24
THERMOWELL VELOCITY CALCULATIONS When fluid flows past a thermowell, low pressure vortices are formed in the wake downstream of the well. These vortices shed from alternate sides of the well and resulting differential pressure produces two periodic forces on the thermowell: (i) an oscillating-lift force, transverse to the fluid flow at frequency fs (ii) an oscillating-drag force, in-line with the fluid flow at frequency 2fs Vortex shedding can occur at frequencies from 50Hz to 1500Hz. The vortex shedding frequency (Strouhal Frequency) increases linearly with fluid velocity, but the fo increase with the square of the velocity. When the Strouhal Frequency approaches natural frequency of the thermowell, it can lock-in to the natural frequency caus resonance, with greatly magnified forces. To prevent lock-in, the natural frequen the thermowell must be higher than either the in-line or the transverse resonance condition. Operation through the in-line resonance is acceptable only if the cycl stresses at the resonance condition are acceptably small. The fluid velocity at which resonance occurs is referred to as a velocity critica There are two velocity criticals for each natural frequency of the thermowell: on describing the transverse and the other describing the in-line response. Since in force fluctuates at twice the frequency of the transverse force, the correspondin velocity critical is approximately one half that requires for transverse resonanc the natural frequency of the thermowell overlaps either fs or 2fs, a large resona buildup in vibration amplitude can occur. The major cause of thermowell failure i fatigue due to resonance. A high enough level of damping may allow the thermowell operate at the in-line or even the transverse resonance frequencies. In addition to frequency limits, the stresses within the thermowell and forces ap are also critical to evaluating the suitability of a thermowell for a specific p application. The 4 quantitative criteria to be evaluated are: 1: Frequency Limit: Resonant frequency of the thermowell must be sufficiently high so that destru oscillations are not excited by the fluid flow. The steady-state (s-s) fluid velocity should meet the following conditions: fs(s-s) < 0.4•fn OR 0.6•fn < fs(s-s) 0.8•fn 2: Static Stress Limit: Steady-state stresses are the result of hydrostatic fluid pressure and non- oscillating drag forces on the thermowell, and are calculated at the location of maximum stress. If the therm is partially shielded or has a reduced tip, the calculation must be performed with those considerati The maximum steady-

[XLS] · Web view* extracted from ASME International Steam Tables, 6th Edition Enviromental Factor Sf Radial Stress Tangential Stress Axial Stress Steady-State Drag Force/Unit Steady-State

Embed Size (px)

Citation preview

THERMOWELL VELOCITY CALCULATIONS

When fluid flows past a thermowell, low pressure vortices are formed in the wake downstream of the well. These vortices shed from alternate sides of the well and the resulting differential pressure produces two periodic forces on the thermowell:

(i) an oscillating-lift force, transverse to the fluid flow at frequency fs (ii) an oscillating-drag force, in-line with the fluid flow at frequency 2fs

Vortex shedding can occur at frequencies from 50Hz to 1500Hz. The vortex shedding frequency (Strouhal Frequency) increases linearly with fluid velocity, but the forces increase with the square of the velocity. When the Strouhal Frequency approaches the natural frequency of the thermowell, it can lock-in to the natural frequency causing resonance, with greatly magnified forces. To prevent lock-in, the natural frequency of the thermowell must be higher than either the in-line or the transverse resonance condition. Operation through the in-line resonance is acceptable only if the cyclic stresses at the resonance condition are acceptably small.

The fluid velocity at which resonance occurs is referred to as a velocity critical. There are two velocity criticals for each natural frequency of the thermowell: one describing the transverse and the other describing the in-line response. Since in-line force fluctuates at twice the frequency of the transverse force, the corresponding velocity critical is approximately one half that requires for transverse resonance. If the natural frequency of the thermowell overlaps either fs or 2fs, a large resonant buildup in vibration amplitude can occur. The major cause of thermowell failure is fatigue due to resonance. A high enough level of damping may allow the thermowell to operate at the in-line or even the transverse resonance frequencies.

In addition to frequency limits, the stresses within the thermowell and forces applied are also critical to evaluating the suitability of a thermowell for a specific process application. The 4 quantitative criteria to be evaluated are:

1: Frequency Limit: Resonant frequency of the thermowell must be sufficiently high so that destructive oscillations are not excited by the fluid flow. The steady-state (s-s) fluid velocity should meet one of the following conditions:

fs(s-s) < 0.4•fn OR 0.6•fn < fs(s-s) < 0.8•fn

2: Static Stress Limit: Steady-state stresses are the result of hydrostatic fluid pressure and non-oscillating drag forces on the thermowell, and are calculated at the location of maximum stress. If the thermowell is partially shielded or has a reduced tip, the calculation must be performed with those considerations. The maximum steady- state stress on the thermowell at design velocity must not exceed the allowable stress as determined by the Von Mises Criteria.

3: Dynamic Stress Limit: Dynamic stresses are a result of the periodic drag forces that cause in-line oscillations and the periodic lift forces that cause transverse oscillations. If the thermowell is intended to operate above the in-line velocity critical, there are cyclic stresses at the in-line resonance to consider as it passes through that point on the way to the design velocity. The maximum dynamic stress must not exceed the allowable fatigue stress limit. The magnification factors are calculated and applied to the cyclical stress equations, then the cyclic drag and lift forces are calculated at the design velocity. The maximum combined lift and drag stress must not exceed the fatigue stress limit.

4: Hydrostatic Pressure Limit: The external pressure must not exceed the minimum pressure rating of the thermowell tip, shank, or flange (or threads) at the operating temperature.

THERMOWELL VELOCITY CALCULATIONS

When fluid flows past a thermowell, low pressure vortices are formed in the wake downstream of the well. These vortices shed from alternate sides of the well and the resulting differential pressure produces two periodic forces on the thermowell:

(i) an oscillating-lift force, transverse to the fluid flow at frequency fs (ii) an oscillating-drag force, in-line with the fluid flow at frequency 2fs

Vortex shedding can occur at frequencies from 50Hz to 1500Hz. The vortex shedding frequency (Strouhal Frequency) increases linearly with fluid velocity, but the forces increase with the square of the velocity. When the Strouhal Frequency approaches the natural frequency of the thermowell, it can lock-in to the natural frequency causing resonance, with greatly magnified forces. To prevent lock-in, the natural frequency of the thermowell must be higher than either the in-line or the transverse resonance condition. Operation through the in-line resonance is acceptable only if the cyclic stresses at the resonance condition are acceptably small.

The fluid velocity at which resonance occurs is referred to as a velocity critical. There are two velocity criticals for each natural frequency of the thermowell: one describing the transverse and the other describing the in-line response. Since in-line force fluctuates at twice the frequency of the transverse force, the corresponding velocity critical is approximately one half that requires for transverse resonance. If the natural frequency of the thermowell overlaps either fs or 2fs, a large resonant buildup in vibration amplitude can occur. The major cause of thermowell failure is fatigue due to resonance. A high enough level of damping may allow the thermowell to operate at the in-line or even the transverse resonance frequencies.

In addition to frequency limits, the stresses within the thermowell and forces applied are also critical to evaluating the suitability of a thermowell for a specific process application. The 4 quantitative criteria to be evaluated are:

1: Frequency Limit: Resonant frequency of the thermowell must be sufficiently high so that destructive oscillations are not excited by the fluid flow. The steady-state (s-s) fluid velocity should meet one of the following conditions:

fs(s-s) < 0.4•fn OR 0.6•fn < fs(s-s) < 0.8•fn

2: Static Stress Limit: Steady-state stresses are the result of hydrostatic fluid pressure and non-oscillating drag forces on the thermowell, and are calculated at the location of maximum stress. If the thermowell is partially shielded or has a reduced tip, the calculation must be performed with those considerations. The maximum steady- state stress on the thermowell at design velocity must not exceed the allowable stress as determined by the Von Mises Criteria.

3: Dynamic Stress Limit: Dynamic stresses are a result of the periodic drag forces that cause in-line oscillations and the periodic lift forces that cause transverse oscillations. If the thermowell is intended to operate above the in-line velocity critical, there are cyclic stresses at the in-line resonance to consider as it passes through that point on the way to the design velocity. The maximum dynamic stress must not exceed the allowable fatigue stress limit. The magnification factors are calculated and applied to the cyclical stress equations, then the cyclic drag and lift forces are calculated at the design velocity. The maximum combined lift and drag stress must not exceed the fatigue stress limit.

4: Hydrostatic Pressure Limit: The external pressure must not exceed the minimum pressure rating of the thermowell tip, shank, or flange (or threads) at the operating temperature.

THERMOWELL VELOCITY CALCULATIONS

Dimensional Limits

DimensionTapered/Straight Reduced-Tip

Min Max Min MaxUnsupported Length L 2.5 24 5 24

Bore Diameter d 0.26 0.26

Tip Diameter B 0.36 1.83 0.50 0.88

Shank Diameter A 0.63 1.50

Min Wall Thickness (B-d)/2 0.12 0.12

Taper Ratio B/A 0.58 1.00

Bore Ratio d/B 0.16 0.71 0.16 0.71

Aspect Ratio L/B 2.00

Length Ratio Ls/L 0 0.60

Unsupported Length (L)Flanged (& Van-Stone) = Immersion length

Threaded = Immersion length (factor added by the calculation)Socket-Weld & Weld-In = Distance from weld point (if in doubt, use OAL)

Frequency Limit

Low Fluid VelocitiesAt very low fluid velocities, the risk or thermowell failure is greatly reduced.

V < 2.1 fps B ≥ 0.5"A-d ≥ .376" S ≥ 10 ksi

L ≤ 24" ≥ 3 ksiA ≥ 0.5" Not subject to stress corrosion

The calculation of the external pressure rating shall still be performed.

Not AddressedInteraction of multiple thermowells in close proximityIn-coherent excitation of structural vibrations by broad-band high frequency turbulence.Vibration due to pulsed fluid flow

NOTESClear fields if info not available or not applicableIf Fluid Velocity unknown, leave blank and fill in Flow Rate & Pipe IDFlanged wells are assumed to have full penetration weldsSensor mass correction factor used = .96 (≡ 169lb/ft3)Allowable external pressure calculated per 6-13 of PTC 19.31Bore size limited to 0.26"; reduced tip diam to 0.5"When Steam, Water or Air selected as fluid, density & viscosity are calculated if fields left blank.

DISCLAIMER These calculations are performed in accordance with PTC 19.3 TW-2010. The results should only be used as a guide for thermowell selection. Thermo-Kinetics assumes no responsibility for failure of a thermowell based on the results of these calculations, and accepts no liability directly or consequential arising from error or misinformation supplied herein,

In cases where the thermowell passes the cyclic stress condition for operation at the in-line resonance condition, care shall still be taken that in steady state the flow condition will not coincide with the thermowell resonance. The steady-state fluid velcoity should meet one of the following conditions: fs(s-s) < 0.4fn OR 0.6fn < fs(s-s) < 0.8fn

The calculations of natural frequency and frequency limits, steady-state stress and oscillating stress do not need to be performed if the following criteria are met:

Sf

or due to program missuse.

Company: Tag No: Project No: Date: Reference: Rev:

THER

MO

-KIN

ETIC

S 1

-800

-268

-096

7 THER

MO

-KIN

ETICS 1-800-268-0967

Lb

t

B

d

A

PROCESS DATA FREQUENCY LIMITFluid G Gas 480 HzOperating Temperature T 100 °F 302 HzOperarating Pressure P 0 psi 0.63Fluid Velocity ** V 100.0 ft/s Frequency Criteria < 0.8Density r 0.045 lb/ft³ Wake Frequency Limit 384 Hz PASSViscosity (Dynamic) µ 12.80

(Dynamic = Kinematic x Density) ** Velocity can be calc from Flow Rate & Pipe ID (ref S3) PRESSURE STRESS

Pressure Limit 8,350 psi

Max Operating Pressure 0 psi

WELL DATA Safety Factor 55666.7 PASSMounting W Weld-In

Shank T TaperedUnsupported Length L 10.0 in STEADY-STATE STRESSRoot Diameter A 1.500 in Stress Limit 30,000 psiTip Diameter B 0.766 in Stress @ Design Velocity 10 psiBore Diameter d 0.260 in Safety Factor 2890.6 PASSFillet Radius at Root b 0.000 in

Min Tip Thickness t 0.250 in DYNAMIC STRESS Shielded Length in Stress Limit 5,120 psi N.Req. Stress @ Design Velocity 27 psi N.Req. Safety Factor 188.3 PASS N.Req.

WT WT Material 13 13 316 79 fps

Modulus of Elasticity * E 27.6 Msi In-Line Stress Calculation Required

Allowable Stress * S 20 Ksi 1,010 psiFatigue Stress Limit * 5.4 Ksi Safety Factor 5.1 PASSWell Density * 0.289 lb/in³ Installed Nat'l Freq shall satisfy: fs < 0.8•fn(* Entered values will overide default values)

For Disclaimer re use of this program, refer to sheet S0.

Thermowell Velocity CalculationsTW-2010 Ver 1.4.01

For T/W SpecsCLICK Here

Natural Frequency (fn)Wake Frequency (fs)Frequency Ratio (fs/fn)

fs • fn

lb/ft-s x 10-6

Lo

Mtg Code (ref S2) Cyclic Stress @ In-Line ResonanceFluid Velocity (for In-L Resonance)

Stress @ In-L Resonance

Sf

Pm

Mounting Codes

Material UNS# CodeTemperature - °F

1500 1400 1300 1200 1100 1000 900 800 700 600 500 400 300 200 70 -100 Eref C.Stl SA-675 105 17 15.5 18.0 20.4 22.4 24.2 25.5 26.7 27.3 27.7 28.3 28.8 29.5 30.2 29.3

HR160 N12160 160 16 22.4 22.9 23.7 24.4 25.1 25.6 26.1 26.5 27.1 27.8 28.6 29.1 29.6 30.1 30.6 31.5 30.6

304 SS S30400 304 15 18.1 19.2 20.2 21.2 22.1 22.8 23.5 24.1 24.8 25.3 25.8 26.5 27.0 27.6 28.3 29.1 28.3

310 SS S31008 310 14 18.1 19.2 20.2 21.2 22.1 22.8 23.5 24.1 24.8 25.3 25.8 26.5 27.0 27.6 28.3 29.1 28.3

316 SS S31600 316 13 18.1 19.2 20.2 21.2 22.1 22.8 23.5 24.1 24.8 25.3 25.8 26.5 27.0 27.6 28.3 29.1 28.3

321 SS S32100 321 12 18.1 19.2 20.2 21.2 22.1 22.8 23.5 24.1 24.8 25.3 25.8 26.5 27.0 27.6 28.3 29.1 28.3

446 SS S44627 446 11 18.1 19.2 20.2 12.2 15.6 18.6 21.1 23.1 24.8 26.0 27.0 27.7 28.3 28.7 29.2 29.3 29.2

F22 SS K21590 F22 10 18.2 19.4 21.1 22.5 23.7 24.6 25.6 26.3 27.1 27.7 28.3 28.8 29.4 29.8 30.6 31.0 30.6

Hast B-3 N10675 HSB-3 9 23.4 24.2 25.0 25.6 26.2 26.7 27.3 27.9 28.6 29.0 29.3 29.8 30.1 30.6 31.4 32.3 31.4

Hast C-22 N06022 HSC-22 8 22.3 23.0 23.8 24.4 25.0 25.4 26.0 26.6 27.2 27.7 28.0 28.4 28.7 29.2 29.9 30.8 29.9

Hast C-276 N10276 HSC-276 7 22.2 22.9 23.7 24.3 24.9 25.3 25.9 26.5 27.1 27.6 27.9 28.3 28.6 29.1 29.8 30.6 29.8

Hast C-4 N06455 HSC-4 6 22.2 22.9 23.7 24.3 24.9 25.3 25.9 26.5 27.1 27.6 27.9 28.3 28.6 29.1 29.8 30.6 29.8

Hast X N06002 HSX 5 21.2 21.9 22.6 23.2 23.7 24.2 24.8 25.4 25.9 26.4 26.6 27.1 27.4 27.8 28.5 29.4 28.5

Inconel N06690 INC 4 22.6 23.3 24.1 25.3 25.9 26.4 27.0 27.6 28.2 28.7 29.0 29.5 29.9 30.2 31.0 31.9 31.0

Monel N04400 MON 3 19.4 20.0 20.7 21.2 21.7 22.1 22.6 23.1 23.7 24.1 24.3 24.7 25.0 25.4 26.0 26.8 26.0

Nickel N02200 NIK 2 22.4 23.1 23.9 24.5 25.1 25.5 26.1 26.7 27.3 27.8 28.1 28.5 28.8 29.3 30.0 30.9 30.0

Titanium R50400 TIT 1 11.2 11.9 12.6 13.3 14.0 14.6 15.0 15.5 16.0 15.5

Material UNS# CodeTemperature - °F

1500 1400 1300 1200 1100 1000 900 800 700 600 500 400 300 200 70 C.Steel SA-675 105 17 2.5 5.0 9.4 11.9 12.8 13.6 14.2 14.3 14.3 14.3 HR160 N12160 160 16 2.5 3.6 5.1 7.5 11.0 13.5 13.5 13.5 13.6 14.1 15.0 16.5 18.3 20.5 23.3 304 SS S30400 304 15 1.4 2.3 3.7 6.1 9.8 14.0 14.6 15.2 15.8 16.6 17.5 18.3 18.9 20.0 20.0 310 SS S31008 310 14 2.5 5.0 9.9 12.5 12.9 13.3 13.7 14.3 15.1 16.1 17.6 20.0 316 SS S31600 316 13 1.3 2.3 4.1 7.4 12.4 15.3 15.6 15.9 16.3 17.0 18.0 19.3 20.0 20.0 20.0 321 SS S32100 321 12 0.3 0.8 1.7 3.6 6.9 12.0 12.3 12.6 13.0 13.5 14.3 15.3 16.5 18.0 20.0 446 SS S44627 446 11 17.9 18.0 18.1 18.2 18.3 18.5 18.6 F22 SS K21590 F22 10 1.2 3.2 7.8 15.8 19.3 20.0 20.4 20.5 20.6 20.9 21.4 21.4 Hast B-3 N10675 HSB-3 9 24.8 25.4 26.3 27.4 28.8 30.3 31.4 31.4 Hast C-22 N06022 HSC-22 8 9.6 17.5 18.3 18.6 19.0 19.6 20.4 21.5 22.9 24.6 26.7 28.6 Hast C-276 N10276 HSC-276 7 9.8 15.0 16.5 16.7 17.1 17.8 18.7 19.9 21.3 23.0 24.9 27.3 Hast C-4 N06455 HSC-4 6 19.1 19.6 20.1 20.8 21.7 23.0 24.6 26.7 Hast X N06002 HSX 5 14.5 14.7 15.1 15.7 16.5 17.7 19.2 21.0 23.3 Inconel N06690 INC 4 18.0 18.2 18.4 18.6 19.1 19.9 21.1 23.3 Monel N04400 MON 3 8.0 12.7 13.0 13.1 13.2 13.4 13.6 14.6 16.7 Nickel N02200 NIK 2 10.0 10.0 10.0 10.0 10.0 10.0 Titanium R50400 TIT 1 6.5 7.6 8.8 10.3 12.4 14.3

MODULUS of ELASTICITY (Msi)

ALLOWABLE STRESS (Ksi)

Density (@ STP) Den (@To/Po) Temperature - °F0.113 60 0 0.113 Material Code 1500 1300 1100 900 700 600 400 200 70

C.Steel 105 17 0.260 0.278 0.279 0.280 0.281 0.282 0.283 0.284

HR160 160 16 0.280 0.290 0.291 0.291 0.292 0.292

304 SS 304 15 0.281 0.283 0.284 0.285 0.286 0.287 0.288 0.289 0.29

310 SS 310 14 0.281 0.283 0.284 0.285 0.286 0.287 0.288 0.289 0.29

316 SS 316 13 0.281 0.283 0.284 0.285 0.286 0.287 0.288 0.289 0.29

Fluid Velocity Calculated from Flow Data 321 SS 321 12 0.281 0.283 0.284 0.285 0.286 0.287 0.288 0.289 0.29

446 SS 446 11 0.260 0.263 0.264 0.266 0.267 0.268 0.269 0.269 0.27

Fluid G V = 3.0558×Q/ID² F22 SS F22 10 0.281 0.283 0.284 0.285 0.286 0.287 0.288 0.289 0.29

Pipe I.D. ID 1.000 in Hast B-3 HSB-3 9 0.324 0.325 0.326 0.328 0.330 0.331 0.332 0.333 0.334

Flow Rate Q 10.0 SCFM Density (p) Hast C-22 HSC-22 8 0.313 0.314 0.316 0.317 0.319 0.320 0.321 0.322 0.323

Velocity V 30.6 ft/sec Hast C-276 HSC-276 7 0.313 0.314 0.316 0.317 0.319 0.320 0.321 0.322 0.323

Hast C-4 HSC-4 6 0.313 0.314 0.316 0.317 0.319 0.320 0.321 0.322 0.323

Hast X HSX 5 0.287 0.289 0.290 0.291 0.293 0.294 0.295 0.296 0.297

Inconel INC 4 0.296 0.297 0.299 0.300 0.302 0.303 0.304 0.306 0.307

Monel MON 3 0.300 0.306 0.308 0.311 0.313 0.315 0.317 0.318 0.319

1 60 100 200 300 400 500 600 700 Nickel NIK 2 0.309 0.311 0.313 0.315 0.316 0.301 0.319 0.321 0.322

0.016 0.016 0.016 0.017 0.017 0.018 0.020 0.024 0.037 Titanium TIT 1 0.150 0.161 0.162 0.162 0.162 0.163 0.163

Gas Density Calculation (STP = 60ºF & 14.7 psia) SPECIFIC WEIGHT (lb/in3)

To (ºF) Po (psig)

Specific Volume of Water (ft3/lb) (T in ºF)

CONVERSION FACTORSFrom To X Water 62.4 82.3 Air 0.0764 Hydrogen 0.006

m ft 3.281 Sea Water 64.2 95.4 Acetylene C2H2 0.073 Hydrogen Chlori HCl 0.095

mm in 0.03937 Amyl Alcohol 55.0 114.7 Ammonia 0.044 Hydrogen Sulph 0.096

m/s ft/s 3.281 Butyl Alcohol 45.3 71.0 Argon Ar 0.103 Methane 0.045

16.018 Benzine 56.0 Nitric Acid (95%) 93.5 Butane 0.162 Methyl Chloride 0.133

Mpa psi 145.04 Gasoline 42.0 Nitric Acid (7%) 64.7 Butylene 0.148 Nitrogen 0.075

Kpa psi 0.145 Kerosine 50.5 HCl (10%) 66.5 Carbon Dioxide 0.113 Nitric Oxide NO 0.078

g/cc 0.03613 Carbon Monoxide CO 0.078 Nitrous Oxide 0.114

0.06243 Chlorine 0.184 Oxygen 0.082

USGPM IGPM 0.8327 Ethane 0.081 Pentane 0.088

Ethylene 0.073 Propane 0.118

Helium He 0.010 Sulphur Dioxide 0.179

Material UNS# CodeThermowell Type

T F S V W C.Steel SA-675 105 17 3.0 4.7 7.0 7.0 3.0 HR160 N12160 160 16 5.4 9.1 13.6 13.6 5.4 304 SS S30400 304 15 5.4 9.1 13.6 13.6 5.4 310 SS S31008 310 14 5.4 9.1 13.6 13.6 5.4 316 SS S31600 316 13 5.4 9.1 13.6 13.6 5.4 321 SS S32100 321 12 5.4 9.1 13.6 13.6 5.4 446 SS S44627 446 11 3.0 4.7 7.0 7.0 3.0 F22 SS K21590 F22 10 5.4 9.1 13.6 13.6 5.4 Hast B-3 N10675 HSB-3 9 5.4 9.1 13.6 13.6 5.4 Hast C-22 N06022 HSC-22 8 5.4 9.1 13.6 13.6 5.4 Hast C-276 N10276 HSC-276 7 5.4 9.1 13.6 13.6 5.4 Hast C-4 N06455 HSC-4 6 5.4 9.1 13.6 13.6 5.4 Hast X N06002 HSX 5 5.4 9.1 13.6 13.6 5.4 Inconel N06690 INC 4 5.4 9.1 13.6 13.6 5.4 Monel N04400 MON 3 5.4 9.1 13.6 13.6 5.4 Nickel N02200 NIK 2 3.0 4.7 7.0 7.0 3.0 Titanium R50400 TIT 1 3.0 4.7 7.0 7.0 3.0

DENSITY of LIQUIDS (lb/ft3) DENSITY of GASES at STP (60 ºF & 14.7 psia) (lb/ft3)

Caustic Soda (30%) H2

Caustic Soda (50%)

H2SO4 (100%) NH3 H2S

H2SO4 (20%) CH4

m3/kg ft3/lb C4H10 CH3Cl

C4H8 N2

CO2

lb/in3 N2O

kg/m3 lb/ft3 Cl2 O2

C2H6 C5H12

C2H4 C3H8

SO2

FATIGUE ENDURANCE LIMIT (ksi)

Pressure(psia) 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

15 0.016 0.017 29.90 33.96 37.99 41.99 45.98 49.96 53.95 57.93 61.91 65.88 69.86 73.83 77.81

20 0.016 0.017 22.36 25.43 28.46 31.47 34.47 37.46 40.45 43.44 46.42 49.41 52.39 55.37 58.35

25 0.016 0.017 17.83 20.31 22.74 25.15 27.56 29.95 32.35 34.74 37.13 39.52 41.91 44.29 46.68

30 0.016 0.017 14.81 16.89 18.93 20.95 22.95 24.95 26.95 28.94 30.94 32.93 34.92 36.95 38.90

35 0.016 0.017 12.65 14.45 16.21 17.94 19.66 21.38 23.09 24.80 26.51 28.22 29.93 31.63 33.34

40 0.016 0.017 11.04 12.62 14.17 15.67 17.20 18.70 20.20 21.70 23.19 24.69 26.18 27.68 29.17

STEAM TABLES (extracted from ASME International Steam Tables, 6th Edition)

Specific Volume (ft3/lb) (v)Temperature (ºF)

45 0.016 0.017 9.782 11.21 12.58 13.94 15.28 16.62 17.96 19.29 20.62 21.95 23.28 24.61 25.94

50 0.016 0.017 8.769 10.06 11.31 12.53 13.74 14.95 16.15 17.35 18.55 19.75 20.94 22.14 23.33

75 0.016 0.017 0.017 6.645 7.494 8.320 9.135 9.945 10.75 11.55 12.36 13.16 13.95 14.75 15.55

100 0.016 0.017 0.017 4.935 5.588 6.216 6.833 7.443 8.050 8.655 9.258 9.860 10.46 11.06 11.66

200 0.016 0.017 0.017 2.360 2.725 3.058 3.378 3.692 4.001 4.308 4.613 4.917 5.219 5.521 5.822

300 0.016 0.017 0.017 0.019 1.767 2.004 2.226 2.441 2.651 2.859 3.064 3.269 3.472 3.675 3.876

400 0.016 0.017 0.017 0.019 1.284 1.476 1.650 1.815 1.976 2.134 2.290 2.445 2.597 2.752 2.904

500 0.016 0.017 0.017 0.019 0.992 1.158 1.304 1.440 1.571 1.699 1.826 1.951 2.075 2.198 2.320

600 0.016 0.016 0.017 0.019 0.795 0.946 0.908 1.011 1.109 1.204 1.296 1.370 1.477 1.566 1.654

700 0.016 0.016 0.017 0.019 0.020 0.793 0.907 1.010 1.108 1.202 1.295 1.386 1.476 1.565 1.653

800 0.016 0.016 0.017 0.019 0.020 0.678 0.783 0.877 0.964 1.048 1.130 1.211 1.290 1.368 1.446 Temp Max Allowable Flange Pressure (psig)900 0.016 0.016 0.017 0.019 0.020 0.587 0.686 0.771 0.850 0.926 1.000 1.072 1.143 1.213 1.283 °F 150 300 400 600 900 1500 2500

1000 0.016 0.016 0.017 0.019 0.020 0.514 0.609 0.688 0.761 0.831 0.898 0.963 1.028 1.091 1.154 1000 20 50 70 105 155 260 4301200 0.016 0.017 0.017 0.019 0.020 0.402 0.491 0.562 0.626 0.686 0.743 0.798 0.853 0.906 0.959 950 35 105 140 205 310 515 8601400 0.016 0.017 0.017 0.018 0.020 0.282 0.372 0.436 0.490 0.540 0.588 0.634 0.678 0.722 0.765 900 50 170 230 345 515 860 14301600 0.016 0.017 0.017 0.018 0.020 0.024 0.342 0.403 0.456 0.503 0.548 0.592 0.634 0.675 0.715 850 65 270 355 535 805 1340 22301800 0.016 0.017 0.017 0.018 0.020 0.023 0.291 0.350 0.399 0.443 0.484 0.523 0.561 0.598 0.634 800 80 410 550 825 1235 2060 34302000 0.016 0.017 0.017 0.018 0.020 0.023 0.249 0.307 0.353 0.394 0.432 0.468 0.503 0.537 0.570 750 95 505 670 1010 1510 2520 42002500 0.016 0.017 0.017 0.018 0.020 0.023 0.168 0.229 0.271 0.307 0.339 0.369 0.398 0.426 0.453 700 110 525 710 1065 1600 2665 44403000 0.016 0.016 0.017 0.018 0.020 0.023 0.098 0.176 0.216 0.248 0.277 0.303 0.328 0.352 0.375 650 125 535 715 1075 1610 2685 44753500 0.016 0.016 0.017 0.018 0.020 0.023 0.031 0.136 0.176 0.207 0.233 0.256 0.278 0.300 0.320 600 140 550 730 1095 1640 2735 45604000 0.016 0.016 0.017 0.018 0.020 0.022 0.029 0.105 0.146 0.175 0.199 0.221 0.241 0.260 0.278 500 170 600 800 1200 1795 2995 49905000 0.016 0.016 0.017 0.018 0.020 0.022 0.027 0.059 0.104 0.131 0.153 0.172 0.189 0.205 0.220 400 200 635 845 1270 1900 3170 52807500 0.016 0.016 0.017 0.018 0.019 0.021 0.025 0.032 0.051 0.074 0.092 0.107 0.120 0.132 0.143 300 230 655 875 1315 1970 3280 5470

10000 0.016 0.016 0.017 0.018 0.019 0.021 0.023 0.027 0.036 0.050 0.063 0.076 0.087 0.096 0.105 200 260 675 900 1350 2025 3375 562515000 0.016 0.016 0.017 0.017 0.018 0.019 0.022 0.024 0.028 0.034 0.041 0.048 0.055 0.062 0.069 -20 285 740 990 1480 2220 3705 6170

* extracted from ASME International Steam Tables, 6th Edition

C.Stl. 304, 310, 316, 321 MON NIK INC, HAST CTEMP Flange Pressure Rating - psi Flange Pressure Rating - psi Flange Pressure Rating - psi Flange Pressure Rating - psi Flange Pressure Rating - psi

°F 150 300 400 600 900 1500 2500 150 300 400 600 900 1500 2500 150 300 400 600 900 1500 2500 150 300 400 600 900 1500 2500 150 300 400 600 900 1500 25001500 41 55 86 125 205 3451472 51 70 102 152 252 4241427 67 90 131 199 331 5511382 84 112 168 251 419 6981337 91 131 196 294 490 8171292 116 155 234 350 582 970 128 170 254 381 635 10591247 135 181 271 406 677 1130 167 223 334 502 835 13921202 164 218 326 490 817 1360 205 273 408 615 1021 17011157 200 267 400 600 943 1667 265 352 531 796 1323 22051112 245 326 490 734 1224 2041 313 415 622 931 1552 25891067 302 403 605 907 1511 2519 348 463 695 1041 1736 28941022 342 455 683 1025 1709 2847 363 483 722 1085 1812 30171000 20 86 115 171 257 428 714 20 354 473 709 1063 1771 2953 20 366 484 725 1091 1820 3030

932 41 171 228 341 512 853 1420 41 384 512 769 1152 1920 3201 41 409 545 819 1228 2044 3408887 54 252 336 506 759 1265 2107 54 390 521 782 1172 1954 3256 54 302 402 602 904 1506 2509 54 460 614 920 1379 2295 3828842 67 334 445 667 1001 1668 2780 67 397 529 795 1192 1987 3312 67 390 521 780 1170 1951 3252 65 489 654 982 1471 2451 4087797 80 418 557 834 1252 2086 3477 80 401 541 812 1218 2031 3384 80 458 612 918 1376 2295 3823 80 511 674 1015 1524 2540 4229752 94 503 672 1007 1511 2510 4196 94 412 550 825 1237 2062 3437 94 466 621 931 1395 2326 3878 94 529 709 1063 1593 2656 4422707 107 528 703 1054 1582 2637 4396 107 421 361 843 1263 2106 3509 107 470 627 940 1410 2348 3915 107 564 748 1123 1690 2815 4688662 122 545 727 1089 1635 2724 4540 122 429 573 860 1289 2148 3581 122 473 629 944 1417 2361 3935 122 584 777 1166 1751 2917 4963617 135 561 748 1123 1684 2808 4679 135 438 585 876 1315 2192 3654 135 473 631 946 1418 2364 3941 104 273 363 545 818 1362 2270 135 600 798 1198 1798 2997 4994572 148 577 770 1155 1733 2888 4812 148 448 598 896 1345 2242 3736 148 473 631 946 1418 2364 3941 148 424 566 848 1272 2120 3535 148 622 827 1243 1865 3110 5179482 175 608 811 1217 1825 3041 5069 175 471 628 943 1414 2355 3926 175 473 631 946 1418 2364 3941 175 458 611 917 1375 2292 3820 175 672 895 1345 2016 3362 5601392 200 635 847 1271 1906 3176 5294 199 500 667 1001 1500 2500 4167 181 474 632 949 1423 2371 3951 184 480 640 960 1440 2400 4000 200 701 936 1403 2103 3506 5842302 229 654 872 1300 1966 3269 5448 215 537 715 1073 1610 2683 4473 187 489 653 979 1468 2447 4077 184 480 640 960 1440 2400 4000 229 730 969 1455 2184 3638 6066212 257 676 901 1351 2028 3379 5632 235 593 790 1185 1778 2963 4937 200 521 695 1043 1564 2606 4344 184 480 640 960 1440 2400 4000 257 747 996 1494 2242 3736 6228122 278 727 969 1453 2181 3635 6058 267 690 925 1387 2081 3468 5780 223 583 779 1170 1751 2918 4863 184 480 640 960 1440 2400 4000 283 750 999 1500 2250 3750 6250-20 285 741 988 1481 2222 3703 6171 276 719 960 1440 2160 3600 6000 231 600 801 1199 1800 2999 5000 184 480 640 960 1440 2400 4000 290 750 999 1500 2250 3750 6250

Liquid 32 50 75 100 125 150 175 200 212 Gas 32 68 140 212 397 757 1117 1472 1832

11.78 8.81 6.13 4.54 3.57 2.89 2.36 1.97 1.87 Air 11.48 12.6 13.45 14.78 17.1 22.66 25.97 29.52 32.43

17.68 9.48 6.69 5.82 CO2 9.31 9.95 11.26 12.54 15.37 20.24 24.12 28.17 31.44

Ethyl Alcohol 11.9 9.8 7.5 5.8 4.6 3.7 2.9 CO 11.13 11.89 13.37 14.79 16.86 21.53 25.64 29.44 32.88

Benzene 6.13 5.18 4.16 3.44 2.92 2.54 2.22 Steam 5.95 7.04 8.14 10.87 16.34 21.81 27.28

Gasoline 2.34 2.13 1.85 1.62 1.45 1.35 He 12.5 13.04 14.23 15.33 17.95 22.93 27.34 31.35

Kerosine 19.9 15.4 11.3 8.92 7.3 6.08 5.26 H2 5.61 5.88 6.74 6.94 8.12 10.3 12.28 14.13 15.83

Light Oil 2374 1165 454.6 227 135.7 75.1 52.7 58.1 32.8 Methane 6.89 7.3 8.53 8.94 10.78 13.9

Heavy Oil 21267 6710 2060 805 490 125 108 85 64 N2 11.15 11.75 12.91 14.01 16.56 20.92 26.4 27.79 30.69

O2 12.9 13.62 15.01 16.33 19.36 24.65 29.24 33.56 37.55

Dynamic Viscosityof Liquids @ 14.7 psi (lb/ft-s x 10-6)) Dynamic Viscosity of Gases @ 14.7 psi (lb/ft-s x 10-6)

Fresh H2O

Salt H2O

Pipe Inside Diameter - inches (Welded & Seamless Steel Pipe) Dynamic Viscosity of Air @ 14.7 psi

Size O.D. SCHEDULE 5S 10S 10 20 30 STD 40 60 XH 80 100 120 140 160 XXH °F µ °F µ

1/2" 0.840 0.710 0.674 0.674 0.622 0.622 0.546 0.546 0.466 0.252 60 11.9 500 18.6

3/4" 1.050 0.920 0.884 0.884 0.824 0.824 0.742 0.742 0.612 0.434 80 12.5 600 20

1" 1.315 1.185 1.097 1.097 1.049 1.049 0.957 0.957 0.815 0.599 100 12.8 700 21.1

1-1/4" 1.660 1.530 1.442 1.442 1.380 1.380 1.278 1.278 1.160 0.896 120 13.1 800 22.2

1-1/2" 1.900 1.770 1.682 1.682 1.610 1.610 1.500 1.500 1.338 1.100 140 13.5 900 23.6

2 2.375 2.245 2.157 2.157 2.067 2.067 1.939 1.939 1.687 1.503 160 13.9 1000 24.7

2-1/2" 2.875 2.709 2.635 2.635 2.469 2.469 2.323 2.323 2.125 1.771 180 14.2 1200 27

3 3.500 3.334 3.260 3.260 3.068 3.068 2.900 2.900 2.624 2.300 200 14.4 1400 29.2

3-1/2" 4.000 3.834 3.760 3.760 3.548 3.548 3.364 3.364 250 15.3 1600 31.1

4 4.500 4.334 4.260 4.260 4.026 4.026 3.826 3.826 3.624 3.438 3.152 300 16.1 1800 33.3

5 5.563 5.345 5.295 5.295 5.047 5.047 4.813 4.813 4.563 4.313 4.063 400 17.5 2000 35.3

6 6.625 6.407 6.357 6.357 6.065 6.065 5.761 5.761 5.501 5.189 4.897

8 8.625 8.407 8.329 8.329 8.125 8.071 7.981 7.981 7.813 7.625 7.625 7.437 7.187 7.001 6.813 6.875

10 10.750 10.482 10.420 10.420 10.250 10.090 10.020 10.020 9.750 9.560 9.562 9.312 9.062 8.750 8.500 9.750

12 12.750 12.438 12.390 12.390 12.250 12.090 12.000 11.938 11.626 11.750 11.374 11.062 10.750 10.500 10.126 11.750

14 14.000 13.688 13.624 13.500 13.250 13.376 13.250 13.124 12.812 13.000 12.500 12.124 11.812 11.500 11.188

16 16.000 15.670 15.624 15.500 15.500 15.376 15.250 15.000 14.688 15.000 14.312 14.938 13.562 13.124 12.812

18 18.000 17.670 17.500 17.500 15.376 17.124 17.250 16.876 16.500 17.000 16.126 15.688 15.250 14.876 14.438

20 20.000 19.624 19.500 19.500 19.250 19.000 19.250 18.814 18.376 19.000 17.938 17.567 17.000 16.500 16.064

22 22.000 21.624 21.624 21.500 21.250 21.000 21.250 20.250 21.000 19.750 19.250 18.750 18.250 17.750

24 24.000 23.572 23.500 23.500 23.250 22.876 23.250 22.626 22.064 23.000 21.564 20.938 20.376 19.876 19.314

26 26.000 25.376 25.000 22.876 25.750 25.000

28 28.000 27.376 27.000 26.750 27.750 27.000

30 30.000 29.500 29.376 29.376 29.000 28.750 29.750 29.000

32 32.000 31.376 31.000 30.750 31.750 30.624 31.000

34 34.000 33.376 33.000 32.750 33.750 32.624 33.000

36 36.000 29.376 35.376 35.000 34.750 35.750 34.500 35.000

42 42.000 41.750 41.000

(lb/ft-s x 10-6)