44
Stanford Synchrotron Radiation Laboratory X-ray Diffraction Mike Toney Stanford Synchrotron Radiation Laboratory

Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Stanford Synchrotron Radiation Laboratory

X-ray DiffractionMike Toney

Stanford Synchrotron Radiation Laboratory

Page 2: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

1. Crystals and crystal geometry (planes)2. Bragg’s law3. Reciprocal lattice & reciprocal space

• definition and examples• relation to diffraction

4. Diffraction intensities and crystallography5. Some examples from current research

• Macromolecular Crystallography• Powder Diffraction – Zeolites• Strain: Eu films• Pentacene films

Outline

Page 3: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

• B Warren, “X-ray Diffraction”, Dover (1990): $11.87 & Eligible for FREE Super Saver Shipping on amazon.com.

• BD Cullity & SR Stock, “X-ray Diffraction”, Prentice Hall (2001).

• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001).

Bibliography

Page 4: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Diffraction vs Scattering

0 20 40 60 80

1000

2000

3000

4000

5000

6000

7000

21 24 27

2000

4000

6000

Inte

nsity

2θInte

nsity

diffraction: Bragg peaks

scattering: the rest

Page 5: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Crystal Lattice

Crystal lattice: periodic, repeating arrayLattice point – atom, molecule, or fixed arrangement of atoms, or protein, fullerene, …

Lattice Vectors span the unit cellunit cell

Page 6: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Crystal Lattice

a0

Page 7: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Crystal Planes

plane spacings (d):

(100): d = a0

(110): d = a0/√2

(111): d = a0/√3

(hkl): d= a0/√h2 + k2 + l2

a0

Page 8: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Bragg’s Law

n λ = 2d sin (θ)

λ = incident wavelength (=hc/E)

d

θ

Bragg’s Law: constructive interference of reflected X-rays

θ

2θ = scattering angle

Page 9: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Bragg’s LawAu: a0 = 4.0786 Å

d(111) = 2.3548 Å

for λ = 1.5498 Å, 2θ = 38.425 deg.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

37.4 37.6 37.8 38 38.2 38.4 38.6 38.8 39 39.2

2 Theta

Inte

nsity

(111)

Page 10: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Bragg’s Law

need:

• crystal oriented to give diffracting planes perpendicular to incoming & diffracted X-rays

• incoming X-rays at θ

• diffracted X-rays at θ

• AND n λ = 2d sin θ

n λ = 2d sin (θ)

Page 11: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Reciprocal Lattice

Reciprocal: “complementary”Webster’s Dictionary

Reciprocal lattice (space): language to describe diffraction and scattering

R K

The reciprocal lattice is set of vectors K so that:

e i K R = 1,

where R is any lattice vector

Page 12: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Reciprocal Lattice

a0

a* = 2π/a0

b* = 2π/a0

(-20) = (2 0)

e i K R = 1,

where R is any lattice vector

(20)(00) (10)

(01)

(-20)

(02)

a*

b*

Page 13: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Reciprocal Lattice

(20)(00) (10)

(0-1)

(0-2)

G1 or a*

G2 or b*

G1 d1 = 2π

G2 d2 = 2π

Page 14: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Reciprocal Lattice

(110)

(000) (100)

(111)

a0

real space:simple cubic

2π/a0

reciprocal space:simple cubic

e i K R = 1,

where R is any lattice vector

Page 15: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Reciprocal Lattice & Diffraction

Q

sample

kin kout

Q = scattering vector= kin – kout

• Constructive interference of X-rays (diffraction peaks) requires that e i Q R = 1.

• So Q = K, where K is a reciprocal lattice vector

(2 0)(-1 1)

(-1-1)

(1 1)

(1 -1)

(-2 0)

Q

Page 16: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Reciprocal Lattice

Stringent condition!

• Rotating crystal (macromolecular crystallography)

• Powder diffraction

• Live with it (single crystal)

(2 0)(11), (1-1)

(2 0)(-1 1)

(-1-1)

(1 1)

(1 -1)

(-2 0)

Q

Diffraction: Q = K

Page 17: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Diffraction Intensities

I have neglected something important.

What have I missed?

Diffraction intensities: These depend on atomic positions within the unit cell. => Crystallography

ClNa

2θ (deg)

inte

nsity

Page 18: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Diffraction Intensities

This can be reduced to:

where

and h,k,l are peak indices.

F = fn e 2 π i( ) hx n + ky n + lz n( )

n∑

r r n = xn + yn + zn( )

The structure factor, F, is defined as:

where fn is the atomic scattering factor;

is the position of the nth atom in the unit cell. r r n

nrQi

nnefF

rr⋅∑=

Intensity = |F|2

Phase problem

Explain better & show x, y, z and h k l

Page 19: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Diffraction IntensitiesF = fn e 2 π i( ) hx n + ky n + lz n( )

n∑

Simple cubic lattice:(x, y, z) = (0, 0, 0) => F = fn

bcc lattice:(x, y, z) = (0, 0, 0) & (½, ½, ½)⇒ F = fn {1 + eiπ(h+k+l)}⇒ F = 2 fn for h+k+l = even

= 0 otherwise

Page 20: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Diffraction Intensities

fcc lattice:(x, y, z) = (0, 0, 0), (½, ½, 0), (½, 0, ½) & (0, ½, ½)⇒ F = fn {1 + eiπ(h+k) + eiπ(h+l) + eiπ(k+l)}⇒ F = 4fn: h,k,l all even or odd

= 0, otherwise

Page 21: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Polyatomic Crystal: Rock Salt

ClNa

like fcc lattice:Na at (0, 0, 0)Cl at (½, 0, 0)⇒ F = {fNa + eiπh fCl}Ffcc

⇒ F = 4{fNa+ fCl}Ffcc: h,k,l even= 4{fNa- fCl}Ffcc: h,k,l odd= 0, otherwise

Page 22: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Macromolecular Crystallography

Macromolecule = big molecule, mostly biological.

Protein, virus, vitamins, …

Molecular structure determines function, how it works

astaxanthinpigment

= oxygen= carbon= hydrogen

Page 23: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Macromolecular Crystallography

angle

X-rays from SSRL

Page 24: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Vitamin B12

Dorothy Hodgkin (1910-1994)Nobel Prize, 1964

Vitamin B12Solved in 1956

Page 25: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Powder Diffraction

“Powder” average by random orientation of crystals

Problems due to peak overlap

Page 26: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Powder Diffraction

SSRL 2-1:

Dedicated for powder diffraction

incident x-rays

diffracted x-rays

sample

Page 27: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Powder Diffraction: Zeolites

Zeolites: microporousaluminosilicates used as catalysis, adsorbents, ….

Rare single crystals

A Burton et al., JACS 125, 1633 (2003)

SSZ-58: novel zeolitedeveloped by Chevron-Texaco Research

SSZ-58 structure ‘solved’with advanced ab initiomethods

Page 28: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Powder Diffraction

A Burton et al., JACS 125, 1633 (2003)

10-membered ring pores

huge surface area

Page 29: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Diffraction Measurements of Strain

Many materials properties depend on strain: magnetostriction, mobility, pizeoelectricity

X-ray diffraction provides a very accurate & precise method of strain measurement

Q = (4π/λ) sin θtypical 2θ resolution is 0.001-0.1 deggives Q resolution of 0.0001-0.01 Å-1

translates to d resolution of 0.005-0.00005 Å(0.5-0.005 pm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

37.4 37.6 37.8 38 38.2 38.4 38.6 38.8 39 39.2

2 Theta

Inte

nsity

Symmetric

Asymmetric

∆ 2θ = 0.03 deg

Page 30: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Eu Thin Films: Strain

S. Soriano, K. Dumesnil, C. Dufour, T. Gourieux, A.Stunault, M. Hennion, J.A. Borchers, Ph.Mangin, Laboratoire de Physique des Matériaux (LPM) – Nancy, Intitut Laue Langevin (ILL) – ESRF - Grenoble,Laboratoire Leon Brillouin (LLB) (Saclay), NIST Center for Neutron Research (NCNR)

15nm (110)Nb 150°C

Y

(1120) Al2O3

50nm (110)Nb 800°C

(110)Eu 150°C

Molecular beam epitaxy (4.10-11 Torr)

Bulk Eu: bcc

TN = 90K

Para.

[001]

[100]

[010](110)

Eu(110)

(100) (010)

(001)

Page 31: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

• Disappearance of one of the magnetic helices (τ//[001]) in favor of the two others: τ//[100] and τ//[010]

• Thermal hysteresis

375 nm thick filmsM

agne

tic p

opul

atio

ns

Temperature (K)0 10 20 30 40 50 60 70 80 90

0,0

0,1

0,2

0,3

0,4

0,5

0,6

(100)(010)(001)

RXMSESRF - BM28

Eu L2 edge

Magnetic State of Eu Thin Films

(110)

(100)(010)

(001)

Page 32: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

• a⊥ = a(110): match bulk 300K-10K

• a//= a(002) =a(110):- match bulk T>Tcl- for T<Tcl constant to 10 K

• Tcl depends on the film thickness

• The amplitude of the strains increase with decreasing temperature and reduced film thickness.

0 50 100 150 200 250 300

4,54

4,55

4,56

4,57

4,58

4,59

750 nm

375 nm

75 nm

Temperature (K)

latt

ice

para

met

er (a

ngst

rom

)Eu Thin Films: Lattice Clamping

a (110)

a(001) & a(110)

neutron diffraction data

Page 33: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Eu Thin Films: Strain

Karine Dumesnil, UniversitéH. Poincaré - Nancy, France on SSRL beam line 7-2

15nm (110)Nb 150°C

Y

(1120) Al2O3

50nm (110)Nb 800°C

(110)Eu 150°C

• Use diffraction to accurately assess strain state

• Depth dependent strain

Page 34: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Eu Thin Films: Strain

8.22 8.23 8.24 8.25 8.26 8.27 8.28 8.290

5

10

15

20

25

30

35

40

87.5K

70K

88K

88.5K

Inte

nsity

(cts

/mon

)

(116)

8.22 8.23 8.24 8.25 8.26 8.27 8.28 8.290

5

10

15

20

25

30

35

40

45

50

(116)Decrease in T

Inte

nsity

(cts

/mon

)

89K 87K 85K 83K 81K 79K 76K 73K 70K

Q along (001) ( Å-1)

decreasing temperature

(110)(116)

(001)

Q along (001) ( Å-1)

Eu=> two domains with different strain states

Page 35: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

45 50 55 60 65 70 75 80 85 90 95 100105110115120

4.556

4.558

4.560

4.562

4.564

4.566

4.568Omega = 0 / C component

along [200] along [002]

latti

ce c

onst

ant (

angs

trom

)

Temperature (K)

45 50 55 60 65 70 75 80 85 90 95 100105110115120

4.556

4.558

4.560

4.562

4.564

4.566

4.568Omega = 0 / A component

along [200] along [002]

latti

ce c

onst

ant (

angs

trom

)

Temperature (K)

Eu Thin Films: Strain

Domain A: (001) compressed compared to (100) and (010)

(110)

(001)

(100) (010)

Domain C: (100) and (010) compressed compared to (001)

Page 36: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Organic Thin Films

Organic FETSandra Fritz,C. Daniel Frisbie,Mike Ward,Chemical Engineering and Materials ScienceUniversity of Minnesota

Page 37: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Pentacene Thin Films

2 7 12 17 222theta (degrees)

Inte

nsity

(arb

itrar

y un

its)

“thin film” phase, d001 = 15.4Å-rocking curve width >0.05o

=> highly textured films

“bulk” phase, d001 = 14.4Å

• Thermal evaporation of pentacene

• Film morphology and structure dependant on substrate temperature, deposition rate and film thickness

1.5 nm - one layer

30 nm – ca 15 layers

5 µm

5 µm

300 nm SiO2

Si

1.5 – 60 nm pentacene

θ/2θ XRD: ca 50 nm film

Page 38: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Grazing Incidence Diffraction

2θα

β

2θ is scattering angleQ = scattering vectorQ = k’ - kQ = (4π/λ) sin θα = incidence angleβ = exit angle

SiO2

pentacene

Vary penetration depth by changing incidence angle α

Needs good collimation

300 nm SiO2

Si

pentacene

Page 39: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Pentacene Thin Films

1.2 1.7 2.2 2.7 3.2 3.7qxy (Å-1)

Inte

nsity

(a.u

.)

monolayer200 Å

(11L)

(02L)(12L)

(20L)

(21L)

(24L)(14L)

(23L)(13L)

2θα

β

b*

c*

a*

(-2 0)

Qz

Qxy

(-2 0 0)

(-2 0 1)

(-2 0 2)

} c*

Qxy

(2 0)(-1 1)

(-1-1)

(1 1)

(1 -1)

Fritz et al., unpublished

Page 40: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Pentacene Thin Films

} c*Qz

Qxy

(2 0 0)

(2 0 1)

(2 0 2)

b*

c*

a*

(-2 0 1)

(-2 0 2)

(-2 0 3)

2a*-2a*

02Lscan

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

qz (Å-1)

Inte

nsity

(a.u

.)

c * = .408 Å-1

(0 -2 1)

(0 2 0)

(0 -2 2) (0 2 1)

} c*Qz

Qxy

(2 0 0)

(2 0 1)

(2 0 2)

(-2 0 1)

(-2 0 2)

(-2 0 3)

2a*

Page 41: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Pentacene Thin Films

b*

c*

a*

11Lscan

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

qz (Å-1)

Inte

nsity

(a.u

.)

(1 1 0)

(-1 1 0)

(1 -1 1)

(-1 1 1) (1 1 1) (1 -1 2)

Qz

Qxy

(1-1 0)

(1-1 1)

(1-1 2)

(-11 1)

(-11 2)

(-11 3)

-a* + b*a* - b*

} c*Qz

Qxy

(1 1 0)

(1 1 1)

(1 1 2)

(-1-11)

(-1-12)

(-1-13)

-a* - b* a* + b*

|a* +/- b* |

Qz

Qxy

(11 0)

(-11 1)(1-1 1)

(-11 0)

Page 42: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

02Lscan

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

qz (Å-1)

Inte

nsity

(a.u

.)

c * = .408 Å-1

(0 -2 1)

(0 2 0)

(0 -2 2) (0 2 1)

Pentacene Thin Films

1.2 1.7 2.2 2.7 3.2 3.7qxy (Å-1)

Inte

nsity

(a.u

.)

monolayer200 Å

(11L)

(02L)(12L)

(20L)

(21L)

(24L)(14L)

(23L)(13L)

2θα

β

lattice parameters:a = 5.933 (3) Åb = 7.540 (3) Åc = 15.51 (1) Åα = 93.2 degβ = 95.9 degγ = 90 deg

b

c

a

11Lscan

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

qz (Å-1)

Inte

nsity

(a.u

.)

(1 1 0)

(-1 1 0)

(1 -1 1)

(-1 1 1) (1 1 1) (1 -1 2)

Fritz et al., unpublished

β α

γ

Page 43: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

• Pentacene thin films on SiO2 are crystalline, but distinct from bulk

• Thin Film: herringbone motif with molecules tilted a few-ten degrees

5µm

a

Fritz et al., unpublished

Pentacene Thin Films

Page 44: Xray diffraction talk...• J Als-Nielsen & D McMorrow, “Elements of Modern X-ray Physics”, Wiley (2001). Bibliography Diffraction vs Scattering 020 40 60 80 1000 2000 3000 4000

Summary

Crystals and geometryBragg’s lawReciprocal lattice & reciprocal space• definition and examples• relation to diffractionDiffraction intensities and crystallographyFew Examples• Molecular & Crystal structure• Strain