39
Yoni Nazarathy Gideon Weiss University of Haifa The Asymptotic Variance of the Output Process of Finite Capacity Queues EURANDOM QPA Seminar April 4, 2008

Yoni Nazarathy Gideon Weiss University of Haifa

  • Upload
    salim

  • View
    20

  • Download
    0

Embed Size (px)

DESCRIPTION

The Asymptotic Variance of the Output Process of Finite Capacity Queues. Yoni Nazarathy Gideon Weiss University of Haifa. EURANDOM QPA Seminar April 4, 2008. Outline. Background A Queueing Phenomenon: BRAVO Main Theorem More on BRAVO Some open questions. The M/M/1/K Queue. m. - PowerPoint PPT Presentation

Citation preview

Page 1: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni NazarathyGideon Weiss

University of Haifa

Yoni NazarathyGideon Weiss

University of Haifa

The Asymptotic Variance of the

Output Process of Finite Capacity Queues

The Asymptotic Variance of the

Output Process of Finite Capacity Queues

EURANDOM QPA SeminarApril 4, 2008

EURANDOM QPA SeminarApril 4, 2008

Page 2: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 2

OutlineOutline

• Background

• A Queueing Phenomenon: BRAVO

• Main Theorem

• More on BRAVO

• Some open questions

Page 3: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 3

• Buffer size:

• Poisson arrivals:

• Independent exponential service times:

• Jobs arriving to a full system are a lost.

• Number in system, , is represented by a finite state irreducible birth-death CTMC.

•Assume is stationary.

The M/M/1/K QueueThe M/M/1/K Queue

( )

( )

0

1e

K

* (1 )K

{ ( ), 0}Q t t

1

11

1

11

1

iK

i

K

K KFiniteBuffer

Server

0,...,i K

“Carried load”

{ ( ), 0}Q t t

Page 4: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 4

Counts of point processes:

• - Arrivals during

• - Entrances

• - Outputs

• - Lost jobs

Traffic ProcessesTraffic Processes

{ ( ), 0}A t t

{ ( ), 0}E t t

{ ( ), 0}D t t

{ ( ), 0}L t t

[0, ]t

1 K

( )A t

( )L t

( )E t

Poisson

K 1K

0 Renewal Renewal

( )D t

( ) ( )D t L t

( )A t

Non-RenewalPoisson

Poisson Poisson Poisson

Non-Renewal Renewal

( / /1)M M

K

( )D t

( )L t

( )E t( )A t

M/M/1/KM/M/1/K

Renewal

( ) ( ) ( )

( ) ( ) ( )

A t L t E t

E t Q t D t

Book: Traffic Processes in Queueing Networks, Disney, Kiessler 1987.

Page 5: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 5

• Some Attributes: (Disney, Kiessler, Farrell, de Morias 70’s)

• Not a renewal process (but a Markov Renewal Process).

• Expressions for .

• Transition probability kernel of Markov Renewal Process.

• A Markovian Arrival Process (MAP) (Neuts 80’s)

• What about ?

The Output processThe Output process

1Cov( , )n nT T

Var ( )D t Var ( )D t

t

V

Var ( ) ( )D t V t o t

Asymptotic Variance Rate: V

Page 6: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 6

What values do we expect for ?V

?

( )V

Keep and fixed.K

Page 7: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 7

?

( )V

K / / 1( )M M

Work in progress by Ward Whitt

What values do we expect for ?VKeep and fixed.K

Page 8: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 8

?

( )V 40K

?* (1 )KV

Similar to Poisson:

What values do we expect for ?VKeep and fixed.K

Page 9: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 9

?

( )V

40K

What values do we expect for ?VKeep and fixed.K

Page 10: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 10

( )V

40K

2

3

Balancing

Reduces

Asymptotic

Variance of

Outputs

What values do we expect for ?VKeep and fixed.K

Page 11: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 11

Page 12: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 12

Page 13: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 13

Explicit Formula for M/M/1/KExplicit Formula for M/M/1/K

2

2

1 2 1

1 3

21

3 6 3

(1 )(1 (1 2 ) (1 ) )1

(1 )

K K K

K

K K

K KV

K

2lim

3KV

Page 14: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 14

Calculating Using MAPs

Calculating Using MAPs

V

Page 15: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 15

C DMAP (Markovian Arrival Process)(Neuts, Lucantoni et al.)MAP (Markovian Arrival Process)(Neuts, Lucantoni et al.)

* * 2 * 2 3 2Var ( ) 2( ) 2 2( ) 2 ( )r btD t D De t De O t e

0 0

1 1 1 1

1 1 1 1

( )

( )K K K K

K K

1

1

0 0

0 0

0

0K

K

* De *E[ ( )]D t t

0 0

1 1 1

1 1 1

0 ( )

0 ( )

0K K K

K

Generator Transitions without events Transitions with events

1( )e

, 0r b

Asymptotic Variance Rate

Birth-Death Process

Page 16: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 16

Attempting to evaluate directlyAttempting to evaluate directly* * 2 12( ) 2 ( )V D e De

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

10K

1 10 20 30 40

1

10

20

30

40

1 10 20 30 40

1

10

20

30

40

40K

1 50 100 150 201

1

50

100

150

201

1 50 100 150 201

1

50

100

150

201

200K

For , there is a nice structure to the inverse.

2 2 3

2 3

( 2 ) ( 2 ) ( 1) 7( 1),

2( 1) 2( 1)ij

i i K j K j K Kr i j

K K

ijr

But This doesn’t get us far…

V

Page 17: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 17

Main TheoremMain Theorem

Page 18: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 18

1*

0

K

ii

V v

2

2 ii i

i

Mv M

d

*

1i i iM D P

1

i

i jj

P

0

i

i jj

D d

Main Theorem

i i id

Part (i)

Part (ii)

0iv

1 2 ... K

0 1 1... K

*1

V

0 0

1 1 1 1

1 1 1 1

( )

( )K K K K

K K

*1KD

Scope: Finite, irreducible, stationary,birth-death CTMC that represents a queue.

0 10

1

ii

i

0 1

0 0 1

1iK

j

i j i

and

If

Then

Calculation of iv

(Asymptotic Variance Rate of Output Process)

Page 19: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 19

Proof Outline(of part i)

Proof Outline(of part i)

1*

0

K

ii

V v

Page 20: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 20

Define The Transition Counting ProcessDefine The Transition Counting Process

( ) ( ) ( )M t E t D t

Var ( ) ( )M t M t o t

Lemma: 4M V

Proof:

( ) 2 ( ) ( )M t D t Q t

Var ( ) 4Var ( ) Var ( ) 4Cov ( ), ( )M t D t Q t D t Q t

Cov ( ), ( )1

Var ( ) Var ( )

D t Q t

D t Q t

Var ( ) (1)Q t O

Var ( ) ( )D t O t Cov ( ), ( )D t Q t O t

Q.E.D

- Counts the number of transitions in [0,t]

Asymptotic Variance Rate of M(t): ,M

Births Deaths

MAP of M(t) is “Fully Counting” – all transitions result in counts of events.

Page 21: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 21

Proof OutlineProof Outline 1*

0

K

ii

V v

Whitt: Book: 2001 - Stochastic Process Limits,.

Paper: 1992 - Asymptotic Formulas for Markov Processes…

1) Lemma: Look at M(t) instead of D(t).

2) Proposition: The “Fully Counting” MAP of M(t) has associated MMPP with same variance.

3) Results of Ward Whitt: An explicit expression of asymptotic variance rate of birth-death MMPP.

Page 22: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 22

t

3 2 1

2 4 2

1 1 2

a b c

a

b

c

Fully Counting MAP and associated MMPPFully Counting MAP and associated MMPP

MMPP (Markov Modulated Poisson Process)

Example:

0 ( )N t

tabc

( )Q t

rate 4Poisson Process

rate 2

rate 3

rate 4

rate 2

rate 4

rate 3

rate 2

rate 3

rate 4

rate 2

1 0

1 0

E[ ( )] E[ ( )]

Var( ( )) Var( ( ))

N t N t

N t N t

Proposition

3 0 0 0 2 1

0 4 0 2 0 2

0 0 2 1 1 0

6 2 1 3 0 0

2 8 2 0 4 0

1 1 4 0 0 2

Transitions without events Transitions with events

1( )N tFully Counting MAP

1( ),N t

( )Q t

0 ( )N t

Page 23: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 23

More On BRAVO More On

BRAVOBalancing

Reduces

Asymptotic

Variance of

Outputs

Page 24: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 24

0 1 KK – 1

Some intuition for M/M/1/KSome intuition for M/M/1/K

Page 25: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 25

Intuition for M/M/1/K doesn’t carry over to M/M/c/KIntuition for M/M/1/K doesn’t carry over to M/M/c/KV

cBut BRAVO doesBut BRAVO does

c

M/M/40/40

M/M/10/10

M/M/1/40

1

K=20K=30

c=30

c=20

Page 26: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 26

BRAVO also occurs in GI/G/1/KBRAVO also occurs in GI/G/1/K

V

1

MAP used for PH/PH/1/40 with Erlang and Hyper-Exp distributions

1

2

Page 27: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 27

The “2/3 property”The “2/3 property”

K

• GI/G/1/K

• SCV of arrival = SCV of service

• 1 V2 42 33

3 21

2 3

6 2 455 3

1 2 132 3

Page 28: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 28

Other Phenomena at Other Phenomena at 1

Page 29: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 29

Asymptotic Correlation Between Outputs and OverflowsAsymptotic Correlation Between Outputs and Overflows

,

2 3

,

1

11

lim Corr( ( ), ( )) 15 5 3

4 12 2 4

1

K

t

K

R

KD t L t

K K K

R

1 1

2,

1 2 1 2 2 1

(1 )(1 3 ) (1 )(3 )

(1 )(1 (2 1)(1 ) )((1 )(1 ) 4( 1)(1 ) )

K K K K

KK K K K K

KR

K

0.139772 1

1lim Corr( ( ), ( )) 1

41

12

tD t L t

For Large K

( )D t

( )L t

M/M/1/KM/M/1/K

Page 30: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 30

Proposition: For ,

The y-intercept of the Linear AsymptoteThe y-intercept of the Linear Asymptote

4 3 2

2

7 28 37 18

180 360 180D

K K K KB

K K

M/M/1/K1

* * 2 * 2 3 2Var ( ) 2( ) 2 2( ) 2 ( )

D

r bt

BV

D t D De t De O t e , 0r b

1

Page 31: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 31

The variance function in the short rangeThe variance function in the short range

/ /1/ 40M M

Page 32: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 32

Why lookedat asymptotic variance

rate?

Why lookedat asymptotic variance

rate?

Page 33: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 33

Require:

• Stable Queues

Push-Pull Queueing Network(Weiss, Kopzon 2002,2006)Push-Pull Queueing Network(Weiss, Kopzon 2002,2006)

1 1

22

Server 2Server 1

PUSH

PULL

PULL

PUSH

0,0 1,0 2,0 3,0 4,0 5,0

0,1

0,2

0,3

0,4

n1

n2

1 1 1 1 1 1

1 1 1 1 1 1

2

2

2

2

2 2

2

2

2

2

0,0

1,3

2,0 3,0 4,0 5,0

0,1

0,2

0,3

0,4

n1

n2

11 1 1 1 1

1 1

1 1 1 1

2

2

2

2

2

2,1

2,2

2,3

2

2

22

2

2

3,1

3,2

3,3

2

2

2

2

2

2

4,1

4,2

4,3

2

2

2

2

2

2

5,1

5,2

5,3

2

2

22

2

2

1 1

1,0

1,4

1

1 1

2,4

0,5

2

1,5

1

1 1

2,5

2

2

2

1

1 1

4,5

2

Positive Recurrent Policies Exist!!!

* 1 1 2 21

1 2 1 2

( )

* 2 2 1 12

1 2 1 2

( )

1 2 1

Low variance of the output processes?

PROBABLY

NOT WITH THESE

POLICIES!!!

i i i i

Page 34: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 34

Queue Size RealizationsQueue Size Realizations

i i

50 100 150 200 250 300

5

10

500 1000 1500 2000

10

20

30

40

50

BURSTY OUTPUTS

BURSTY OUTPUTS

i i

Page 35: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 35

• Can we calculate ?

• Diffusion Approximations of the Outputs.

• Is the right measure of burstines?

• Which policies are “good” in terms of burstiness?

Work in progressWork in progress

1 1

22

Server 2Server 1

PUSH

PULL

PULL

PUSH

iV

*1 1,V

*2 2,V

iV

Page 36: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 36

• Heavy Traffic Scaling, Whitt. Prove the 2/3 Property for GI/G/1/K.

• BRAVO - What is going on?

• M/M/1 with .

• Formulas for asymptotic variance of outputs from other systems.

Other QuestionsOther Questions

Page 37: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 37

In Progress by Ward WhittIn Progress by Ward WhittQuestion: What about the null recurrent M/M/1( ) ?

Some Guessing

1V 2

3V 4

2 0.727V

1

1 20 1inf { ( ) (1 )}t

L B t B t

( )( ) , 1, 2,...n

D nt ntD t n

n

1970, Iglehart and Whitt1970, Iglehart and Whitt

w

n DD B

2 1 20

( ) ( ) inf { ( ) ( )}Ds t

B t B t B t B s

1 2,B B Standard independent Brownian

motions.Standard independent Brownian motions.

(1)d

DL B2008, (1 week in progress by Whitt)2008, (1 week in progress by Whitt)

? 4Var( ) 2 2Var( (0,1) )V L N

Uniform Integrability

SimulationResults

0.65V

Page 38: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 38

M/M/1+ Impatient Customers - SimulationM/M/1+ Impatient Customers - Simulation

( 1, 1)

( )D t

( )L t

( )E t( )A t

V* *,

Page 39: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 39

Thank YouThank You