63
Aerospace Industry MultiScale Modeling of Composite Materials & Structures Dr. Jan Seyfarth Product Manager Digimat April 2013

WS_2013_04_Advanced_Materials_Aerospace.pdf

Embed Size (px)

DESCRIPTION

Advanced Materials Aerospace

Citation preview

Page 1: WS_2013_04_Advanced_Materials_Aerospace.pdf

Aerospace  Industry  Multi-­Scale  Modeling  of  Composite  Materials  &  Structures  Dr.  Jan  Seyfarth  Product  Manager  Digimat   April  2013  

Page 2: WS_2013_04_Advanced_Materials_Aerospace.pdf

Copyright©  e-­Xstream  engineering,  2013   2  

 Aerospace  Industry  A  Very  Short  Introduction...    

Digimat  e-­Xstream  &  Simulation  Strategy  Software    

Materials  Technology  &  Applications  

 From  Materials  to  Structure  Current  Status  and  Ongoing  Developments    

Structures  Technology  &  Applications    

Summary    

Aerospace  Industry  Multi-­Scale  Modeling  of  Composite  Materials  &  Structures  

Page 3: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Digimat  

 e-­Xstream  engineering  Simulation  Strategy  

Nonlinear  Multi-­Scale  Simulation  Platform  

   

Copyright©  e-­Xstream  engineering,  2013   3  

Aerospace  Industry  Multi-­Scale  Modeling  of  Composite  Materials  &  Structures  

Page 4: WS_2013_04_Advanced_Materials_Aerospace.pdf

Copyright©  e-­Xstream  engineering,  2013   4  

 Who  are  we...?  A  MSC  Software  Company!    Team  of  ~30  persons  PhDs  (~65%)  MS  &  BS  Engineering  (~  25%)  Marketing,  Finance  &  Admin  (~10%)  

   

       +  TBH  in  2013    

Material  experts  Micromechanics    about...  

       COMPOSITES  

Amsterdam,  October  2012  

e-­Xstream  engineering  Digimat  

Page 5: WS_2013_04_Advanced_Materials_Aerospace.pdf

Copyright©  e-­Xstream  engineering,  2013   5  

 What  are  we  concerned  about?    Inter-­dependencies  in  the  Design  of  a  Composite  Part  

   

 

e-­Xstream  engineering  Digimat  

Structural  design  

influences  processing  

Manufacturing  sets  

local  microstructure  

Local  microstructure  

sets  material  

properties  

Page 6: WS_2013_04_Advanced_Materials_Aerospace.pdf

 What  do  we  do...?  Multi-­Scale!    MICRO    Material      

 MACRO    Dumbbell          Part        

         

System    Copyright©  e-­Xstream  engineering,  2013   6  

Micro-­  structure   Material  model  

Part  performance  

Characterization  

Process  

System  level  

Simulation  Strategy  Digimat  

Page 7: WS_2013_04_Advanced_Materials_Aerospace.pdf

Copyright©  e-­Xstream  engineering,  2013   7  

 Material  Related  Design  Challenges    Manage  Material  Data  Generate  Data  (Cost  &  Time  of  Test)  Manage,  Trace,  Protect  (IP)  Comply  (Regulation)    

Model  (composite)  Materials,  Part  &  Systems  Nonlinearity:  Progressive  damage  &  failure  Anisotropy  Heterogeneity  Process  dependency    

Use  The  optimal  mix  of  material  The  Material(s)  as  a  design  parameter  to  innovate  The  optimal  manufacturing  process    

Simulation  Strategy  Digimat  

Page 8: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Nonlinear  Multiscale  Modeling  Platform  

8  Copyright©  e-­Xstream  engineering,  2013  

Nonlinear  Multi-­Scale  Simulation  Platform  Digimat  

Page 9: WS_2013_04_Advanced_Materials_Aerospace.pdf

Performance  Stiffness  Failure  Fatigue  

 Technology  

Linear/Nonlinear  Mean  Field/FEA  Micro/Hybrid  

     

 Copyright©  e-­Xstream  engineering,  2013   9  

 Nonlinear  Multiscale  Modeling  Platform    Holistic  modeling    Materials  

Chopped  Fibers:  Short/Long  Continuous  Fibers  Fillers  

 Physics  

(Thermo-­)  Mechanical  Thermal  Conductivity  Electric  Conductivity  

 Manufacturing  

Injection  Compression  Draping  Fiber  placement  MuCell®  

     

 

Nonlinear  Multi-­Scale  Simulation  Platform  Digimat  

Page 10: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Nonlinear  Multiscale  Modeling  Platform    MICRO    Virtual  Material  

   MACRO    Data  management  Reverse  Engineering      FEA  Interfaces  Mapping  

       

 

Copyright©  e-­Xstream  engineering,  2013   10  

Material  Engineering  

Structural  Engineering  

Nonlinear  Multi-­Scale  Simulation  Platform  Digimat  

Page 11: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Interfaces  to  MSC  Nastran    SOL  101  -­  linear  Weak  coupling  [Nastran  material  card  used]  Including  SOL  103  for  vibration  Including  SOL  105  for  buckling    

SOL  400  -­  nonlinear  Implicit  Strong  coupling  [Digimat  user  subroutine]    

SOL  700  -­  nonlinear  Explicit  Strong  coupling  [Digimat  user  subroutine]    

   

11  Copyright©  e-­Xstream  engineering,  2013  

Available  in  4.4.1  

Specification  phase  

Under  development  

Nonlinear  Multi-­Scale  Simulation  Platform  Digimat  

Page 12: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Materials  

 Composites  

Materials  Engineering  Applications  

   

Copyright©  e-­Xstream  engineering,  2013   12  

Aerospace  Industry  Multi-­Scale  Modeling  of  Composite  Materials  &  Structures  

Page 13: WS_2013_04_Advanced_Materials_Aerospace.pdf

Copyright©  e-­Xstream  engineering,  2013   13  

 A  Vast  Mix  of  Different  Materials    Metal  (Alloys)  Aluminium  /  Magnesium  Molybdenum  /  Titanium  /  Tungsten    

Reinforced  Plastics  Thermoplastics  +  Carbon  fibers  Epoxy  +  Glass  /  Carbon  /  Aramid  fibers    

Ceramics  Titanium  +  SiC  fibers    

Composites  Materials  

Complex  structures  Pores  

Stacking   Weaving  

Structure  /  Orientation  

Random    

Performance     (Stiffness,  failure,  fatigue,  ...)  Anisotropy  

Page 14: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Digimat-­FE    Fast  &  Efficient  Prediction  of  Composite  Material  Properties  

 

14  Copyright©  e-­Xstream  engineering,  2013  

Materials  Engineering  Materials  

Page 15: WS_2013_04_Advanced_Materials_Aerospace.pdf

 UD  Composites    Defects  &  influence  of  processing    ISEMP  Integrative  Simulation  and  Engineering  of  Materials  and  Processes  » Aims  at  the  simulation  of  material  details  and  not  only  the  macroscopic  overall  properties  

» Aims  at  considering  manufacturing  process  by  the  simulation  » Uses  commercially  available  software  tools  

 CHALLENGE  

Processing  of  CFRP  results  in  residual  stresses  in  the  material  Residual  stresses  lead  to  micro-­damage  &  failure  of  CFRP  Goal  is  to  simulate  residual  stresses  of  a  carbon  fiber  composite  material  at  the  micro  scale  with  realistic  topology  

 

Copyright©  e-­Xstream  engineering,  2012   15  

Applications  Materials  

Page 16: WS_2013_04_Advanced_Materials_Aerospace.pdf

 UD  Composites    Defects  &  influence  of  processing    E.g.  already  generated  in  the  material  during  processing  

   

Copyright©  e-­Xstream  engineering,  2012   16  

Segmentation  

Matrix  enrichment  

Pores  

Delamination  

Applications  Materials  

Page 17: WS_2013_04_Advanced_Materials_Aerospace.pdf

 UD  Composites    RVE  Generation  Periodic  boundary  conditions  Enhanced  flexibility  45°  orientation  » And  other...  

 

Copyright©  e-­Xstream  engineering,  2012   17  

Applications  Materials  

Page 18: WS_2013_04_Advanced_Materials_Aerospace.pdf

 UD  Composites    RVE  Generation    Fibers  Stochastic  Intersection  with  » Matrix  » Voids  

 Voids  Stochastic  Complex  shapes  Clustering,  control  over  » Position  » Shape  » Orientation  

 

Copyright©  e-­Xstream  engineering,  2012   18  

[  0°  /  90°  ]  

fibers  intersecting  voids  

complex  shapes  

Applications  Materials  

Page 19: WS_2013_04_Advanced_Materials_Aerospace.pdf

 UD  Composites    Curing  effects    Replacement  experiment:  Shrinkage  due  to  temperature  decrease  

Copyright©  e-­Xstream  engineering,  2012   19  

Applications  Materials  

Page 20: WS_2013_04_Advanced_Materials_Aerospace.pdf

 UD  Composites    Curing  effects    Delamination    due  to  change  in  orientation  

Copyright©  e-­Xstream  engineering,  2012   20  

Applications  Materials  

Page 21: WS_2013_04_Advanced_Materials_Aerospace.pdf

 UD  Composites    Curing  effects    Crack  propagation    due  to  stochastic  distribution  of  fibers  

 

Copyright©  e-­Xstream  engineering,  2012   21  

Applications  Materials  

Page 22: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Strategic  Simulation  Tool    Digimat    Recommended  tool  for  investigations  

Copyright©  e-­Xstream  engineering,  2012   22  

DIGIMAT  enables  us  to  perform  in  depth  studies  of  complex  and  realistic  

microstructures.  As  an  invest  into  the  future  we  base  our  simulation  approach  on  the  

DIGIMAT  software,  both  for  our  research  and  the  education  of  a  new  generation  of  

simulation  engineers  who  will  be  experts  in  the  modeling  of  materials.      

Prof.  Vasily  Ploshikhin,  Airbus  endowed  chair  for  Integrative  Simulation  and  

Engineering  of  Materials  and  Processes  (www.isemp.de)  

Applications  Materials  

Page 23: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Sandwich  Panels  

 Micross  -­  Stand-­Alone  Digimat  Module  Input  Data  @  micro  and/or  macro  scale  Fast    Solution  in  less  than  10  minutes  Loading  3-­Point  &  4-­Point  Bending  In-­Plane  Shear  

   

Tuesday,  23  April  2013   23  

Applications  Materials  

Page 24: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Micross  

 Stand-­alone  module  Definition  of  honeycomb  core  Definition  of  skin  plies  

   

Tuesday,  23  April  2013   24  

Applications  Materials  

Page 25: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Micross  

 Stand-­alone  module  Visualization  of  results  Failure  indicators  Skins:     max.  stress,  Tsai-­Wu,  Tsai-­Hill,  Azzi-­Tsai-­Hill  Core:     shear,  compression  

       

Tuesday,  23  April  2013   25  

Applications  Materials  

Page 26: WS_2013_04_Advanced_Materials_Aerospace.pdf

 From  Materials  to  Structure  

 Critical  Development  Phase  Materials  Engineering  

Current  Status  Ongoing  Developments  

   

Copyright©  e-­Xstream  engineering,  2013   26  

Aerospace  Industry  Multi-­Scale  Modeling  of  Composite  Materials  &  Structures  

Page 27: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Digimat-­MF    Fast  &  Efficient  Prediction  of  Composite  Material  Properties  

 

27  Copyright©  e-­Xstream  engineering,  2013  

Output      

Homogenization      

DIGIMAT  material  model  sensitive  to  composite  microstructure  

State-­of-­the-­art  homogenization  methods  

Per-­phase  material  properties  +  microstructure  information  

Input      

ar  w  [%]  

matrix  

filler  

Materials  Engineering  From  Materials  to  Structure  

Page 28: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Digimat-­MX    Material  eXchange  &  Reverse  Engineering  

28  Copyright©  e-­Xstream  engineering,  2013  

Reverse  Engineering      

Input      

Output    

Calibrated  DIGIMAT  Material  Model,  stored  in  database  and  ready  to  be  shared  and  used  

Calibration  of  DIGIMAT  models  based  on  experimental  data  

Experimental  data,  DIGIMAT  material  models  stored  in  database  

Materials  Engineering  From  Materials  to  Structure  

Page 29: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Multi-­Scale  Approach    Top    Down  |  Reverse  Engineering  

29  

Critical  Development  Phase  From  Materials  to  Structure  

Copyright©  e-­Xstream  engineering,  2013  

Page 30: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Multi-­Scale  Approach    Bottom    Up  |  Prediction  of  performance  

30  

Critical  Development  Phase  From  Materials  to  Structure  

Copyright©  e-­Xstream  engineering,  2013  

Page 31: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Material  Models  -­  Standart    (Thermo-­)  Elastic  (Thermo-­)  Elastoplastic  (Thermo-­)  Viscoelastic  (Thermo-­)  Elasto-­Viscoplastic  

31  

f(T)  

TEMPERATURE  

f( )  

STRAIN  RATES    

High  strain  rates  Creep  

f(OT)  ANISOTROPY  

Current  Status  From  Materials  to  Structure  

Copyright©  e-­Xstream  engineering,  2013  

Page 32: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Material  Models    Advanced    (Thermal)  Creep    Viscoelasticity  Elasto-­Viscoplasticity  

32  

time  

aligned  

VE  Matrix  Composite  

TVE  Matrix  Composite  G0,  K0  and  CTE  Constant  

TVE  Matrix  Composite  G0  =G0 0  =  K0  

Current  Status  From  Materials  to  Structure  

Copyright©  e-­Xstream  engineering,  2013  

Page 33: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Stiffness    Eshelby  approach  for  UD  &  woven  composites    Mean  field  homogenization  Glass  fibers      isotropic  Carbon  fibers    transversely  isotropic  

33  

Current  Status  From  Materials  to  Structure  

Copyright©  e-­Xstream  engineering,  2013  

Page 34: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Stiffness    UD  Composites    RVE  definition    Layered  microstructure  

 

34  

Current  Status  From  Materials  to  Structure  

Stiffness  Failure  

Copyright©  e-­Xstream  engineering,  2013  

Page 35: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Stiffness    Woven  Composites  -­  Basic  model    Superposition  of  fibers  

 

35  

Current  Status  From  Materials  to  Structure  

Copyright©  e-­Xstream  engineering,  2013  

Page 36: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Stiffness    Woven  Composites  -­  Advanced  model    Realistic  woven  structure  

 

36  

yarn  definition  

woven  modeler  

Current  Status  From  Materials  to  Structure  

Copyright©  e-­Xstream  engineering,  2013  

Page 37: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Stiffness    Woven  Composites  -­  Advanced  model  

 Realistic  woven  structure  

 

37  

visualization  &  property  computation  

Current  Status  From  Materials  to  Structure  

Copyright©  e-­Xstream  engineering,  2013  

Page 38: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Stiffness    Virtual  testing    Stress  &  strain  Tension  &  compression  Creep  &  relaxation  

 

Copyright©  e-­Xstream  engineering,  2013   38  

uniaxial  

shear  

biaxial  

Current  Status  From  Materials  to  Structure  

Page 39: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Stiffness    Input  /  Definition    Epoxy  matrix  Density  Isotropic  elastic  »  modulus  » Poisson  ratio  

 Carbon  fibers  Density  Transversely  isotropic  elastic  » In-­plane    modulus  » Axial      modulus  » In-­plane  Poisson  ratio  » Transverse  Poisson  ratio  » Transverse  shear  modulus  

Copyright©  e-­Xstream  engineering,  2013   39  

Current  Status  From  Materials  to  Structure  

ksi  

t/mm3  

ksi  

t/mm3  

Page 40: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Stiffness    Input  /  Definition    Ply  Microstructure  » Continuous  fiber  » Volume  fraction  of  fibers:  61%    

Laminate  Stacking  sequence  » 3  different  laminates  Computation  of  » Laminate  

» Stress  response  » Engineering  properties  

» Ply  » Engineering  properties  

» Per-­phase  » Stress  response  

 Copyright©  e-­Xstream  engineering,  2013   40  

Current  Status  From  Materials  to  Structure  

10/30/60  Laminate  1  

60/30/10  Laminate  2  

10/40/50  Laminate  3  

Page 41: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Stiffness    Output    Laminate  Stress  response  

 

Copyright©  e-­Xstream  engineering,  2013   41  

Current  Status  From  Materials  to  Structure  

11  

Page 42: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Stiffness    Output    Laminate  Stiffness  matrix  » In  coordinate  system  of  the  RVE  » Tensile  direction:  11  » Orthotropic  

 

Copyright©  e-­Xstream  engineering,  2013   42  

Current  Status  From  Materials  to  Structure  

Laminate  1  10/30/60  

Laminate  2  60/30/10  

Laminate  3  10/40/50  

11  

Page 43: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Stiffness    Output    Ply  level  Engineering  constants  » In  coordinate  system  of  the  ply  » Tensile  direction:  x  » Unique  for  all  three  laminates  

 

Copyright©  e-­Xstream  engineering,  2013   43  

Current  Status  From  Materials  to  Structure  

Lamina  Angle   0°   45°   90°  

Young  Modulus  (ksi)  

Axial  (along  x-­‐axis)   23.044   2.139   1.318  

Transverse  (along  y-­‐axis)   1.318   2.139   23.044  

Page 44: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Stiffness    Output    Matrix  level  Microscopic  properties  » Stress  11  vs.  Strain  11  [ksi]  Per  ply  information  » Different  stresses  (            )  &  strains  are  reached  » Dependent  on  the  ply  and  sensitive  to  changes  in  the  laminate  design  

Copyright©  e-­Xstream  engineering,  2013   44  

Current  Status  From  Materials  to  Structure  

imposed  strain   imposed  strain   imposed  strain  

0°   45°   90°  

matrix  strain   matrix  strain   matrix  strain  

11  

Page 45: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Stiffness    Output    Fiber  level  Microscopic  properties  » Stress  11  vs.  Strain  11  [ksi]  Per  ply  information  » Dependent  on  the  ply  and  sensitive  to  changes  in  the  laminate  design  

Copyright©  e-­Xstream  engineering,  2013   45  

Current  Status  From  Materials  to  Structure  

imposed  strain   imposed  strain   imposed  strain  fiber  strain   fiber  strain   fiber  strain  

11  

0°   45°   90°  

Page 46: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Stiffness    Coupled  Analysis  

Copyright©  e-­Xstream  engineering,  2013   46  

Current  Status  From  Materials  to  Structure  

Page 47: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Stiffness    Coupled  Analysis    Global  Response    Laminate  level  Force  /  displacement  curve  » Digimat-­MF    Fraction  of  a  second  to  solve  micromechanics  » Nastran      Minutes  for  FEA  analysis    

Copyright©  e-­Xstream  engineering,  2013   47  

Current  Status  From  Materials  to  Structure  

Page 48: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Stiffness    Coupled  Analysis    Local  Response    Ply  level  Macroscopic  properties  in  each  ply  » Max.  Princ.  Stress  [ksi]  » Influence  of  the  hole  on  local  behavior    

Copyright©  e-­Xstream  engineering,  2013   48  

Current  Status  From  Materials  to  Structure  

Laminate  1  10/30/60  

Laminate  2  60/30/10  

Laminate  3  10/40/50  

Page 49: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Failure    Matrix  strain  per  ply  Differs  from  macroscopic  strain  Input  for  unique  strain  based  failure  criteria  

 

49  

Current  Status  From  Materials  to  Structure  

45°

90°

-­45°Orientation  in  ply  

No  matrix  failure  in  0°  ply  Average  matrix  strain  in  other  plies  for  failure  of  the  composite  

Matrix  Macroscopic  

Copyright©  e-­Xstream  engineering,  2013  

Page 50: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Failure    Per  ply  definition    Derived  from  microstructure  Stress  in  fibers  /  strain  in  matrix    

 

Copyright©  e-­Xstream  engineering,  2013   50  

Current  Status  From  Materials  to  Structure  

Page 51: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Progressive  Failure  Analysis    Explicit  solver    Element  deletion  triggered  by  Stress  in  fibers  /  strain  in  matrix  

 

Copyright©  e-­Xstream  engineering,  2013   51  

Fiber  failure  

Current  Status  From  Materials  to  Structure  

Page 52: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Progressive  Failure  Analysis    Validation  of  stiffness  &  failure    Predictive  modeling  

Copyright©  e-­Xstream  engineering,  2013   52  

RE  on  ply  level  of  plain  specimen  Prediction  of  performance  of  open  whole  specimen  

Current  Status  From  Materials  to  Structure  

Page 53: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Progressive  Failure  Analysis    The  idea    Feed  the  indicator,  control  stiffness  &  failure...  

Copyright©  e-­Xstream  engineering,  2013   53  

Ongoing  Developments  From  Materials  to  Structure  

Indicator      

Matrix  Strain  

Transverse  tensile    

Fibers  Stress  Tension  

Compression  

Matrix  stresses  &  strains  

Fibers  stresses  &  strains  

Composite  stresses  &  strains  

Pre-­Failure    

Stiffness  Reduction  Damage  controled  by  failure  indicator  

 

Failure    

Element  Deletion  Final  composite  failure  controled  by  critical  damage  

Page 54: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Progressive  Failure  Analysis    Preliminary  results    2013/02  release  

Copyright©  e-­Xstream  engineering,  2013   54  

Ongoing  Developments  From  Materials  to  Structure  

Partial    failure  

No  failure  

Complete  failure  

Page 55: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Progressive  Failure  Analysis    Preliminary  results    2013/02  release    Stiffness  degradation  Failure  

55  

Ongoing  Developments  From  Materials  to  Structure  

Copyright©  e-­Xstream  engineering,  2013  

Deformation:  d11  &  d22   Element  deletion:  progressive  &  classical  

Page 56: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Structures  

 Structural  Engineering  

Applications  

   

Copyright©  e-­Xstream  engineering,  2013   56  

Aerospace  Industry  Multi-­Scale  Modeling  of  Composite  Materials  &  Structures  

Page 57: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Short  Fiber  Reinforcement  

Copyright©  e-­Xstream  engineering,  2013   57  

Structural  Engineering  Structures  

fibers  

failure  

ANISO  

Measurements  /  curves  

Process  Simulation  Orientation  data  on  processing  mesh  

FEA  Structural  analysis  

 Structural  mesh  

Mapping  

Anisotropic  (non)linear  

Material  Model  

ISO  

Page 58: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Short  Fiber  Reinforcement    Fittings            Turbine  parts  

 

Copyright©  e-­Xstream  engineering,  2013   58  

Structural  Engineering  Structures  

Page 59: WS_2013_04_Advanced_Materials_Aerospace.pdf

 UD  &  Woven      

59  

Measurements  /  curves  

FEA  Structural  analysis  

Anisotropic  (non)linear  

Material  Model  

Copyright©  e-­Xstream  engineering,  2013  

UD

Woven

                 Draping                        Warp/weft  angles  

Structural  Engineering  Structures  

Page 60: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Summary  

   

Copyright©  e-­Xstream  engineering,  2013   60  

Aerospace  Industry  Multi-­Scale  Modeling  of  Composite  Materials  &  Structures  

Page 61: WS_2013_04_Advanced_Materials_Aerospace.pdf

Copyright©  e-­Xstream  engineering,  2013   61  

 Summary    Materials  

 

In-­depth  study  of  a  broad  range  of  materials  &  performances  SFRP,  UD  &  woven  composites,  hard  metals,  ceramics,  nano  composites  Complex  RVEs    micro  stresses  &  strains  (Thermo-­)Mechanical,  thermal  &  electrical  conductivity  

 

From  Materials  to  Structure    

Material  property  evaluation  Screening  /  Selection  /  Specification  /  Allowables  

 

Structures  Influence  of  processing  on  final  performance  Injection  molding  Draping  Fiber  placement  ...  

   

Aerospace  Industry  Multi-­Scale  Modeling  of  Composite  Materials  &  Structures  

Page 62: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Digimat  4.4.1   New  Release  

     

Soon  available  on  e-­Xstream  FTP!      (see  separate  email  announcement)  

 

   

Copyright©  e-­Xstream  engineering,  2013   62  

Licensing  sales.admin@e-­Xstream.com  

 

Support  support@e-­Xstream.com  

Training  bernard.alsteens@e-­Xstream.com  

 

Software  jan.seyfarth@e-­Xstream.com  

Aerospace  Industry  Multi-­Scale  Modeling  of  Composite  Materials  &  Structures  

Page 63: WS_2013_04_Advanced_Materials_Aerospace.pdf

 Thanks  a  lot  for  your  attention!      

   

Copyright©  e-­Xstream  engineering,  2013   63  

Aerospace  Industry  Multi-­Scale  Modeling  of  Composite  Materials  &  Structures