xs06.doc

Embed Size (px)

Citation preview

  • 8/14/2019 xs06.doc

    1/4

    College of Engineering and Computer ScienceMechanical Engineering Department

    Mechanical Engineering 375 Heat Transfer

    Spring 2007 Number 17629 Instructor: Larry Caretto

    Solutions to Exercise Six More Unsteady Heat Transfer

    1. The soil temperature in the upper layers of the earth varies with the variations in theatmospheric conditions. Before a cold front moves in, the earth at a location is initially ata uniform temperature of 1 oC. Then the area is su!"ected to a temperature of #1 oC andhigh winds that resulted in a convection heat transfer coefficient of $ %&m ' (oC on theearth)s surface for a period of 1 h. Ta*ing the properties of the soil at that location to !e *+ . %&m( oC and + 1.- 1 /0 m ' &s, determine the soil temperature at distances , 1 , ' ,and 0 cm from the earth)s surface at the end of this 1 /h period.

    We can assume that the solution or a semi!in inite me"ium applies here# In particular thetemperature$ %$ at any "istance$ &$ an" time$ t$ 'hen there is a con(ection boun"ary con"itionstarting at t ) 0 *'hen the semi!in inite region has an initial temperature$ % i$ is gi(en by theollo'ing e+uation#

    +

    =

    +

    k t h

    t x

    erfcet

    xerfc

    T T T T k

    t hk hx

    i

    i

    44

    2

    2

    %he terms in this e+uation using the heat trans er coe icient can be oun" as ollo's#

    ( ) 11287.337.33360010106.19.0

    40 22

    225

    2 ====

    k t h

    h s

    h s

    m xW C m

    C mW

    k t h o

    o

    ,or & ) 0$ the parameter &-*. t/ 1-2 ) 0 or & ) 10 cm ) 0$1 m$ this parameter becomes

    ( )06588.0

    360010

    106.14

    1.04 25

    ==

    h s

    h s

    m x

    mt

    x

    ,or "epths o 20 an" 0 cm &-*. t/ 1-2 'ill be t'o an" i(e times this (alue so that &-*. t/ 1-2 )0#1 13 or & ) 20 cm an" 0# 29. or & ) 0 cm# 4pplying the parameters or & ) 0 gi(es

    ( ) ( ) ( )7.3300 11280 += +

    erfceerfc

    T T T T

    i

    i

    I 'as not able to compute the secon" term# 5oth the argument o the e&ponential an" theargument o the complimentary error unction ga(e me a numerical error# When I compute" the

    pro"uct or an increasing argument I got a limit o ero or this pro"uct# 5ecause ot this I too thepro"uct to be ero not only in the case o & ) 0$ but in the case o all other & (alues since they 'illha(e e(en larger arguments than the ones or & ) 0# Setting this term to ero gi(es the ollo'ingresults#

    ( ) ( ) ( )

    =

    +=

    +=

    t x

    erfcC C t

    xerfcC C C

    t x

    erfcT T T T oooooii 42010

    4101010

    4

    ,or & ) 0$ the parameter &-*. t/ 1-2 ) 0 an" 'e get

    8acaran"a * ngineering/ ail Co"e ;hone: 313#677#6..3!mail: lcaretto

  • 8/14/2019 xs06.doc

    2/4

    ( ) ( ) ( ) ( )( ) ===

    = 1201002010

    42010 C C erfcC C

    t x

    erfcC C T oooooo

    10 oC #

    ,or & ) 10 cm$ the parameter &-*. t/ 1-2 ) 0#06 33 an" 'e get

    ( ) ( ) ( ) ( )( ) ===

    = 9257.0201006588.020104

    2010 C C erfcC C t

    xerfcC C T oooooo

    8.5 oC #

    ,or & ) 20 cm$ the parameter &-*. t/ 1-2 ) 0#1 13 an" 'e get

    ( ) ( ) ( ) ( )( ) ===

    = 8519.020101318.02010

    42010 C C erfcC C

    t

    xerfcC C T oooooo

    7.0 oC #

    ,or & ) 0 cm$ the parameter &-*. t/ 1-2 ) 0# 29. an" 'e get

    ( ) ( ) ( ) ( )( ) ===

    = 6418.020103294.02010

    42010 C C erfcC C

    t

    xerfcC C T oooooo

    2.8 oC #

    '. short !rass cylinder 2 + 304 *g&m4

    , cp + .43 *5&*g(o

    C, * 6 11 %&m(o

    C, and +4.4 1 /0 m ' &s7 of diameter D + 3 cm and height 8 + 10 cm is initially at a uniformtemperature of T i + 10 oC. The cylinder is now placed in atmospheric air at ' oC, whereheat transfer ta*es place !y convection with a heat transfer coefficient of h + $ %&m ' (oC.Calculate 2a7 the center temperature of the cylinder9 2!7 the center temperature of the topsurface of the cylinder9 and 2c7 temperature of the top outer radius of the cylinder, and 2d7the total heat transfer from the cylinder 10 min after the start of the cooling.

    %he cylin"er can be sol(e" as the pro"uct o the solution or the in inite cylin"er an" that o thein inite slab# %he temperature at any point in the cylin"er 'ill be the pro"uct o t'o solutions# Ithe ,ourier number is greater than 0#2 'e can use the appro&imate solutions sho'n belo'#

    ( ) ( ) ( )c s

    i

    icyl slab

    i r r

    J e A L x

    e At r t r T T T T

    t r x

    ===

    0

    1011121

    21 cos,,,,

    %he subscripts s or slab an" c or cylin"er in"icate that the (alues o 4 1 an" 1 'ill be "i erent orthe "i erent solutions# In a""ition$ the ,ourier numbers 'ill be "i erent or the slab *'ith a hal'i"th$ L ) *1 cm/-2 ) 7# cm ) 0#07 m$ an" the cylin"er 'ith a ra"ius o *3 cm/-2 ) . cm ) 0#0.m# =sing the total time o 1 minutes ) 900 s$ the ,ourier number or the cylin"er is

    ( )( )

    2.0069.1904.0

    9001039.32

    25

    20

    >===

    m

    s s

    m x

    r

    t cyl

    %he ,ourier number or the slab is

    ( )( )

    2.0424.504.0

    9001039.32

    25

    2 >===

    m

    s s

    m x

    L

    t

    Since both ,ourier numbers are greater than 0#2 the use o the appro&imate solution is >usti ie"#

    Ne&t 'e compute the 5iot numbers to "etermine the (alues o 4 1 an" 1 or each solution#

    ( ) 02727.0110

    075.040

    2 =

    ==

    W C m

    mC m

    W k

    hL Bi

    o

    o slab

    8acaran"a * ngineering/ ail Co"e ;hone: 313#677#6..3!mail: lcaretto

  • 8/14/2019 xs06.doc

    3/4

    ( ) 01455.0110

    04.040

    2 =

    ==

    W C m

    mC m

    W k

    hr Bi

    o

    oo

    cyl

    ,or 5i ) 0#. %able .!2 sho's that that 4 1 ) 1#00. an" 1 ) 0#1620 or the slab an" 4 1 ) 1#00 6an" 1 ) 0#1667 or the cylin"er# We can no' compute the center temperature o the cylin"er'here & ) r ) 0# *Note that cos*0/ ) 8 0*0/ ) 1#/

    [ ] [ ]c sc si

    e Ae Ar r

    J e A L x

    e AT T T T 21212121

    110

    10111 cos

    =

    =

    Substituting numerical (alues or $ 41 an" 1 or each geometry gi(es#

    [ ] [ ] ( ) ( )[ ] ( ) ( )[ ] ( )( ) 511.0587.0871.000361.10045.1 069.191667.0424.51620.011 222121 ====

    eee Ae AT T T T

    c si

    We can then in" the temperature at the center o the cylin"er#

    ( ) ( ( ) =+=+= 511.02015020511.0 C C C T T T T oooi 86.4 oC #

    %o in" the temperature at the top center o the cylin"er$ the ra"ial solution 'ill still ha(e the (alueo 0# 37$ but the rectangular solution has to be e(aluate" at & ) L *e+ui(alent to ) &-L ) 1/# %hissolution is

    ( ) ( ) ( ) ( ) 860.01620.0cos0045.1cos, 424.51620.01122

    1 ==

    = e

    L x

    e At L si

    i slab

    So the pro"uct at the top center o the cylin"er )s *0#360/*0# 37/ ) 0# 0 # With this 'e in"the "esire" temperature as

    ( ) ( )( ) =+=+= 505.02015020505.0 C C C T T T T oooi 85.6 oC #%o compute the temperature at the top outer ra"ius 'e can use the a&ial solution that 'e >ust

    obtaine"$ but 'e not ha(e to "etermine the ra"ial solution at the point 'here r-r o ) 1# %hisre+uires that 'e multiply the e&ponential solution or r ) 0 by the 5essel unction 8 o*1r-r o/ ) 8 o*1/) 8 o*0#1667/ ) 0#99 1# %his gi(es a ra"ial solution at the outer ra"ius o *0#99 1/*0# 37/ ) 0# 3 #ultiplying this by the solution slab ) 0#360 or the rectangular problem oun" abo(e gi(es apro"uct solution ) 0# 01# Sol(ing or the temperature gi(es

    ( ) ( ( ) =+=+= 501.02015020501.0 C C C T T T T oooi 85.2 oC #Note that this problem has a lo' 5iot number an" the temperature throughout the soli" is close touni orm#

    %he heat trans er can be compute" rom the e+uations or ?-? ma& or the one!"imensionalsolutions gi(en in e+uations *.! / an" *.! ./ on page 2 o the te&t#

    ( )1

    11,0

    max1

    1,0

    max

    21sin1

    J

    QQ

    QQ

    cyl

    cylinder

    wall

    slab

    =

    =

    %he pro"uct solution or a t'o!"imensional case is gi(en by the ollo'ing mo"i ie" pro"uctsolution in e+uation 9.! / on page 2 1# @ere the 2A solution is 'ritten in terms o the irst an"secon" "imension#

    8acaran"a * ngineering/ ail Co"e ;hone: 313#677#6..3!mail: lcaretto

  • 8/14/2019 xs06.doc

    4/4

    +

    =

    first ond first D Q

    QQ

    QQ

    QQ

    Q

    maxsecmaxmax2max

    1

    We can compute the (alues or the cylin"er an" the slab as the irst an" secon" "imensions"irectly# We no' 0$slab )0#371 or the slab an" 0$cyl )0# 37 or the cylin"er rom the solution orthe center temperatures$ so 'e can substitute these (alues as 'ell as the appropriate (alues or1 to "etermine the ?-? ma& ratio or each "imension#

    133.01620.0

    1620.0sin871.01

    sin1

    1

    1,0

    max

    ===

    wall

    slabQ

    Q

    Similarly$ or the in inite cylin"er solution 'e get

    ( ) ( ) ( ) 415.01677.0

    0835.0587.021

    1677.0

    1677.0587.021 1

    max

    ===

    J Q

    Q

    cylinder

    No' 'e can compute the (alue o ?-? ma& or the short clin"er#

    ( ) 493.0133.01415.0133.0

    1maxsecmaxmax2max

    =+= + = first ond first D Q

    QQ

    QQ

    QQ

    Q

    %o compute ?$ 'e ha(e to irst in" ? ma %his is the heat trans er i the entire soli" changestemperature rom % i to %B#

    ( ) ( )

    ( )( ) ( ) kJ C C C kg kJ

    mmm

    kg T T c L DT T mcQ

    ooo

    i pi p

    32520150389.0

    15.08.8350

    )2(

    3

    max

    =

    ===

    We thus in" ? ) ? ma&*?-? ma&/ ) * 2 8/*0#.9 / or Q 160 !" #

    8acaran"a * ngineering/ ail Co"e ;hone: 313#677#6..3!mail: lcaretto