3
xevonta CHALLENGE THE THINKING Choice of a suitable dialyzer iocompatible polysulfone membrane igh membrane permeability gamma sterilization Transport processes, either diffusive or convective, are the underlying mechanisms for elimination of substances during dialysis. A clinical study with twelve stable dialysis patients using different surface sizes of xevonta high- flux showed increas spKt/V-values and -reduction rates when larger surface-size were used . Influence dialyzer surface-size on spKt/V What effect the dialyzer surface area have on clearance ? 2.2 2 1.8 1.6 1.4 1.2 xevonta Hi 18 xevonta Hi 23 1.78 1.85 % 80 75 70 65 60 55 50 xevonta Hi 18 xevonta Hi 23 64 Influence dialyzer surface-size on ß2M reduction rate 73 of a dialyzer is important step the uremic toxin elimination strategy patient. There are many different properties with a dialyzer design. xevonta s developed by membrane composition target an increased removal of uremic toxins especially for the class of middle molecules. Other properties

xevonta · xevonta Hi 18 xevonta Hi 23 1.78 1.85 % P 80 75 70 65 60 55 50 xevonta Hi 18 xevonta Hi 23 64. Influence OF dialyzer surface-size on ß2M reduction rate 73. 3ELECTION of

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: xevonta · xevonta Hi 18 xevonta Hi 23 1.78 1.85 % P 80 75 70 65 60 55 50 xevonta Hi 18 xevonta Hi 23 64. Influence OF dialyzer surface-size on ß2M reduction rate 73. 3ELECTION of

xevonta¨Pvkqebqf̀ Af̂ ivwboCHALLENGE THE THINKING

Choice of a suitable dialyzer

?iocompatible polysulfone membrane

Eigh membrane permeability

Luvdbk*cobb gamma sterilization

Transport processes, either diffusive or convective, are the underlying mechanisms for elimination of substances during dialysis. Fk`ob^pb fk af^ivwbo proc^`b*pfwb `^k _b m^o^iibi ql nr^kqfqv objls^i lc `boq^fk jlib`ribp+ Qefp fpabmbkabkq lk jlib`rib `e^o^`qbofpqf`pċ ^s^fi^_fifqv lc qeb pr_pq^k`bp fk qeb afccbobkq m^qfbkq mllipċ ^ka ^``bpp fkqeb _illa `fo`rfq+ A clinical study with twelve stable dialysis patients using different surface sizes of xevonta high-flux showed increasba spKt/V-values and Í/J-reduction rates when larger af^ivwbo surface-sizep were used ..

Influence lc dialyzer surface-size on spKt/V .

What effect `^k the dialyzer surface area have on clearance ?

2.2

2

1.8

1.6

1.4

1.2

xevonta Hi 18 xevonta Hi 23

1.781.85

m9-+---.%

80

75

70

65

60

55

50

xevonta Hi 18 xevonta Hi 23

64

Influence lc dialyzer surface-size on ß2M reduction rate .

73

Pbib`qflk of a dialyzer is ^k important step qlab`fafkd the uremic toxin elimination strategy lc ^ patient. There are many different properties ^ppl`f^qba with a dialyzer design. xevonta fs developed by _^i^k`fkd qeb membrane compositionċ ql target an increased removal of uremic toxins * especially for the class of middle molecules. Other properties fk`irab7

Page 2: xevonta · xevonta Hi 18 xevonta Hi 23 1.78 1.85 % P 80 75 70 65 60 55 50 xevonta Hi 18 xevonta Hi 23 64. Influence OF dialyzer surface-size on ß2M reduction rate 73. 3ELECTION of

What role does membrane permeability play in hemodialysis ?

KuF ml/h/mmhg

2.2

2.0

1.8

1.6

1.4

1.2

2.8

2.6

2.4

Surface area m²

40 50 60 70 80 90 100 110 120 130

xevonta Hi 23

xevonta Hi 20

xevonta Hi 18

A Optiflux 250NR

A Optiflux 200NR

A Optiflux 180NRC Revaclear Max

C Revaclear

B Elisio 19H

B Elisio 21HD Xenium XPH 210

B Elisio 25H

During hemodialysisċ the formation of a protein layer sometimes referred to ^p secondary membrane formation or membrane foulingċ can effect the hydraulic permeability of a dialyzer.2 Membrane permeability can therefore be a key determinator of performance.3

Membrane performance based on surface size and KUF as an index of permeability of multiple membrane brands: Summary from different public sources

What is the in*vitro performance of small molecules ?

xevonta Hi 23 (2.3m²)

xevonta Hi 20 (2.0m²)

xevonta Hi 18 (1.8m²)

>Optiflux 250NR (2.5m²)

A Optiflux 200NR (2.0m²)

@ Revaclear Max (1.8m²)

UREA

320 340 360clearance ml/min

CREATININE

280 300 320

PHOSPHATE

280 300 320

320

309

297

325

290

297

324

316

304

318

289

311

354

349

330

339

341

344

Conditions: Blood flow = 400 ml/min; Dialysate flow = 500 ml/min; Ultrafiltration flow = 0 ml/min

REFERENCES:. T^dkbo P+ bq ^i+ Fk`ob^pba objls^i lc pj^ii ^ka jfaaib jlib`ribp _v rpb lc jbj_o^kbp tfqe i^odbo proc^`b ^ka efdebo riqo^cfiqo^qflk `lbccf`fbkq+ Mlpqbo ^_pqo^`q BAQ> /-./ `lkafqflkp7jb^k N? : 02- ji,jfkċ NA : 2-- ji,jfkċ jb^k af^ivpfp qfjb : /42 jfkċ m^qfbkqp : ./ċ aro^qflk : 3 tbbhpċ tbbhpċ af^ivpfp jlab : EA

2 Yamamoto K, Hiwatari M, Kohori F, Sakai K, Fukuda M, Hiyoshi T. Membrane fouling and dialysate flow pattern in an internal filtration enhancing dialyzer. J Artif Organs. 2005;8:198–205.

0 Elbkf`e K>+8 Jbj_o^kbp ^ka cfiqbop clo e^bjlaf^cfiqo^qflkċ @lkqof_ Kbmeoli+ /--48.25724*34+

Plro`b7 ^``loafkd ql j^krc^`qrobo a^q^ ^ka pq^ka^oa FPL 5304 8 ^s^fi^_ib lkifkb ^p lc ./+-6+/-.3

>lmqfciru 7 eqqm7,,cj`k^*af^ivwbop+`lj,af^ivwbop*pfqb,mac,Lmqfciru#/-Molar`q#/-?ol`erob#/-Pb`qflk,.-.-13*-.#/-Lmqfciru#/-Efde#/-Ciru+mac

?bifpfl 7 eqqm7,,ttt+kfmol+`lj,tm*`lkqbkq,rmil^ap,/-.1,..,BIFPFL*MM*?ol`erob+mac

@ obs^`ib^o 7 eqqm7,,ttt+_^uqbo+`lj,^ppbqp,altkil^ap,molar`qp\bumboqfpb,obk^i\qebo^mfbp,Obs^`ib^o\Pmb`\Pebbq\CFK>I+mac

A Ubkfrj 7 eqqmp7,,ttt+_^uqbo+`lj,^ppbqp,altkil^ap,molar`qp\bumboqfpb,obk^i\qebo^mfbp,UME\Pmb`\Pebbq\CFK>I+mac

mwoncous
Rectangle
mwoncous
Rectangle
Page 3: xevonta · xevonta Hi 18 xevonta Hi 23 1.78 1.85 % P 80 75 70 65 60 55 50 xevonta Hi 18 xevonta Hi 23 64. Influence OF dialyzer surface-size on ß2M reduction rate 73. 3ELECTION of

Measuring conditions and physical data according to ISO 8637UF-coefficient: , ?lsfkb ?illa, Hct. 32 %, total protein 60d, T = 37°C; Sieving coefficients: QB = 300 ml/min, QD = 500 ml/min

xevonta¨ Pvkqebqf` Af^ivwbo TECHNICAL & IN-VITRO PERFORMANCE DATA

Hi 18 Hi 20

blood flow (QB) ml/min 200 300 400 200 300 400

Clearance:ultrafiltration flow (QF) = 0 ml/min

Urea 198 281 341 199 287 349 199 290 354

Creatinine 191 263 304 196 271 316 197 276 324

Phosphate 194 263 297 196 271 309 198 277 0/-

Vitamin B12 155 184 210 161 195 220 166 204 227

S. C. (sieving coefficient) QB = 300 ml/minQF = 60 ml/min

β2-Microglobulin > 0.8

Albumin < 0.001

Ultrafiltration coefficient ml/h/mmHg QB = 300 ml/min 99 111 124

20

Art. No. 7204403 7204404 7204405

KoA Urea (QB = 300 ml/min, NA : 2-- ji,jfk' .12- .4.1 .6--

Mofjfkd Slirjbċ ?illapfab (ml) ..- ./2 .1.

Membrane material

Sterilization

Wall thickness / inner diameter (μm) 35 /195

Units per box

Oxygen-free gamma

amembris polysulfone

Surface area (m²) 1.8 2.0 2.3

500

414

372

239

500

427

390

259

Hi 23

200 300 400 500

439

403

272

500 500 500 500 500 500800 800 500 500 500 800dialysate flow (QD) ml/min

Clo jlob fkcloj^qflkċ `lkq^`q ?+ ?o^rk Jbaf`^i Fk`+ ^q.*5--*515*/-33ċ lo bj^fi rp ^q oqa+rp=__o^rk+`lj

ttt+ ??o^rkRP>+`lj,Af^ivwbopOu lkiv+ ¤/-.3 ?+ ?o^rk Jbaf`^i Fk`+ ?bqeibebj M>ċ >ii ofdeqp obpbosba

Data on file