simulation Scenarios.”

6. DUPLO, ‘D4.1.1-Performance of full-duplex systems,’ http://www.fp7-

duplo.eu/index.php/.

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

Appendix

Slide 30

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

MCS table

Using IEEE 802.11n

Spatial streams = 1

Bandwidth = 20MHz

Residential Scenario 400ns GI

Outdoor Large BSS Scenario 800ns GI

Slide 31

MCS

index

Modulation

type

Coding

rate

Data rate (Mbits/s)

20MHz channel

800ns GI 400ns GI

0 BPSK 1/2 6.5 7.2

1 QPSK 1/2 13 14.4

2 QPSK 3/4 19.5 21.7

3 16-QAM 1/2 26 28.9

4 16-QAM 3/4 39 43.3

5 64-QAM 2/3 52 57.8

6 64-QAM 3/4 58.5 65

7 64-QAM 5/6 65 72.2

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

Residential Scenario

Other Simulation Results (2) SINR

DL

with 120 dB SIC, the SINR of pairwise IFD ≈ TDD

5 dB gain with SSC

UL

Increase of CCI between APs,

Both IFD schemes show inferior performance to TDD even with 120 dB SICSlide 32

-20 -10 0 10 20 30 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SINR

CD

F

DL SINR

TDD

Pairwise IFD1(120dB)

Pairwise IFD1(70dB)

3 node form IFD(120dB)

Pairwise IFD2(70dB)

Pairwise IFD2(120dB)

-20 -10 0 10 20 30 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SINRC

DF

UL SINR

TDD

Pairwise IFD1(120dB)

Pairwise IFD1(70dB)

3 node form IFD(120dB)

Pairwise IFD2(120dB)

Pairwise IFD2(70dB)

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

Residential Scenario

Other Simulation Results (3)

Spectral Efficiency

Slide 33

0 2 4 6 8 10 12 14

x 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

data rate

CD

F

DL SE

TDD

Pairwise IFD1(120dB)

Pairwise IFD1(70dB)

3 node form IFD(120dB)

Pairwise IFD2(120dB)

Pairwise IFD2(70dB)

0 2 4 6 8 10 12 14

x 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

data rate

CD

F

UL SE

TDD

Pairwise IFD1(120dB)

Pairwise IFD1(70dB)

3 node form IFD(120dB)

Pairwise IFD2(120dB)

Pairwise IFD2(70dB)

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

Outdoor Large BSS Scenario

Other Simulation Results (1) (SSC, 1.SINR, 2. Thr, 3.SE)

Slide 34

-20 -10 0 10 20 30 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SINR

CD

F

DL SINR, with BEST case

TDD

TDD (30m)

TDD (40m)

TDD (50m)

-20 -10 0 10 20 30 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SINR

CD

F

DL SINR, with BEST case

3 node form IFD(120dB)

3 node form IFD(30m,120dB)

3 node form IFD(40m,120dB)

3 node form IFD(50m,120dB)

-20 -10 0 10 20 30 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SINR

CD

F

DL SINR, with BEST case

Pairwise IFD(120dB)

Pairwise IFD(30m,120dB)

Pairwise IFD(40m,120dB)

Pairwise IFD(50m,120dB)

-20 -10 0 10 20 30 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SINR

CD

F

DL SINR, with BEST case

Pairwise IFD(80dB)

Pairwise IFD(30m,80dB)

Pairwise IFD(40m,80dB)

Pairwise IFD(50m,80dB)

-10 0 10 20 30 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SINR

CD

F

UL SINR, with BEST case

TDD

TDD (30m)

TDD (40m)

TDD (50m)

-20 -10 0 10 20 30 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SINR

CD

F

UL SINR, with BEST case

Pairwise IFD(80dB)

Pairwise IFD(30m,80dB)

Pairwise IFD(40m,80dB)

Pairwise IFD(50m,80dB)

-20 -10 0 10 20 30 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SINR

CD

F

UL SINR, with BEST case

Pairwise IFD(120dB)

Pairwise IFD(30m,120dB)

Pairwise IFD(40m,120dB)

Pairwise IFD(50m,120dB)

0 1 2 3 4 5 6 7

x 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

data rate

CD

F

DL Throughput, with BEST case

3 node form IFD(120dB)

3 node form IFD(30m,120dB)

3 node form IFD(40m,120dB)

3 node form IFD(50m,120dB)0 0.5 1 1.5 2 2.5 3 3.5

x 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

data rate

CD

F

DL Throughput, with BEST case

TDD

TDD (30m)

TDD (40m)

TDD (50m)

0 1 2 3 4 5 6 7

x 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

data rate

CD

F

DL Throughput, with BEST case

Pairwise IFD(80dB)

Pairwise IFD(30m,80dB)

Pairwise IFD(40m,80dB)

Pairwise IFD(50m,80dB)

0 1 2 3 4 5 6 7

x 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

data rate

CD

F

DL Throughput, with BEST case

Pairwise IFD(120dB)

Pairwise IFD(30m,120dB)

Pairwise IFD(40m,120dB)

Pairwise IFD(50m,120dB)

0 0.5 1 1.5 2 2.5 3 3.5

x 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

data rate

CD

F

UL Throughput, with BEST case

TDD

TDD (30m)

TDD (30m)

TDD (30m)

0 1 2 3 4 5 6 7

x 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

data rate

CD

F

UL Throughput, with BEST case

Pairwise IFD(80dB)

Pairwise IFD(30m,80dB)

Pairwise IFD(40m,80dB)

Pairwise IFD(50m,80dB)

0 1 2 3 4 5 6 7

x 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

data rate

CD

F

UL Throughput, with BEST case

Pairwise IFD(120dB)

Pairwise IFD(30m,120dB)

Pairwise IFD(40m,120dB)

Pairwise IFD(50m,120dB)

0 2 4 6 8 10 12

x 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

data rate

CD

F

DL SE, with BEST case

3 node form IFD(120dB)

3 node form IFD(30m,120dB)

3 node form IFD(40m,120dB)

3 node form IFD(50m,120dB)

0 1 2 3 4 5 6 7

x 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

data rate

CD

F

DL SE, with BEST case

TDD

TDD (30m)

TDD (40m)

TDD (50m)

0 1 2 3 4 5 6 7

x 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

data rate

CD

F

DL SE, with BEST case

Pairwise IFD(80dB)

Pairwise IFD(30m,80dB)

Pairwise IFD(40m,80dB)

Pairwise IFD(50m,80dB)

0 2 4 6 8 10 12 14

x 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

data rate

CD

F

DL SE, with BEST case

Pairwise IFD(120dB)

Pairwise IFD(30m,120dB)

Pairwise IFD(40m,120dB)

Pairwise IFD(50m,120dB)

0 1 2 3 4 5 6 7

x 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

data rate

CD

F

UL SE, with BEST case

TDD

TDD(30m)

TDD(40m)

TDD(50m)

0 1 2 3 4 5 6

x 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

data rate

CD

F

UL SE, with BEST case

Pairwise IFD(80dB)

Pairwise IFD(30m,80dB)

Pairwise IFD(40m,80dB)

Pairwise IFD(50m,80dB)

0 2 4 6 8 10 12

x 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

data rate

CD

F

UL SE, with BEST case

Pairwise IFD(120dB)

Pairwise IFD(30m,120dB)

Pairwise IFD(40m,120dB)

Pairwise IFD(50m,120dB)

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

Outdoor Large BSS Scenario

Other Simulation Results (2)

SINR

Slide 35

-20 -10 0 10 20 30 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SINR

CD

F

DL SINR

TDD

Pairwise IFD1(120dB)

Pairwise IFD1(80dB)

3 node form IFD(120dB)

Pairwise IFD2(80dB)

Pairwise IFD2(120dB)

-20 -10 0 10 20 30 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SINR

CD

F

UL SINR

TDD

Pairwise IFD1(120dB)

Pairwise IFD1(80dB)

3 node form IFD(120dB)

Pairwise IFD2(120dB)

Pairwise IFD2(80dB)

doc.: IEEE 802.11-15-0043-01-00ax

Submission

January 2015

ETRI

Outdoor Large BSS Scenario

Other Simulation Results (2)

Spectral Efficiency

Slide 36

0 2 4 6 8 10 12 14

x 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

data rate

CD

F

DL SE

TDD

Pairwise IFD1(120dB)

Pairwise IFD1(80dB)

3 node form IFD(120dB)

Pairwise IFD2(120dB)

Pairwise IFD2(80dB)

0 2 4 6 8 10 12

x 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

data rate

CD

F

UL SE

TDD

Pairwise IFD1(120dB)

Pairwise IFD1(80dB)

3 node form IFD(120dB)

Pairwise IFD2(120dB)

Pairwise IFD2(80dB)