10
Dan Young and Dawn Meredith 11/2014 page 1/10 Worksheet on water flow in a pipe 1. As we start this worksheet, it’s important to remind ourselves of the differences between liquids (like water) and gases. a. Compressibility: i. Water is [choose one] more/equally/less compressible than air. ii. Do you have everyday experiences of the compressibility of gas or water? If so, what are they? iii. Let’s put some numbers to compressibility. Consider two “blocks” of water with the same number of molecules, one at the top of a lake at atmospheric pressure (about 10 5 Pa) and one 10 meters down in the lake (about 2 x 10 5 Pa). The percent change in volume is given by the following relationship: = Δ = 2 10 ! (the number 2 x 10 9 Pa tells us how hard it is to compress). What is the fractional change in the volume of water? Is this big enough to notice by eye? iv. Now let’s compare that to air. Imagine a “block” of air, one with P= 10 5 Pa and the other with P= 2.0x10 5 Pa. If the number of molecules and the temperature is the same, what is the ratio of V1 to V2? Is this difference big enough to notice by eye?

Worksheet on water flow in a pipe

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Worksheet on water flow in a pipe

 

   Dan Young and Dawn Meredith 11/2014 page 1/10    

Worksheet on water flow in a pipe  

1. As  we  start  this  worksheet,  it’s  important  to  remind  ourselves  of  the  differences  between  liquids  (like  water)  and  gases.      

a. Compressibility:      i. Water  is  [choose  one]  more/equally/less  compressible  than  air.      ii. Do  you  have  everyday  experiences  of  the  compressibility  of  gas  or  

water?    If  so,  what  are  they?    

   

   

iii. Let’s  put  some  numbers  to  compressibility.    Consider  two  “blocks”  of  water  with  the  same  number  of  molecules,  one  at  the  top  of  a  lake  at  atmospheric  pressure  (about  105Pa)  and  one  10  meters  down  in  the  lake  (about  2  x  105Pa).    The  percent  change  in  volume  is  given  by  the  following  relationship:    

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙  𝑐ℎ𝑎𝑛𝑔𝑒  𝑖𝑛  𝑉𝑜𝑙𝑢𝑚𝑒 =Δ𝑉𝑉 =

𝑐ℎ𝑎𝑛𝑔𝑒  𝑖𝑛  𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒2  𝑥  10!𝑃𝑎  

 (the  number  2  x  109Pa  tells  us  how  hard  it  is  to  compress).    What  is  the  fractional  change  in  the  volume  of  water?    Is  this  big  enough  to  notice  by  eye?        

   

 iv.  Now  let’s  compare  that  to  air.    Imagine  a  “block”  of  air,  one  with  P=  

105Pa  and  the  other  with  P=  2.0x105Pa.      If  the  number  of  molecules  and  the  temperature  is  the  same,  what  is  the  ratio  of  V1  to  V2?    Is  this  difference  big  enough  to  notice  by  eye?  

   

             

Page 2: Worksheet on water flow in a pipe

 

Page 2/10 Worksheet on water flow in a pipe

 v. Given  your  answers  to  the  last  problem,  comment  on  whether  

each  of  the  following  statements  is  true  or  false,  and  how  you  know.        1. PV=nRT  describes  water  as  well  as  gases.  

             

2. The  volume  of  water  really  does  not  change  much  under  normal  conditions,  so  we  can  consider  it  essentially  incompressible.  

     

   

 3. Water  is  more  like  wood  than  air  as  far  as  compressibility  

goes  –  it  can  exert  a  large  force  (=pressure*area)  without  looking  like  it’s  doing  anything.    

               

2. Thinking  about  liquid  motion  in  a  pipe  that  has  a  changing  cross  section.  a. What  happens  to  the  velocity  of  the  water  when  you  put  your  finger  

over  the  end  of  a  water  hose,  closing  off  some  of  the  nozzle?          

             

Page 3: Worksheet on water flow in a pipe

 

Page 3/10 Worksheet on water flow in a pipe

b. Now  we  want  to  build  on  these  experiences  and  make  them  quantitative.      The  sketch  below  shows  a  cross  section  of  a  pipe  with  varying  cross  section.    Assume  that  the  pipe  width  (coming  out  of  the  page)  is  the  same  all  along  the  pipe,  and  is  one  block  wide.    Water  totally  fills  the  pipe,  and  is  moving  to  the  right.    (Idea  adapted  from  Knight’s  “Physics  for  Scientists  and  Engineers”)      

         

 Six  blocks  of  water  pass  by  plane  A  in  one  second.  (Shade  in  the  blocks)  

 i. How  many  blocks  must  pass  by  plane  B  in  one  second  assuming  that  water  is  incompressible?  (Shade  in  the  blocks)  

     

ii. How  many  blocks  must  pass  by  plane  C  in  one  second?  (Shade  in  the  blocks)  

     iii. Explain  your  reasoning.  

           

A   B   C  

Page 4: Worksheet on water flow in a pipe

 

Page 4/10 Worksheet on water flow in a pipe

   

c. If  the  velocity  of  the  fluid  at  plane  A  is  2cm/s,  what  is  the  velocity  at  plane  B?    At  plane  C?    Hint:    use  velocity  =  Δx/Δt  and  the  information  on  the  previous  page.  

         

d. In  describing  fluid  flow,  the  flow  rate  Q  (volume/s  =  cm3/s)  moving  past  a  plane  is  an  important  parameter  of  the  system.      What  is  the  flow  rate  past  plane  A  if  each  block  is  1  cm3?    Calculate  Q  in  two  ways  –  both  as  volume/s  and  cross  sectional  area*velocity.      

         

e. What  is  the  value  of  Q  at  plane  B  (calculated  in  two  ways)?      

     

f. What  is  the  value  of  Q  at  plane  C  (calculated  in  two  ways)?                

g. Are  your  previous  three  answers  consistent  with  the  following  equation:  

𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛  𝑄 = 𝑓𝑙𝑜𝑤  𝑟𝑎𝑡𝑒 = 𝐴𝑟𝑒𝑎 ∗ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

   If  not,  what  evidence  or  experience  says  it  should  not  be  constant?  

             

Page 5: Worksheet on water flow in a pipe

 

Page 5/10 Worksheet on water flow in a pipe

 h. Consider  water  flowing  at  3m/s  in  a  large  pipe.  This  large  pipe  splits  into  two  

smaller  pipes,  each  with  half  of  the  cross  sectional  area  of  the  first  pipe.      In  using  the  continuity  equation  to  find  the  velocity  in  b,  should  we  consider  the  cross  sectional  area  in  pipe  b  alone,  or  the  total  cross  sectional  area  in  b  and  c,  or  something  else?  Explain  your  reasoning  

           i. What  is  the  velocity  in  each  of  the  smaller  pipes?                  j. Consider  water  flowing  at  3m/s  in  a  large  pipe.  If  this  large  pipe  splits  into  eight  

smaller  pipes,  each  with  one  quarter  of  the  cross  sectional  area  of  the  first  pipe,  what  is  the  velocity  in  each  of  the  smaller  pipes?    Explain  how  you  know.                  

k. Let’s  apply  these  ideas  to  blood  flow.    We  want  blood  to  flow  fairly  quickly  in  the  aorta  over  the  long  distance  from  your  heart  to  the  individual  cells,  but  once  the  blood  is  in  the  capillaries  and  needs  to  exchange  nutrients,  oxygen  and  carbon  dioxide  with  the  cells,  the  blood  needs  to  move  slowly  to  allow  the  diffusion  of  these  molecules.    Given  this,  is  the  total  cross  section  of  ALL  the  capillaries  greater  than,  about  equal  to,  or  less  than  the  cross  section  of  the  aorta?  

             

a  

b  

c  

Page 6: Worksheet on water flow in a pipe

 

Page 6/10 Worksheet on water flow in a pipe

3. The  last  question  focused  on  why  the  velocity  must  change  if  the  pipe  cross  section  changes.  In  this  question  we  will  think  about  how  the  velocity  changes  in  a  pipe  of  varying  cross  section.    On  the  next  page  you  will  see  a  sketch  of  the  cross  section  of  the  pipe  filled  with  water  and  flowing  right,  as  well  as  several  sets  of  axes.    For  this  simple  situation,  we  will  assume  there  is  no  friction  or  viscosity  in  the  pipe.    

a. Pressure  will  be  important  to  this  discussion  of  how  the  velocity  changes,  so  let’s  begin  with  a  quick  review  of  pressure.        

i. Considering  yourself  submerged  in  a  swimming  pool,  where  was  the  pressure  exerted  on  you?  (e.g.  just  on  the  top  of  your  head?  Just  on  your  sides?  All  over?)  

ii. What  object  exerts  this  pressure?    

       

b. Now  let’s  return  to  velocity.    Using  what  you  learned  in  the  last  question  about  velocity,  qualitatively  sketch  the  velocity  along  the  pipe  (see  the  axes  ahead  2  pages)..  (Don’t  worry  about  numbers,  just  note  if  velocity  increases,  decreases  or  stays  the  same.)    

c. Using  the  definition  of  acceleration,  and  your  velocity  plots,  sketch  the  acceleration  along  the  pipe.  (Don’t  worry  about  numbers,  just  note  if  acceleration  is  positive,  negative  or  zero.)  

 d. Is  it  pressure  or  pressure  gradients  that  cause  acceleration?    Use  the  

example  of  water  moving  up  a  straw  to  justify  your  answer.    

       

Page 7: Worksheet on water flow in a pipe

 

Page 7/10 Worksheet on water flow in a pipe

   

e. Given  your  last  few  answers,  fill  in  the  following  table  that  asks  you  about  pressure  gradient  between  the  points  labeled  on  the  horizontal  axis.  

 Pressure  gradient  (subscript  refers  to  position  label)  

Circle  correct  answer  for  sign  of  pressure  gradient    

P1-­‐P2   Positive/zero/negative  

P4-­‐P5   Positive/zero/negative  

P5-­‐P6   Positive/zero/negative  

P6-­‐P7   Positive/zero/negative  

P7-­‐P8   Positive/zero/negative  

P9-­‐P10   Positive/zero/negative  

P10-­‐P11   Positive/zero/negative  

P11-­‐P12   Positive/zero/negative  

P13-­‐P14   Positive/zero/negative  

       

f. Use  the  information  about  pressure  gradients  in  your  table,  and  the  given  initial  P0  on  the  plot  (the  big  black  dot)  to  sketch  the  pressure  in  the  pipe.    (Don’t  worry  about  numbers,  just  note  if  pressure  increases,  decreases  or  stays  the  same.)  

   

g. Summarize  your  findings:  Pressure  is  the  largest  in  a  pipe  of  moving  liquid  when  the  cross  sectional  area  is  the  [choose  one]  largest/smallest.      

   

   

Page 8: Worksheet on water flow in a pipe

 

Page 8/10 Worksheet on water flow in a pipe

   velocity  

acceleration  

Pressure  

Pipe  

0  

0  

0  

1   2   3   4   5   6   15  14  13  12  11  10  9  8  7  

Page 9: Worksheet on water flow in a pipe

 

Page 9/10 Worksheet on water flow in a pipe

   

 4. In  this  last  section,  we  want  to  check  if  the  results  in  the  previous  section  are  

consistent  with  other  ideas  we  have  seen  before.    a. Bernoulli’s  equation  (which  you  will  see  in  lecture)  given  below  

describes  changes  in  pressure  and  velocity.    (The  version  we  give  here  is  accurate  only  if  the  pipe  is  horizontal.)  

𝑃! +  12𝜌!𝑣!

! = 𝑃! +  12𝜌!𝑣!

!    

Here  P  is  the  pressure,  ρ  (rho)  is  the  density  of  the  fluid  and  v  is  the  velocity  of  the  fluid.    The  subscripts  one  and  two  indicate  these  values  at  two  different  locations  in  the  pipe.    In  this  question  we  will  verify  that  this  equation  agrees  with  what  you  already  determined  qualitatively.  

      Given  Bernoulli’s  equation  above,  if  v1  increases,  what  happens  to  P1  

in  order  to  keep  the  left  side  of  the  equation  constant?      

       

Does  this  agree  with  what  you  have  on  your  sketches?            Note  that  if  we  rewrite  Bernoulli’s  equation,  it  says  that  the  work  done  by  the  pressure  gradient  changes  the  kinetic  energy  of  the  water.    This  means  that  Bernoulli’s  equation  can  be  looked  at  from  the  energy  point  of  view  as  well  as  the  forces  point  of  view.    

𝑊𝑜𝑟𝑘  𝑑𝑜𝑛𝑒  𝑏𝑦  𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒  𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 =  𝑃! − 𝑃!    =  12𝜌!𝑣!

! −12𝜌!𝑣!

!    

       

Page 10: Worksheet on water flow in a pipe

 

Page 10/10 Worksheet on water flow in a pipe

   

a. Another  student  says,  “Using  PV=nRT,  the  pressure  should  be  lower  in  regions  with  larger  volume,  assuming  that  temperature  and  number  of  molecules  are  constant,  because  the  water  has  more  room  to  spread  out.”    Is  this  consistent  with  what  you  found?    If  not,  what  is  the  flaw  in  their  argument?  

               

b. A  fellow  student  says  “The  pressure  must  be  larger  in  regions  of  smaller  pipe  radius  because  pressure  is  force/area.    Since  force  is  the  same,  and  area  is  smaller,  the  pressure  must  be  bigger.”    Is  this  consistent  with  what  you  found?    If  not,  what  is  the  flaw  in  their  argument?    Hint:    can  we  accurately  compare  the  force  exerted  by  two  different  blocks  of  water  just  by  looking  at  the  water?      (This  one  is  tough!    Spend  no  more  than  five  minutes  here,  and  at  least  write  down  a  few  ideas  even  if  you  don’t  feel  you  have  a  complete  answer.)  

             

   5. Putting  it  altogether.    Look  back  over  this  worksheet  and  summarize  the  big  

ideas  you  have  been  exploring.    Write  this  summary  for  an  imaginary  classmate  who  missed  lab  this  week.