23
Yeon S. Chang, Xiaobiao Xu, Tamay M. Özgökmen, Eric P. Chassignet, Hartmut Peters, Paul F. Fischer 1 MPO/RSMAS University of Miami 1 Mathematics and Computer Science Division Gravity current mixing parameterization and calibration of HYCOM

Yeon S. Chang, Xiaobiao Xu, Tamay M. Özgökmen, Eric P. Chassignet, Hartmut Peters, Paul F. Fischer 1 MPO/RSMAS University of Miami 1 Mathematics and Computer

Embed Size (px)

Citation preview

Page 1: Yeon S. Chang, Xiaobiao Xu, Tamay M. Özgökmen, Eric P. Chassignet, Hartmut Peters, Paul F. Fischer 1 MPO/RSMAS University of Miami 1 Mathematics and Computer

Yeon S. Chang, Xiaobiao Xu, Tamay M. Özgökmen, Eric P. Chassignet, Hartmut Peters, Paul F. Fischer 1

MPO/RSMAS University of Miami

1 Mathematics and Computer Science DivisionArgonne National Laboratory

Gravity current mixing parameterization and calibration of

HYCOM

Page 2: Yeon S. Chang, Xiaobiao Xu, Tamay M. Özgökmen, Eric P. Chassignet, Hartmut Peters, Paul F. Fischer 1 MPO/RSMAS University of Miami 1 Mathematics and Computer

Objectives

1. To explore how common mixing parameterizations, particularly KPP and TP, perform using an idealized setting and high-resolution nonhydrostatic solution

2. To quantify the differences and limitations of the two schemes, understanding why and how these parameterizations can be modified to produce consistent results.

Page 3: Yeon S. Chang, Xiaobiao Xu, Tamay M. Özgökmen, Eric P. Chassignet, Hartmut Peters, Paul F. Fischer 1 MPO/RSMAS University of Miami 1 Mathematics and Computer

Outline

1. Numerical test of gravity currents over idealized sloped basin using a OGCM, HYCOM

2. Comparison with 3-D LES (Nek5000) in terms of Entrainment, E(t)

3. Tuning the vertical mixing parameters of KPP and TP

4. Adjustment of parameterization over varying slopes

5. Also testing it as a function of the grid resolution

Page 4: Yeon S. Chang, Xiaobiao Xu, Tamay M. Özgökmen, Eric P. Chassignet, Hartmut Peters, Paul F. Fischer 1 MPO/RSMAS University of Miami 1 Mathematics and Computer

Nek5000 HYCOM

Configuration of experiments and initial conditions

Page 5: Yeon S. Chang, Xiaobiao Xu, Tamay M. Özgökmen, Eric P. Chassignet, Hartmut Peters, Paul F. Fischer 1 MPO/RSMAS University of Miami 1 Mathematics and Computer

Distribution of salinity surface, Nek5000

3-D

2-Daveraged in span-wise

T=9350s

Page 6: Yeon S. Chang, Xiaobiao Xu, Tamay M. Özgökmen, Eric P. Chassignet, Hartmut Peters, Paul F. Fischer 1 MPO/RSMAS University of Miami 1 Mathematics and Computer

7.0

,11*

32

max

c

cshear

Ri

Ri

RiminKK

8.0 if

51

1.008.0

Ri

Ri

RiC

U

wA

E

TP (Hallberg, 2000): developed for overflows based on Ellison and Turner(1959)

KPP (Large et al., 1994, 99): shear-induced, multi-purpose

Page 7: Yeon S. Chang, Xiaobiao Xu, Tamay M. Özgökmen, Eric P. Chassignet, Hartmut Peters, Paul F. Fischer 1 MPO/RSMAS University of Miami 1 Mathematics and Computer

HYCOM, before tuning

mx 1000 mx 20

KPP scmK /50 2

max : LES studies of upper tropical ocean (e.g., Large, 1998)

Page 8: Yeon S. Chang, Xiaobiao Xu, Tamay M. Özgökmen, Eric P. Chassignet, Hartmut Peters, Paul F. Fischer 1 MPO/RSMAS University of Miami 1 Mathematics and Computer

TP

0.1AC

HYCOM, before tuning

mx 1000 mx 20

: Lab. Exp. by Ellison and Turner(1959), Turner(1986)

Page 9: Yeon S. Chang, Xiaobiao Xu, Tamay M. Özgökmen, Eric P. Chassignet, Hartmut Peters, Paul F. Fischer 1 MPO/RSMAS University of Miami 1 Mathematics and Computer

)(

)()()(

0

tl

thth

dX

dhtE

scmK /50,KPP

tuningBefore2

max

Page 10: Yeon S. Chang, Xiaobiao Xu, Tamay M. Özgökmen, Eric P. Chassignet, Hartmut Peters, Paul F. Fischer 1 MPO/RSMAS University of Miami 1 Mathematics and Computer

0.1,TP

tuningBefore

AC

Page 11: Yeon S. Chang, Xiaobiao Xu, Tamay M. Özgökmen, Eric P. Chassignet, Hartmut Peters, Paul F. Fischer 1 MPO/RSMAS University of Miami 1 Mathematics and Computer

scmK /2500,KPP

ngAfter tuni2

max

Page 12: Yeon S. Chang, Xiaobiao Xu, Tamay M. Özgökmen, Eric P. Chassignet, Hartmut Peters, Paul F. Fischer 1 MPO/RSMAS University of Miami 1 Mathematics and Computer

15.0,TP

ngAfter tuni

AC

Page 13: Yeon S. Chang, Xiaobiao Xu, Tamay M. Özgökmen, Eric P. Chassignet, Hartmut Peters, Paul F. Fischer 1 MPO/RSMAS University of Miami 1 Mathematics and Computer

After tuning

mx 20

KPP scmK /2500 2

max

mx 20

TP 15.0AC

Page 14: Yeon S. Chang, Xiaobiao Xu, Tamay M. Özgökmen, Eric P. Chassignet, Hartmut Peters, Paul F. Fischer 1 MPO/RSMAS University of Miami 1 Mathematics and Computer

After tuning

mx 1000

KPP scmK /2500 2

max

mx 1000

TP 15.0AC

Page 15: Yeon S. Chang, Xiaobiao Xu, Tamay M. Özgökmen, Eric P. Chassignet, Hartmut Peters, Paul F. Fischer 1 MPO/RSMAS University of Miami 1 Mathematics and Computer

Why significant modification is necessary to adjust the entrainment curves ?

- Turbulence parameterization should include a dependence on the forcing as well as a dependence on the Ri ; this holds for TP but not for KPP.

KPP: 1. KPP-modeled Mediterranean outflow sinks deeper: insufficient mixing2. Kmax should vary with the strength of the forcing, and a particular value of Kmax cannot hold in bottom gravity current mixing

Maximum turbulence forcing

Peters et al. (1988)

TP:1. Papadakis et al.(2003) : applied TP every 144th steps 2. Turner (1986): small tank (0.1x2 m), large slopes ( >10°) 3. Replacement of bulk Ri inoriginal Turner scheme by

shear Ri in Hallberg(2000)

Page 16: Yeon S. Chang, Xiaobiao Xu, Tamay M. Özgökmen, Eric P. Chassignet, Hartmut Peters, Paul F. Fischer 1 MPO/RSMAS University of Miami 1 Mathematics and Computer

Test of adjustment to forcing by employing different low-slopes

Page 17: Yeon S. Chang, Xiaobiao Xu, Tamay M. Özgökmen, Eric P. Chassignet, Hartmut Peters, Paul F. Fischer 1 MPO/RSMAS University of Miami 1 Mathematics and Computer

scmK /50,KPP

tuningBefore2

max

Page 18: Yeon S. Chang, Xiaobiao Xu, Tamay M. Özgökmen, Eric P. Chassignet, Hartmut Peters, Paul F. Fischer 1 MPO/RSMAS University of Miami 1 Mathematics and Computer

y F b

b

L tyX

x

hz

zFy

dxdydztzyxStzyxuhxXL

tSF0

),'(

000

),,,(),,,(1

)(

11)(

KPP

Salt Flux:

Page 19: Yeon S. Chang, Xiaobiao Xu, Tamay M. Özgökmen, Eric P. Chassignet, Hartmut Peters, Paul F. Fischer 1 MPO/RSMAS University of Miami 1 Mathematics and Computer

KPP ng,After tuni

Page 20: Yeon S. Chang, Xiaobiao Xu, Tamay M. Özgökmen, Eric P. Chassignet, Hartmut Peters, Paul F. Fischer 1 MPO/RSMAS University of Miami 1 Mathematics and Computer
Page 21: Yeon S. Chang, Xiaobiao Xu, Tamay M. Özgökmen, Eric P. Chassignet, Hartmut Peters, Paul F. Fischer 1 MPO/RSMAS University of Miami 1 Mathematics and Computer

TP

Page 22: Yeon S. Chang, Xiaobiao Xu, Tamay M. Özgökmen, Eric P. Chassignet, Hartmut Peters, Paul F. Fischer 1 MPO/RSMAS University of Miami 1 Mathematics and Computer
Page 23: Yeon S. Chang, Xiaobiao Xu, Tamay M. Özgökmen, Eric P. Chassignet, Hartmut Peters, Paul F. Fischer 1 MPO/RSMAS University of Miami 1 Mathematics and Computer

Conclusion

1. With appropriate tuning of parameters, both KPP and TP can

be well matched with the nonhydrostatic 3-D solution, and

the results are fairly independent of the horizontal grid

resolution.

2. But there’s substantial difference between KPP and TP

KPP: the amplitude of mixing term is quite dependent on its

peak diffusivity, Kmax, but this given constant cannot

respond to the variation of ambient forcing,

TP: by relating WE to ΔU, TP avoids hard limit for peak

diffusivity, and the implied diffusivity is dependent both

on Ri and on the forcing via ΔU.

3. Further experiments with stratified flows are necessary.