12
Math 191 Lecture Notes Date §7.4 Partial Fractions 2 x +1 + 3 x - 2 Ex1: Use Partial Fractions to find the following integral Z 5x - 1 x 2 - x - 2 dx 1 LCD = ( Xt 1) ( X - 2) ×÷I÷+÷I÷ 2X-4t3×+3_ = 5×-1×2 - × - 2 XZ X - 2 = ) ×÷d× + fxtzdx = 2) , + 3) ¥2 w=x -2 dw=d× He * HA du=d× = 2 f dud + 3 fdw-w = z lnlul t 3 lnlwl t C = 2 In 1×+11+3 In 1×-21 + C = In /(xH)2( x. 2) 31 t c

x+1 x2 ×÷I÷+÷I÷ - El Camino College Compton Center 191 Lecture Notes Date 7.4 Partial Fractions 2 x+1 + 3 x2 Ex1: Use Partial Fractions to find the following integral Z 5x1 x2

  • Upload
    hatruc

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

Math 191 Lecture Notes Date

§7.4 Partial Fractions

2

x+ 1+

3

x� 2

Ex1: Use Partial Fractions to find the following integralZ

5x� 1

x2 � x� 2dx

1

LCD = ( Xt 1) ( X - 2)

×÷I÷+÷I÷2X-4t3×+3_ =5×-1×2

- × - 2 XZ . X - 2

= ) ×÷d× + fxtzdx

= 2) d¥,

+ 3) ¥2w=x -2

dw=d×He*HA

du=d×= 2 f dud + 3 fdw-w

= z lnlul t 3 lnlwl t C

= 2 In 1×+11+3In 1×-21 + C✓

= In /(xH)2(x. 2)31 t c

Ex2: Use Partial Fractions to find the following integral

Z 1

0

x� 4

x2 � 5x+ 6dx

2

8 X -4

¥-52 ,

/ ⇒x.FI?iIxI*IIf ×=2 ⇒ - B = - 2 ⇒ B@it X= 3 ⇒ A = - 1 ⇒ A=@

. I + S÷zd×

= -In 1×-31 t

In1×-21

= ml 't¥l+c

Ex3: Use Partial Fractions to find the following integral

Zx2 � x� 6

x2 + 3xdx

3

3. x. +3 ) as + PI =HE

X 1×2+3 )

⇒ A ( × 't 3 ) + ( Bxtc ) × = ×'

. x - 6

⇐. ⇒

axn.it?EEtEEIII.E€

ftzdx + |3×xI÷d× u=x2t3

⇒ -52¥ + 3f÷×+dy.fd×÷ ,

du=2×d×

= .zinixl + 3. tzmhi " ' '

tbta"

#g.gg#taanxa

)

Ex4: Use Partial Fractions to find the following integral

Zx3 + 6x� 2

x4 + 6x2dx

4

AXTB

0×4×2+6) f

¥

÷ + BE +' I÷e=xIII÷ ,

AXCX 2+6 ) + B ( ×2t6 ) + (C x + D) X2= X 3+6×-2

€o⇒ 613=-2 ⇒ B=@)

A X3

+ 6 Ax + 13×2+613 + C X3

+ DXZ

((1/3) ) At c= 1

( cxz ) )Bt D= 0 ⇒ D=@

(( X ) )6 A = 6 ⇒ A=@ ⇒ @

s¥s¥ts*lnlxltf.txtfozftai.lt#

Ex5: Use Partial Fractions to find the following integral

Zx5 + x� 1

x3 + 1

5

1/2×3+1115+0×4+0×3+0×2 + × - l

f. X5 + + ×2

- ( X2 . xti )=

- 0 - xztx - 1

fxzdx + f -×2¥ dx L×3tl

- ( ×2 . xtl )(

xtD(x2#)

fxzdx - fdxxtl

×z3-ln1xH@

Ex6: Use Partial Fractions to find the following integral

Zdx

x1/3 + 1

6

U = x'S

⇒ x=U3

f 2¥ ⇒ dx= 3U2 duutl

- 1

3) n÷,

du u+iu%+ou+u2+ n

=

0 - U + 0

}[ Sunda + 5¥ ] If

3 [ u÷ .

u + lulutil ] + c

0

zedo.r3xlbi.lu/x43t

Ex7: Use Partial Fractions to find the following integral

Zdx

ex + 1dx

7

a. u=e×

du=e×d×I

⇒ dx=d1

fututnex

=d÷

fdu_UIUH )

g÷ + BE,=u÷u+ . )

ACUH ) + Bln ) =1

fdtu - ) # u=o⇒ @,u=t⇒B=@

:| ul -lnlutll + C

lul # Itc

⇒mle¥d@

§7.5 Strategy for integration

Ex1: Find the following integralZ

x sin x cos xdx

Ex2: Find the following integralZ

xp

x(x2p + 1)dx

8

Recall : sin 20 = Zsino cost

⇒ sinocoso = sing2

= fx sing DXu=× ,

dv=sin2×

= lzfxsinzx DX du=dx ,V= - tzco ) 2×

IBIb

=tz[ xftzcoszx ) - f-tzcossxdx]= - ÷

,XCOSZX t 1

.

Sind+ (

4 2

= - ¥Xcos2x + gt sin 2x + C

ZP

@ ← du

u=×p → u2=×

du=pxP' '

DX

t.ua.÷ =mIp X

¥ tar 'C a) tc

tptai '( xp ) t C

Ex3: Find the following integral

Zln x

xp

1 + (ln x)2dx

9

U : lnx ⇒ du=d×X

= SUE dw

now let w=1 + we

⇒ dW= zudw

= tz ) Feww

'

'2=w3 ". }

= 1 . } W"2

+ C

Z

= tg ( ituz )"2

+ c

= ! ( e + ( Inx ) 2)" 2

+ C

NOTE : You can also use trig substitution .

Ex4: Find the following integral

Ze1/x

x2dx

Ex5: Find the following integralZ

sin 6x cos 3xdx

10

- I

u= XL

Let u= tx ⇒ du= -tzzdx=

- fe"

du

U

= . e + C

Yx= - e tc

Ex6: Find the following integralZ p

1 + exdx

11

Let u= Tex

⇒ U2= 1 + ex →e×=u±1

⇒ zudu .

.

e×d×

⇒ dx= 2UdU_ /ex/

⇒ dx=2uY÷

!fu(2u÷Ddu= 2fuu÷idu weutfouto

µ2 - 1

÷ �1�

=z[jiau+fdu÷]-F.

-

- E. + In=.ua#td*eEnyIIIIEL=2ut1n1n.i1

- In Intl /

=m+hluu¥tiF×+nlF¥÷ltc

NOTE : you can also solve the

problem using trigsubstitution .

Ex7: Find the following integral

Zx+ sin�1 xp

1� x2dx

12

=f¥*dx+fsiY¥÷A B

A ⇒ ) ,÷n*dx Let x= Sino ⇒ dx=cosod0

I

⇒ g sin0t0d0# ⇒ a= fsinodl ×

the ' 0

# = - co > Otc ofxz

= -

Fx2e-

+ c

. .. -

- - . --

-.

..

B= fsifx.dxtetuI.am?d#x.

⇒ fudu⇒ u2

ztc

= ( sin''x)2=

+ c