61
VARIATIONS IN CVD DIAMOND DETECTOR’S RESPONSE TO RADIATIONS WITH THE CRYSTAL’S DEFECTS COMPARED WITH CALCULATED VALUES FROM MC code(PENELOPE) AT LOW ENERGY MAMMOGRAPHY X-RAY RANGE Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

  • Upload
    saima

  • View
    88

  • Download
    0

Embed Size (px)

DESCRIPTION

VARIATIONS IN CVD DIAMOND DETECTOR’S RESPONSE TO RADIATIONS WITH THE CRYSTAL’S DEFECTS COMPARED WITH CALCULATED VALUES FROM MC code(PENELOPE) AT LOW ENERGY MAMMOGRAPHY X-RAY RANGE. Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy. YI Zakari* RD Mavunda, TL Nam and RJ keddy. - PowerPoint PPT Presentation

Citation preview

Page 1: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

VARIATIONS IN CVD DIAMOND DETECTOR’S RESPONSE TO RADIATIONS WITH THE CRYSTAL’S DEFECTS COMPARED WITH CALCULATED VALUES FROM MC code(PENELOPE) AT LOW ENERGY MAMMOGRAPHY X-RAY RANGE

Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Page 2: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

YI Zakari* RD Mavunda, TL Nam and RJ keddy

DST/NRF Centre of Excellence in Strong Materials and School of Physics,University of the witwatersrand, Private Bag 3, PO wits 2050, Johannesburg, Republic of South Africa

*Post Doctoral fellow from Ahmadu Bello University, Zaria, Nigeria

Page 3: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

INTRODUCTIONINTRODUCTION

•CVD DIAMOND DETECTOR AS CVD DIAMOND DETECTOR AS THE ‘STATE OF THE ART’ FOR THE ‘STATE OF THE ART’ FOR

FUTURE TECHNOLOGYFUTURE TECHNOLOGY•MotivationMotivation:: Breast cancer reported Breast cancer reported

to be the highest source of to be the highest source of mortality in women (next to lung mortality in women (next to lung cancer) and that at present X-ray cancer) and that at present X-ray

mammography screening may mammography screening may also induce cancer also induce cancer

Page 4: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

AIM

CHARACTERIZATION OF CVD DETECTORS

TO EVALUATE CVD DIAMOND RESPONSE TO ALPHA LOW ENERGY X-RAY

ALPHA SPECTROCOPYMC CODE(PENELOPE) OF

MAMMOGRAPHIC X-RAY RANGE

Page 5: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

INSTRUMENTS FOR CHARACTERISATION

BRUKER MICROWAVE BRIDGE ESP 380-1010

VARIAN CARY 500 UV-Vis-NIR SPECTROMETER

JOBIN-YVON T64000 RAMAN SPECTROMETER

TOLEDO 654 TLD UNITKEITHLEY 237 FOR i-v

CHARACTERISTICS

Page 6: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

CVD

Page 7: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

MATERIALS

SINGLE CRYSTAL CVD DIAMOND

POLYCRYSTALS: DETECTOR GRADE AND OPTICAL GRADE CVD DIAMOND

METALIZED CVD DIAMOND

Page 8: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

EXPERIMENTAL SETUP-1

SPECIALLY CONSTRUCTED AMPLIFIER CUM HIGH VOLTAGE SYSTEM COUPLED TO PC

Am-241 ALPHA SOURCE +PRE-AMP. IN VACUUM.

ACQUISITION OF DATA USING APTEC SOFTWARE

Page 9: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

EXPERIMENTAL SETUP-2

SENOGRAPHE 500T MAMMOGRAPHY X-RAY UNIT.

PTW DIADOS 11003-1121 REFERENCE DETECTOR

SAMPLE HOLDER WITH APPLIED FIELD ACROSS SAMPLE AND DIADOS DETECTOR

RECORDINGS FROM WELLHOFER DOSIMETRIE CU500 CONTROL COMPUTER 232C-A

DATA ACQUISITION SOFTWARE PACKAGE WP600 VERSION 4.26C

Page 10: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

RESULTS-1

ESR: single Total energy

Sample

Raman spectral broadening

FWHM (cm-1)

TL response

(arbt.unit)

substitution nitrogen (ppm)

UV absorption

(cm-1)

alpha counts (cps)

absolute Efficiency

%

peak Efficiency

% Alpha

FWHM (keV)

DG1 2.64±0.17 1147 3.5 0.51±0.06 32969 68 80 1010.59±27.03

DG2 2.57±0.17 881 4 1.93±0.13 31327 65 80 693.41±11.16

DG3 2.63±0.15 2024 5 1.03±0.08 29834 62 81 64.14±0.8

DG4 2.55±0.16 814 5.3 1.9±0.05 32732 68 80 672.55±5.46

OG1 2.59±0.15 155 42.9 3.86±0.05 50314 104 60 7465.39±90.4

OG2 2.78±0.24 83 71 3.52±0.09- 49010 101 60 5975.00±34.99

OG3 2.76±0.24 141 53.6 3.48±0.11 49397 103 60 7050.34±124.8

OG4 2.81±0.22 93 62.5 3.59±0.11 39046 81 60 7245.66±60.48

SC 2.32±0.03 25 <1 0.88±0.02 25401 52 80 85.28±0.9

Page 11: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

VARIATION OF TOTAL ALPHA COUNTS WITH UV(/cm) Absorption for detector and optical grade CVD

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

UV absorption (cm-1)

Alp

ha c

ounts

per

sec

OG

DG

SC

Page 12: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Variation of total alpha counts with the single substitution nitrogen concentration (ESR) of optical grade CVD diamond

22500

24500

26500

28500

30500

32500

3 3.5 4 4.5 5 5.5

Single substitutional nitrogen (ppm)

Alp

ha c

ounts

per

second (

cps)

Page 13: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Variation of total alpha counts with single substitution nitrogen concentration for detector grade CVD diamonds

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

40 45 50 55 60 65 70 75

Single substitutional nitrogen (ppm)

UV

absorp

tion (

cm-1

)

Page 14: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Variation of total alpha counts with the Raman broadening (FWHM) for optical grade CVD diamonds

0

10000

20000

30000

40000

50000

60000

2.55 2.6 2.65 2.7 2.75 2.8 2.85

Raman Broadening (FWHM in cm-1)

Alp

ha c

ounts

per

second (

cps)

Page 15: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Variation of TL response with single substitutional nitrogen concentration (ESR) for detector and optical grade CVD diamonds

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80

Single substitutional nitrogen (ppm)

TL r

esponse (

arb

t.unit)

DG

OG

Page 16: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Variation of TL emission with Raman broadening for optical grade CVD diamonds

50

70

90

110

130

150

170

2.55 2.6 2.65 2.7 2.75 2.8 2.85

Raman broadening (FWHM in cm-1)

TL (

arb

. unit)

em

issin

Page 17: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Variation of Alpha FWHM counts with averaged UV absorption values for both detector and optical grade and single crystal CVD diamonds

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

0.6 1.1 1.6 2.1 2.6 3.1 3.6 4.1

UV absorption (cm-1)

Alp

ha F

WH

M (

keV

)

SCDG

OG

Page 18: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Variation of FWHM of total count with averaged Raman broadening values for both detector and optical grade and single crystal CVD diamonds

1

10

100

1000

10000

2.28 2.38 2.48 2.58 2.68 2.78

Raman broadening (FWHM in cm-1)

Alp

ha F

WH

M (

keV

)

OG

DGSC

Page 19: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Variation of alpha FWHM with single substitutional nitrogen concentration (ESR) for detector and optical grade CVD diamonds

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10 20 30 40 50 60 70 80

Single substitutional nitrogen (ppm)

Alp

ha F

WH

M (

keV

)

DG

OG

DG

Page 20: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Variation of experimental alpha count rate with energy for optical grade (DG) CVD diamonds

Variation of experimental alpha count rate w ith energy for optical grade (OG) CVD diamonds

0

10

20

30

40

50

60

70

80

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

energy (keV)

Count ra

te (

cps)

Page 21: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

A typical optical grade CVD diamond spectrum before (upper curve) and after (Lower curve) background subtraction

0

50

100

150

200

250

0 5000 10000 15000 20000

Energy (keV)

Tota

l alp

ha c

ounts

Page 22: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Alpha spectrum from OG4 polycrystalline and single crystal (SC) CVD diamond samples showing energy peak.

0

20

40

60

80

100

120

140

160

180

0 2000 4000 6000 8000 10000 12000 14000

Energy (keV)

Tota

l alp

ha c

ounts

SC

OG4

Page 23: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Alpha spectrum from detector grade DG3 and DG4 CVD diamonds showing the characteristic energy peak

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000 12000 14000

Energy (keV)

Tota

l alp

ha c

ounts

DG3

DG4

Page 24: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Summary1 of observations on Alpha interaction with defects in CVD

Consistent trend of alpha counts having +ve gradient with UV absorption and TL emission but a –ve gradient to the Raman broadening and and Ns.

Relatively high total alpha counts from OG CVD diamond may be associated with UV related defects and build-up effect.

Ns. in CVD diamond is seen to act as a recombination center due to the observed higher sensitivity (counting efficiency) with lower Ns.concentration

Page 25: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Summary2 of observations on Alpha interaction with defects in CVD For reasonable alpha spectroscopy, the

values of nitrogen concentration, UV absorption and Raman broadening be as low as possible, but TL value must be highest.

In General for alpha spectroscopy the SC is the choice material or DG grade as substitute.

Otherwise for a detector with higher sensitivity and less expensive the OG CVD material could serve

Page 26: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

The alpha spectrum stripping methodology The alpha spectrum stripping methodology for a comparative evaluation of inherent for a comparative evaluation of inherent

spectrometric performance of CVD diamondspectrometric performance of CVD diamond

• Level of defects in CVD diamond wafers affects their response to radiation( Nam et al 1991; Davies, 1994; Iakoubovski et al, 2002; Nebel, 2003 Mavunda ,2008)

• Alpha interaction( primary and secondary) with the detector material to cause excitation and ionization of the electrons into e-hole pairs

• Deceleration of the e-hole pairs produced in the field of alpha produces bremsstrahlung that interacts by Compton scattering to cause the observed fluctuations in the spectrum

• The sensitivity of the optical grades results in the observed skewedness and deviation of the spectrum peak.

• Electronic and statistical factors were also considered

Page 27: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Formulation of stripping equationusing the Bragg-Kleeman rule.

A

D

D

AAiiD A

ARR

-------------------------------------------------------(1)

where )(325.0)( 23

MeVEcmR iAi (Lamarsh,1997)

The specific ionization I(Ei) defined as

ionsWR

eVEEI

Di

ii

)( /cm

)(10222

2 2

keVE

EEE

i

iic

i

ccii

pi EI

EIEIf

cicci EEIEI

)2( EiioEiioiopi fEIfEIEII piEi ff 1

Page 28: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Variation in peak efficiency with energy

Fig. 1 Variation in peak eff iciency w ith energy

0

0.2

0.4

0.6

0.8

1

1.2

0 5000 10000 15000 20000 25000

Energy (keV)

Peak e

ffic

iency

Page 29: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Variation in alpha count rate s with energy for an Optical grade CVD diamond (OG1)

0 5000 10000 15000 200000

50

100

150

200

250

Fig.2 Variation in Alpha count rates with Energy for an Optical grade CVD diamond (OG1)

Alp

ha

co

un

t ra

te (

cp

s)

Energy (KeV)

Exptal counts Exptal (Baseline subtracted) Stripped counts

Page 30: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Variation in alpha count rate with energy for an optical grade CVD diamond (OG2)

-2000 0 2000 4000 6000 8000 10000 12000 14000 16000 180000

50

100

150

200

250

300

F1g.3 Variation in alpha count rate with energy for an Optical grade CVD diamond (OG2)

Alp

ha c

ount ra

te (

cps)

Energy (KeV)

Exptal counts Exptal (Baseline subtracted) Stripped counts

Page 31: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Variation of Alpha count rate with energy for a detector grade CVD diamond (DG1)

-2000 0 2000 4000 6000 8000 1000012000140001600018000200000

10

20

30

40

50

60

70

80

Fig.6 Variation in Alpha count rate with Energy for a detector grade CVD diamond (DG1)

Alp

ha c

ount ra

te (

cps)

Energy (KeV)

Exptal counts Exptal (Baseline subtracted) Stripped counts

Page 32: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Variation in Alpha count rate with energy for a particular detector grade CVd diamond (DG3)

-1000 0 1000 2000 3000 4000 5000 6000 7000 80000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Fig.8 Variation in Alpha count rate with energy for a detector grade CVD diamond (DG3)

Alp

ha

co

unt ra

te (

cps)

Energy (KeV)

Exptal Counts Stripped counts

Page 33: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Variation in Alpha count rate with energy for a single crystal CVD diamond

-2000 0 2000 4000 6000 8000 10000 12000 14000 16000-500

0

500

1000

1500

2000

2500

3000

3500

Fig.10 Variation in Alpha count rate with Energy for a Single Crystal CVD diamond (SC)

To

tal C

ou

nts

Energy (keV)

Experimental Counts Corrected Counts

Page 34: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Table 1: Spectral Analysis of accumulated alpha spectra from the three grades of CVD diamonds (The energy of the impinging alpha particles being 5.47MeV)

Alpha counts

(cps)

%Absolute

Efficiency

Stripped

spectrum

Peak

Resolution

% peak

Efficiency

Detector

Type

EXPT

ANALT

EXPT

ANALT

AREA

Height

FWHM

(keV)

EXPT

ANALT

stripped

EXPT

ANALT

stripped

DG1

32969

35245

68

73

28504

25.1

907.8

0.185±

0.001

0.166±

0.0008

80

80

DG2

31327

39150

65

81

63228

88.3

571.7

0.125±

0.0023

0.105±

0.0034

80

80

DG3

29834

40623

62

84

1031800

13352

61.7

0.012±

0.0018

0.011±

0.0016

82

82

DG4

32732

37225

68

77

40622

54..2

622.5

0.124±

0.0030

0.114±

0.0092

80

80

OG1

50314

45355

104

94

318840

73.8

3447.6

1.365±

0.0089

0.630±

0.0064

60

60

OG2

49010

46531

101

96

631500

125.6

4041.8

1.092±

0.004

0.739±

0.0045

60

60

OG3

49397

46288

103

96

858870

161.4

4245

1.289±

0.0048

0.776±

0.0040

60

60

OG4

39046

43787

81

91

364760

104.4

4564

1.325±

0.0046

0.834±

0.0049

60

60

SC

25401

34172

52

71

285470

2693

84.58

0.016±

0.0056

0.015±

0.0055

80

80

Page 35: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Summary of spectrometric analysisSummary of spectrometric analysisStripping method used was observed to have Stripping method used was observed to have improved the detector peak resolution but without any improved the detector peak resolution but without any effect on the peak efficiency of the detector.effect on the peak efficiency of the detector.The technique has more effect on the OG CVD The technique has more effect on the OG CVD diamond detectors than the DG and SC CVD detectors. diamond detectors than the DG and SC CVD detectors. The observed absolute efficiency above 100% due to The observed absolute efficiency above 100% due to build-up effect and fluctuation were stripped off to build-up effect and fluctuation were stripped off to have a more realistic valuehave a more realistic value

At the peak energy of 5.48 MeV a range of 90At the peak energy of 5.48 MeV a range of 90μμm was m was calculated indicating the interaction is on the surface.calculated indicating the interaction is on the surface.A mass stopping power of 0.281 MeV/mgcmA mass stopping power of 0.281 MeV/mgcm-2-2 and a and a leakage current of betwn 5.2pA and 54.2 pA observed leakage current of betwn 5.2pA and 54.2 pA observed could classify these detectors as semiconductingcould classify these detectors as semiconductingAn average full energy peak efficiency of 80% both An average full energy peak efficiency of 80% both experimentally and analytically indicates that the experimentally and analytically indicates that the stripping formular validate and improves the stripping formular validate and improves the experimental data without any effect on the detectors experimental data without any effect on the detectors inherent characteristic performance inherent characteristic performance

Page 36: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

CVD detector’s responses with crystal defects at low energy mammographic X-ray range

Aim: To determine the effects of impurities in diamond on its performance as a mammographic X-ray detector.

To assay the I-V characteristicsUse the MC code to model the

experimental set up carbon in place of diamond

Page 37: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

3.50E-111000

2.50E-11800

8.80E-111.86E-101.64E-11500

3.68E-118.80E-119.10E-12300

1.17E-114.80E-115.80E-12200

1.80E-122.50E-113.00E-12120

2.00E-121.65E-111.60E-1280

9.00E-129.30E-128.00E-1350

1.50E-126.50E-122.10E-1330

DGOGSC

Current (amps)Voltage

Setting (volts)

3.50E-111000

2.50E-11800

8.80E-111.86E-101.64E-11500

3.68E-118.80E-119.10E-12300

1.17E-114.80E-115.80E-12200

1.80E-122.50E-113.00E-12120

2.00E-121.65E-111.60E-1280

9.00E-129.30E-128.00E-1350

1.50E-126.50E-122.10E-1330

DGOGSC

Current (amps)Voltage

Setting (volts)

Current-voltage characteristics for DG, OG and SC diamond detectors

Page 38: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

0.88±0.02<1252.32±0.03SC

3.59±0.1162.5932.81±0.22OG4

3.48±0.1153.61412.76±0.24OG3

3.52±0.09-71832.78±0.24OG2

3.86±0.0542.91552.59±0.15OG1

1.9±0.055.38142.55±0.16DG4

1.03±0.08520242.63±0.15DG3

1.93±0.1348812.57±0.17DG2

0.51±0.063.511472.64±0.17DG1

UV absorption

(cm-1)

ESR: single substitution

nitrogen (ppm)TL response (arbt.unit)

Raman spectral broadening

FWHM (cm-1)Sample

0.88±0.02<1252.32±0.03SC

3.59±0.1162.5932.81±0.22OG4

3.48±0.1153.61412.76±0.24OG3

3.52±0.09-71832.78±0.24OG2

3.86±0.0542.91552.59±0.15OG1

1.9±0.055.38142.55±0.16DG4

1.03±0.08520242.63±0.15DG3

1.93±0.1348812.57±0.17DG2

0.51±0.063.511472.64±0.17DG1

UV absorption

(cm-1)

ESR: single substitution

nitrogen (ppm)TL response (arbt.unit)

Raman spectral broadening

FWHM (cm-1)Sample

Characterization results of CVD diamod as earlier reported Mavunda et al,2008)

Page 39: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

2.422.212.11.861.741.350.881252.32SC

2.192.051.911.641.541.253.5962.593.22.81OG4

2.212.42.121.961.551.23.4853.6140.52.76OG3

2.42.242.151.881.541.223.527183.22.78OG2

2.22.11.951.761.571.293.8642.9154.52.59OG1

3.032.762.642.532.281.651.95.3813.82.55DG4

4.564.083.463.072.461.721.0352023.72.63DG3

3.012.782.562.411.961.621.934881.22.57DG2

2.352.181.951.721.641.520.513.51146.82.64DG1

27kVp

26kVp

25kVp

24kVp

23kVp

22kVp

X-ray response (cps) at 200V bias

UV (cm-1)ESR

(ppm)

TL(arbt. Unit)

RamanFWHM (cm-1)

DetectorType

2.422.212.11.861.741.350.881252.32SC

2.192.051.911.641.541.253.5962.593.22.81OG4

2.212.42.121.961.551.23.4853.6140.52.76OG3

2.42.242.151.881.541.223.527183.22.78OG2

2.22.11.951.761.571.293.8642.9154.52.59OG1

3.032.762.642.532.281.651.95.3813.82.55DG4

4.564.083.463.072.461.721.0352023.72.63DG3

3.012.782.562.411.961.621.934881.22.57DG2

2.352.181.951.721.641.520.513.51146.82.64DG1

27kVp

26kVp

25kVp

24kVp

23kVp

22kVp

X-ray response (cps) at 200V bias

UV (cm-1)ESR

(ppm)

TL(arbt. Unit)

RamanFWHM (cm-1)

DetectorType

X-ray response rate at 200V bias for DG, OG and SC diamonds

Page 40: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

X-ray response rate at 300V bias for DG, OG and SC diamonds

X-ray response (cps) at 300V bias

Detector Type

Raman FWHM (cm-1)

TL (arbt. Unit)

ESR (ppm)

UV (cm-1)

22 kVp

23 kVp

24 kVp

25 kVp

26 kVp

27 kVp

DG1 2.64 1146.8 3.5 0.51 1.92 2.38 3.15 3.87 4.5 4.98

DG2 2.57 881.2 4 1.93 2.18 2.73 3.67 4.14 4.6 5.25

DG3 2.63 2023.7 5 1.03 2.45 2.92 3.71 5.26 5.62 6.15

DG4 2.55 813.8 5.3 1.9 2.26 2.76 3.41 3.76 4.55 4.86

OG1 2.59 154.5 42.9 3.86 1.78 2.22 3.05 3.14 3.22 3.34

OG2 2.78 83.2 71 3.52 1.89 2.26 2.8 3.54 3.72 3.81

OG3 2.76 140.5 53.6 3.48 1.91 2.38 2.9 3.1 3.4 3.5

OG4 2.81 93.2 62.5 3.59 1.82 2.31 2.84 3.15 3.37 3.52

SC 2.32 25 1 0.88 2.13 2.59 2.75 2.95 3.34 3.56

Page 41: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

X-ray response rate at 400V bias for DG, OG and SC diamonds

X-ray response (cps) at 400V bias

Detector Type

Raman FWHM (cm-1)

TL (arbt. Unit)

ESR (ppm)

UV (cm-1)

22 kVp

23 kVp

24 kVp

25 kVp

26 kVp

27 kVp

DG1 2.64 1146.8 3.5 0.51 2.31 2.87 3.26 3.94 4.64 5.07

DG2 2.57 881.2 4 1.93 2.42 2.98 3.72 4.08 4.78 5.41

DG3 2.63 2023.7 5 1.03 3.31 3.74 4.48 5.38 5.71 6.29

DG4 2.55 813.8 5.3 1.9 2.59 2.92 3.54 3.88 5.61 5.46

OG1 2.59 154.5 42.9 3.86 2.19 2.27 3.09 3.32 3.5 3.72

OG2 2.78 83.2 71 3.52 2.26 2.42 3.17 3.58 3.84 3.92

OG3 2.76 140.5 53.6 3.48 2.14 2.34 3.2 3.29 3.57 3.66

OG4 2.81 93.2 62.5 3.59 2.16 2.61 2.88 3.23 3.41 3.62

SC 2.32 25 1 0.88 3.68 4.29 4.79 5.07 5.34 5.9

Page 42: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Averaged CVD diamond response to X-ray in calculated dose (Gy) values

X-ray Dose (Gy) values calculated from CVD diamond response at 200v bias Detector Type 22kVp 23kVp 24kVp 25kVp 26kVp 27kVp DG1 1.62E-09 2.22E-09 3.32E-09 3.32E-09 4.06E-09 4.58E-09 GD2 1.54E-09 2.22E-09 3.09E-09 3.66E-09 4.22E-09 5.01E-09 DG3 1.48E-09 1.76E-09 2.01E-09 2.58E-09 3.02E-09 3.67E-09 DG4 1.71E-09 2.4E-09 2.82E-09 3.56E-09 4.48E-09 4.96E-09 OG1 1.49E-09 1.76E-09 2.86E-09 3.35E-09 3.97E-09 4.33E-09 OG2 1.6E-09 2E-09 2.59E-09 3.51E-09 4.15E-09 4.81E-09 OG3 1.46E-09 1.66E-09 2.37E-09 2.69E-09 3.07E-09 4.26E-09 OG4 1.51E-09 1.96E-09 2.52E-09 2.91E-09 3.24E-09 3.5E-09 SC 2.09E-09 2.95E-09 3.29E-09 4.2E-09 4.82E-09 5.86E-09

Page 43: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

-5.00E-11

0.00E+00

5.00E-11

1.00E-10

1.50E-10

2.00E-10

2.50E-10

3.00E-10

3.50E-10

4.00E-10

0 200 400 600 800 1000 1200

V oltage (V )

Cur

rent

(am

pere

)

OG

DG

SC

Variation of current with bias voltage for DG, OG and SC diamonds

Page 44: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

180 230 280 330 380 430

Bias Voltage (V)

Se

nsi

tivity

(re

spo

nse

kV

p-1

)

DG3

SC

OG1

Variation of sensitivity with bias voltage for DG, OG and SC diamonds

Page 45: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2 2.5

UV absorption (cm-1)

Sen

sitiv

ity (

resp

onse

.kV

p-1)

sc

Variation of sensitivity with UV absorption for DG and SC CVD diamond at 200V bias

Page 46: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

00.050.1

0.150.2

0.250.3

0.350.4

0.450.5

3 3.5 4 4.5 5 5.5

Single substitutional nitrogen (ppm)

Sen

sitiv

ity (

resp

onse

.kV

p-1)

Variation of sensitivity with single substitutional nitrogen

concentration for DG CVD diamonds at 200V bias

Page 47: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 500 1000 1500 2000 2500

TL emission (arb. unit)

X-r

ay r

espo

nse

rate

(cp

s)

Variation of X-ray response rate with TL emission for DG and OG CVD diamond detectors

Page 48: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85

Raman broadening FWHM (cm-1)

X-r

ay r

espo

nse

rate

(cp

s)

DG

OG

variation of X-ray response rate with Raman broadening for DG and OG CVD diamond detectors

Page 49: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60 70 80

Single substitution nitrogen (ppm)

X-r

ay r

espo

nse

rate

(cp

s)

Variation of X-ray response rate with single substitution nitrogen concentration for DG and OG CVD diamond detectors

Page 50: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

1.18

1.2

1.22

1.24

1.26

1.28

1.3

3.4 3.5 3.6 3.7 3.8 3.9

UV absorption (cm-1)

X-r

ay r

espo

nse

rate

(cp

s)

Variation of X-ray response rate with UV absorption for OG CVD diamond detectorsat voltage peak of 22 kVp and 200V bias

Page 51: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0.2 0.7 1.2 1.7 2.2

UV absorption (cm-1)

X-r

ay r

espo

nse

rate

(cp

s)

5.6 Variation of X-ray response rate with UV absorption for DG CVD diamond detectors at voltage peak voltage peak of 22kVp and 300 V bias

Page 52: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Monte Carlo (PENELOPE) for evaluation of Filtered mammographic X-ray

energy Range

Page 53: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

0.07070.00470.01660.97971.0492.422.22.3527

0.06970.00470.01650.98941.0582.212.12.1826

0.06760.00460.01641.00671.0742.11.951.9525

0.06620.00450.01641.01861.0841.861.761.7224

0.06410.00440.01621.03571.1001.741.571.6423

0.06180.00440.01601.05211.1141.351.291.5222

GoldTitaniumPlatinum

Plane Diamon

d

Simulated and

metalizeddiamondSCOG1DG1

Energy KeV

0.07070.00470.01660.97971.0492.422.22.3527

0.06970.00470.01650.98941.0582.212.12.1826

0.06760.00460.01641.00671.0742.11.951.9525

0.06620.00450.01641.01861.0841.861.761.7224

0.06410.00440.01621.03571.1001.741.571.6423

0.06180.00440.01601.05211.1141.351.291.5222

GoldTitaniumPlatinum

Plane Diamon

d

Simulated and

metalizeddiamondSCOG1DG1

Energy KeV

6.1 Variation of X-ray response rate with energy for DG1, OG1 and SC CVD diamond detectors and absorbed dose of a simulated plane and metallized diamond, with platinum, titanium and gold contacts

Page 54: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

0

0.010.02

0.03

0.04

0.050.06

0.07

0.08

21 22 23 24 25 26 27 28

Energy (keV)

arb.

uni

t

Titanium Platinum

gold

Variation of absorbed dose with X-ray peak energy for Monte Carlo simulation onplatinum, titanium and gold

Page 55: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

21 22 23 24 25 26 27 28

Energy (keV)

Arb

. un

it

Metalized diamond

Plane diamond

Variation of absorbed dose with X-rap peak energy for Monte Carlo simulation onplane and metallized diamond

Page 56: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

0

0.5

1

1.5

2

2.5

3

21 22 23 24 25 26 27 28

Peak voltage (kVp)

Arb

. Uni

t

SCDG

OG

Simulated

Comparison of actual responses with peak voltage for DG, OG and SC at 200V bias with that of simulated response for a pure diamond using Monte Carlocode PENELOPE

Page 57: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

1 The sensitivity of all CVD diamond types (DG, OG and SC) increase in applied 1 The sensitivity of all CVD diamond types (DG, OG and SC) increase in applied electric fieldelectric field

2 Generally CVD diamond saturates with increase peak voltage and is related to 2 Generally CVD diamond saturates with increase peak voltage and is related to defects and impurities in CVD diamonddefects and impurities in CVD diamond

3 The difference in resistivity is also related to difference response rate of CVD to 3 The difference in resistivity is also related to difference response rate of CVD to X-raysX-rays

4 The presence of defects and impurities explain sensitivity and linearity of the 4 The presence of defects and impurities explain sensitivity and linearity of the detector i.e low defects and impurities, the higher the response to X-rays by DG and detector i.e low defects and impurities, the higher the response to X-rays by DG and

SCSC 5 The Detector and Single Crystals CVD diamond are better in performance as X-5 The Detector and Single Crystals CVD diamond are better in performance as X-

ray probe in terms of linearity and sensitivity than the Optical Grade CVD diamond ray probe in terms of linearity and sensitivity than the Optical Grade CVD diamond wafers.wafers.

6 The relatively low performance of OG CVD diamond to X-rays could be ascribed 6 The relatively low performance of OG CVD diamond to X-rays could be ascribed to the higher presence of single substitutional nitrogen concentration and larger to the higher presence of single substitutional nitrogen concentration and larger concentration of grain boundary related defects depicted by Raman broadening.concentration of grain boundary related defects depicted by Raman broadening.

7 For the choice of X-ray dosimetry, The specimen must have a higher TL emission 7 For the choice of X-ray dosimetry, The specimen must have a higher TL emission and UV absorption but a low Raman broadening and single substitutional nitrogen and UV absorption but a low Raman broadening and single substitutional nitrogen concentration.concentration.

8 Comparison of the results of measured deposited energy in CVD diamond 8 Comparison of the results of measured deposited energy in CVD diamond detector with the energy deposited on simulated pure diamond using PENELOPE, detector with the energy deposited on simulated pure diamond using PENELOPE, showed different trends with increase peak voltage that could be related to showed different trends with increase peak voltage that could be related to concentration of impurity/defect in the detectors. The difference in Detector Grade concentration of impurity/defect in the detectors. The difference in Detector Grade can also be related to their different performance, not only in sensitivity but also can also be related to their different performance, not only in sensitivity but also the linearity as observed with the detector grades and single crystal CVD diamond the linearity as observed with the detector grades and single crystal CVD diamond wafers, and in comparison with the simulated pure diamond performing wafers, and in comparison with the simulated pure diamond performing negatively to mammography X-rays. negatively to mammography X-rays.

DiscussionDiscussion

Page 58: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Suggestion for future workSuggestion for future work

An investigation into a possible use of CVD An investigation into a possible use of CVD diamond as X-ray spectrometer for low energy X-diamond as X-ray spectrometer for low energy X-rays in the mammographic energy range is rays in the mammographic energy range is suggested as an area for further research. The suggested as an area for further research. The

observed linearity and sensitivity of the Detector observed linearity and sensitivity of the Detector Grade and Single Crystal CVD diamond to low Grade and Single Crystal CVD diamond to low energy mammography X-rays hint at their possible energy mammography X-rays hint at their possible use in X-ray spectroscopy. use in X-ray spectroscopy.

The limitations of the MC code (PENELOPE) with The limitations of the MC code (PENELOPE) with regard to the study of a detector under the regard to the study of a detector under the application of electric field across opposite surfaces application of electric field across opposite surfaces coupled with the presence of added impurities to coupled with the presence of added impurities to detector matrix, prevented an exact modeling of detector matrix, prevented an exact modeling of the research under taken. the research under taken.

An improvement in the Code could make it an An improvement in the Code could make it an invaluable validatory and design tool if all such invaluable validatory and design tool if all such parameters (electric field, voltage and impurity parameters (electric field, voltage and impurity concentrations) could be taken into account as this concentrations) could be taken into account as this study has shown their presence affect the study has shown their presence affect the simulation of actual experiment.simulation of actual experiment.

Page 59: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Acknowledgement

The Authors would like to extend a special thanks to all the people who assisted in this work: Dr.J.A Wyk (ESR studies).

Mr R.B Erasmus (Raman and UV Expts). Prof M Hayes (Ohmic contacts to Sample). Mr K Grobellar (deisgned Amplifier and power

supply. Mr Mpo Mofokeng( contributes to computer

related problems. Mr M Rebak for polishing and cleaning samples.

Page 60: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

ReferencesReferences 9.1 Sellin PJ, Lohstroh A, Davies AW, Galbiati A, Parkin J, Wang SG9.1 Sellin PJ, Lohstroh A, Davies AW, Galbiati A, Parkin J, Wang SG

and Simon A 2007. Nucl. Instrum. and Methods in Phys. Res. and Simon A 2007. Nucl. Instrum. and Methods in Phys. Res. B260B260 2932939.2 Souw EK and Meilunas 19979.2 Souw EK and Meilunas 1997. Nucl. Instrum. and Methods in Phys. . Nucl. Instrum. and Methods in Phys. Research Research A400A400 69 699.3 Bergonzo P, Tromson D, Mer C, Guizard B, Foulon F and Brambilla A 9.3 Bergonzo P, Tromson D, Mer C, Guizard B, Foulon F and Brambilla A 2001. Phys. Stat. Sol.2001. Phys. Stat. Sol. (a)185(1)(a)185(1) 1671679.4 Benabdesselam M, Iacconi P, Butler JE and Briand D 2001. 9.4 Benabdesselam M, Iacconi P, Butler JE and Briand D 2001. Diamond and RelatedDiamond and Related Materials 10 2084Materials 10 20849.5 9.5 Pomorski M, Berdermann E, Caragheopol A, Ciobanu M, KišM, Pomorski M, Berdermann E, Caragheopol A, Ciobanu M, KišM, Martemiyanov A, Nebel Martemiyanov A, Nebel C and Moritz P 2006. Physica Status Solidi (C and Moritz P 2006. Physica Status Solidi (a)203(12) a)203(12) 315231529.6 9.6 Gerrish VM 1995. Simiconductors Semimetals Gerrish VM 1995. Simiconductors Semimetals 4343 493 4939.7 9.7 Hecht K 1932. Z. Phys. (Berlin) 235Hecht K 1932. Z. Phys. (Berlin) 2359.8 9.8 Keddy RJ, Nam TL, and Burns 1987. Phys.Med.Biol. Keddy RJ, Nam TL, and Burns 1987. Phys.Med.Biol. 32(6)32(6) 751 7519.9 Manfredotti C, Fizzotti F, Vittone E, Polesello P, Jaksic M, Fazinic S and 9.9 Manfredotti C, Fizzotti F, Vittone E, Polesello P, Jaksic M, Fazinic S and Bogdanovic I 1996. Italian Physical Society Bogdanovic I 1996. Italian Physical Society 5252 59 599.10 9.10 Salvat F, Fernadez-Verea JM, Baro J and Sempau J 1996. Salvat F, Fernadez-Verea JM, Baro J and Sempau J 1996. Ciemat Ciemat Technical Technical Report No. 799Report No. 7999.11 James F 1980. Rep. Prog. Phys. 9.11 James F 1980. Rep. Prog. Phys. 4343 114 1149.12 Sorenson J.A 1938 Grune and Stratton, Inc. 111 Fifth Avenue New 9.12 Sorenson J.A 1938 Grune and Stratton, Inc. 111 Fifth Avenue New York 10003York 10003

Page 61: Y.I Zakari, R.D. Mavunda, T.L Nam and R.J Keddy

Thanks for ListeningThanks for Listening