30
Working Paper on Comparison of Performance over IPv6 versus IPv4 By Arthur Berger Akamai Technologies Abstract As IPv4 address space gets tighter, there is increasing pressure to deploy IPv6. The Internet Assigned Number Authority (IANA) allocated the last of the available /8’s of the v4 address space to the Regional Internet Registries (RIR’s) on February 3, 2011. Currently, the RIR’s are restricting allocations to cover only about 3 months of growth. A market for legacy v4 address has begun: In March, 2011, as part of Nortel's bankruptcy, Microsoft bought 667,000 legacy v4 addresses for $11/address. Since the transition to IPv6 will be slow, there will be a long period where many end‐points will be dual stack. Thus, the ability to pick the better performing path over v4 versus v6 will be a valuable feature. We have done a performance comparison of v4 versus v6 latency and loss, with results by continent, and by tunneled versus native v6 addresses. Although overall performance is better over v4, it is not always so; for example 10% of the time the latency between the U.S. and Europe is shorter over v6 by at least 10 ms, and to Asia is shorter by at least 38 ms. Latency and loss over v6 is in general higher to tunneled v6 destinations, as compared with native. Somewhat surprisingly, the latency and loss over _v4_ is also higher to nameservers whose v6 interface is tunneled, as compared with nameservers whose v6 interface is native. We conjecture that nameservers with a tunneled v6 interface are more likely to be in smaller networks, lower down in the hierarchy. Thus, the common observation that v6 latency is higher over tunnels is not due exclusively to the poorer v6 architecture of tunnels, but also is partially due to other factors, such as the topological location.

Working Paper on Comparison of Performance over IPv6 versus

Embed Size (px)

Citation preview

Page 1: Working Paper on Comparison of Performance over IPv6 versus

Working Paper on

Comparison of Performance over IPv6 versus IPv4

By

Arthur Berger

Akamai Technologies

AbstractAsIPv4addressspacegetstighter,thereisincreasingpressuretodeployIPv6.TheInternetAssignedNumberAuthority(IANA)allocatedthelastoftheavailable/8’softhev4addressspacetotheRegionalInternetRegistries(RIR’s)onFebruary3,2011.Currently,theRIR’sarerestrictingallocationstocoveronlyabout3monthsofgrowth.Amarketforlegacyv4addresshasbegun:InMarch,2011,aspartofNortel'sbankruptcy,Microsoftbought667,000legacyv4addressesfor$11/address.SincethetransitiontoIPv6willbeslow,therewillbealongperiodwheremanyend‐pointswillbedualstack.Thus,theabilitytopickthebetterperformingpathoverv4versusv6willbeavaluablefeature.Wehavedoneaperformancecomparisonofv4versusv6latencyandloss,withresultsbycontinent,andbytunneledversusnativev6addresses.Althoughoverallperformanceisbetteroverv4,itisnotalwaysso;forexample10%ofthetimethelatencybetweentheU.S.andEuropeisshorteroverv6byatleast10ms,andtoAsiaisshorterbyatleast38ms.Latencyandlossoverv6isingeneralhighertotunneledv6destinations,ascomparedwithnative.Somewhatsurprisingly,thelatencyandlossover_v4_isalsohighertonameserverswhosev6interfaceistunneled,ascomparedwithnameserverswhosev6interfaceisnative.Weconjecturethatnameserverswithatunneledv6interfacearemorelikelytobeinsmallernetworks,lowerdowninthehierarchy.Thus,thecommonobservationthatv6latencyishigherovertunnelsisnotdueexclusivelytothepoorerv6architectureoftunnels,butalsoispartiallyduetootherfactors,suchasthetopologicallocation.

Page 2: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page2of30 March29,2011

TableofContents1 Dataset ....................................................................................................................................................3

2 SummaryStatsbyGeoRegion......................................................................................................33 ComparisonofV6andV4Latency:Distributions ...............................................................6

4 ComparisonAcrossTime................................................................................................................9

4.1 ApriltoDecember,2010.........................................................................................................94.2 July12through14,2010..................................................................................................... 15

5 RelatedWork..................................................................................................................................... 21

6 References .......................................................................................................................................... 227 AppendixA.DistributionofPacketLoss ............................................................................... 23

8 AppendixB.AdditionalLatencyDistributions .................................................................. 27

Page 3: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page3of30 March29,2011

PerformanceComparisonofv6versusv4

1 DatasetPingsweresentto6,864globallydistributeddual‐stacknameserversfromthreelocationsintheU.S.:Dallas,TX;SanJose,CA;andReston,VA.ThepresentreportconsidersmeasurementsfortheperiodfromApril12,2010throughDecember19,2010.Forthisperiod,wehave44millionmeasurementson9,223distincttimeepochs.

Therearetimeperiodswherenomeasurementswerecollected,mostnotablyApril24to25,June25toJuly1,August11to24,andOctober27toNovember8.

For2,085ofthe6,864nameservers,theIPv6interfaceisa6to4tunnel(address2002::/16)and33areaTeredotunnel(address2001:0::/32),wherethesearethetwomostpopulartunnelingmethodologiescurrentlyinuse.Wehavepartitionedsomeoftheresultsbelowinto"tunneled"and"native"basedontheIPv6addressofthenameservers.Caution:itispossiblethatapathtoa"native"nameserverdoescontainatunnel.

2 SummaryStatsbyGeoRegionIntermsofthesummarystatistics,Table1showsthesummarystatisticsofmedian,mean,andninety‐fifthpercentileoflatencyoverv4andoverv6,conditionedonthegeographicregionofthenameserverandwhetherthev6interfaceofthenameserverisnative,tunneled,oreither.Afirstobservationisthatintermsofthesesummarystatistics,thelatencyislessoverv4thanv6.Forexample,fordestinationsintheNorthAmerica,themeanlatencyis55msoverv4butsubstantiallyhigher,101ms,overv6.

Asecondobservationisthat,exceptforSouthAmerica,thelatencyishighertodestinationswherethev6interfaceistunneled,asopposedtonative,andthispertainsforboththev6andv4path.Forexample,fordestinationsinAsiawherethev6interfaceisnative,themeanlatencyoverv6was212ms.Forv6interfacesthataretunneled,themeanlatencyoverv6wassignificantlyhigherat317ms.Andalsooverv4,themeanlatencyisagainhighertodestinationswherethev6interfaceistunneled,205msversus245ms.Thatthelatencyoverv6ishighertotunneleddestinationsisconsistentwithcommonexpectations;however,itissomewhatasurprisethatthelatencyoverv4isalsohigher.Howcouldthev6interfaceaffectthelatencyoverthev4path?Admittedlythesetofnameserversaredistinct;thatis,wearecomparingv4latencytoonesetofdestinations,thosewhosev6interfaceistunneled,withthev4latencytoanotherset,albeitinthesamegeographicregion.However,thisalonedoesnotimplyanyintrinsicbiasandthusdoesnotexplainwhythelatency(intermsofthe

Page 4: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page4of30 March29,2011

summarystatistics)isconsistentlyhighertooneofthetwosets.Also,thenumberofdestinationsineachsetisreasonablylarge,2,085and4,779,andthecauseisnotduetoafewoutliers,astheaffectalsopertainsforthemedianand95percentile.AlthoughIdonothavethedefinitiveexplanation,aplausibleexplanationisthatthenameserverswithatunneledv6interfacearemorelikelytobeinsmallernetworks,lesswell‐connectednetworks,lowerdowninthehierarchy.Supportingthisexplanationwehaveestimatesofv4loadfromthenameservers,asseenbyAkamai,andtheloadfromthenameserverswithtunneledv6interfacesoverallisindeedlower.

Latency[ms]Median Mean 95thpercentile

Geo‐Region

SetofNameserversbasedonv6interface v4 v6 v4 v6 v4 v6

native 47 86 52 95 101 172all 49 92 55 101 108 192

NorthAmerica

tunneled 53 101 61 114 119 216

native 151 162 154 163 218 231all 154 166 158 168 224 240

Europe

tunneled 167 182 172 188 252 273

native 184 198 205 212 359 331all 196 215 216 240 367 388

Asia

tunneled 229 313 245 317 378 469

native 183 198 188 208 272 345all 176 217 186 235 306 392

SouthAmerica

tunneled 172 233 186 246 330 404

native 344 357 337 350 438 454all 348 368 356 379 481 529

Africa

tunneled 355 393 377 415 557 697

native 208 216 211 232 293 317all 210 227 216 244 298 384

Australia

tunneled 225 275 235 288 329 401Table1

Regardlessofthecorrectexplanation,Table1showsthatthecommonobservationthatv6latencyishigherovertunnels,ascomparedwithnative,isnotdueexclusivelytothepoorerv6architectureoftunnels,butalsoispartiallyduetootherfactors,inparticularassuggestedabove,thetopologicallocation.

Page 5: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page5of30 March29,2011

Insubsequentresultswherewesplitoutthev6measurementsbasedontunneledornative,wedolikewiseforv4,whichyieldsaperspectiveon"thehigherv6latencyovertunnels"thatisduetothetunnels.Athirdobservationisthattheextentv4isbetterthanv6(inthesenseoflowerlatency)ismoresubstantialfordestinationswithv6tunnels.Forexample,fordestinationsinAsia,thereductioninthemedianlatencyis84ms(229minus313)giventunneleddestinations,andisonly14ms(184minus198)givennativedestinations.ThisaffectismorenoticeableforAsia,SouthAmerica,Africa,andAustralia,thanforNorthAmericaandEurope,thoughitisstillpresent.ThefollowingTable2providesthesummarystatisticsonpacketloss.Themedianvaluesareomittedfromthetableastheywereall0,exceptforv6pathstotunneledinterfacesinAfrica,wherethemedianwas0.3%.Observations:

PercentPacketLoss[0,100]Mean 95thpercentile

Geo‐Region

SetofNameserversbasedonv6interface v4 v6 v4 v6native 0.4 2.1 0.5 6.6all 0.6 3.2 1.2 23.2

NorthAmerica

tunneled 1.0 5.2 3.2 32.4

native 0.5 0.7 1.3 2.0all 0.7 1.8 2.2 10.3

Europe

tunneled 1.4 6.0 6.5 31.8

native 3.0 1.2 20.8 6.3all 2.8 2.7 19.0 18.6

Asia

tunneled 2.2 6.9 11.4 34.8

native 0.8 1.0 4.8 4.7all 1.7 4.4 8.6 27.9

SouthAmerica

tunneled 2.1 5.7 9.8 31.6

native 2.0 4.8 9.5 32.8all 2.8 6.7 12.4 40.0

Africa

tunneld 3.9 9.0 19.1 43.4

native 0.4 1.0 1.6 5.0all 0.6 2.0 2.9 11.5

Australia

tunneled 1.4 5.6 7.8 31.3Table2

Thepacketlossoverv4islessthanoverv6,exceptfordestinationsinAsia,whereinterestinglythelossishigheroverv4tothosenameserverswithanativev6interface.

Page 6: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page6of30 March29,2011

The95thpercentileofpacketlossisquitehighatthev6tunneledinterfaces.Thepacketlosstothev4interfaceislowertothesetofnameserverswhosev6interfaceisnative,asopposedtothesetofnameserverswhosev6interfaceistunneled,exceptagainforAsia.Thisisconsistentwiththeheuristicexplanationabovethatnameserverswithtunneledinterfacestendtobeinnetworksthataresmaller,furtherdowninthehierarchy.AppendixAcontainsplotsofthecomplementarydistributionfunctionsofpacketloss.Theseplotsemphasizethepointsabove.

3 ComparisonofV6andV4Latency:DistributionsThefollowingtwoplotsshowthedistributionofthedifference:IPv6latencyminusIPv4latency,partitionedbygeoregion.Positivevaluesonthex‐axiscorrespondtov6latencybeinggreaterthanv4.Therangeonthex‐axiswaschosensoastohighlightmostoftheaction,althoughitcuts‐offeachendofthedistributions.Ifthefullrangewereshown,thedistributionswouldgofrom0to1.Forexample,considerthefirstplotandthedistributiongivendestinationsinEurope.Atthezeropointonthex‐axis,thedistributionis0.29.Thus,for29%ofthemeasurementsthelatencyoverv6waslessthanorequaltothatoverv4.Likewisefor71%ofthemeasurements,thelatencyoverv6wasgreater.Lookingatthe‐10msonthex‐axis,wefindthatfor11%ofthemeasurements,thelatencyofv6wassmaller(better)byatleast10ms.Consideringtheticksat‐10msand10ms,for48%(59%minus11%)ofthemeasurements,thelatencyoverv6waswithin10msofthatoverv4.Ifonedidn'tcareaboutlatencydifferenceswithin10ms,thenforabouthalfofthetime,onewouldbeindifferent(consideringonlythisfactor)betweenthetwoprotocols.Asfirst‐ordersummary,theplotsshowthatmoreoftenthelatencyisgreateroverv6.However,therewillbegivenclientsforwhichthisisnotthecase.Inthecontextofoptimizingperformance,onewouldideallyliketobeabletodistinguishwhichwouldbebetter.

Figure1.Distributionofdifferenceinv6versusv4latencies

Page 7: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page7of30 March29,2011

Page 8: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page8of30 March29,2011

Thefollowingtwoplotsprovideanotherviewpointonthesamedatabyconsideringtheratioofv6latencydividedbyv4latencyandwherethex‐axisisonalogscale.

Figure2.Distributionofratiooflatencies

Page 9: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page9of30 March29,2011

AppendixBcontainsanalogousplots,exceptpartitionedbytunneledversusnative.

4 ComparisonAcrossTimeThissectioncomparesv4versusv6latencyandloss,viewedacrosstime.

4.1 ApriltoDecember,2010InthefollowingFigure3,eachplottedpointisthemeanovera24‐hourperiod.(Recallthattherearegapsinthemeasurementdataasisevidentintheplots.)Therearesixplotsoflatency,oneforeachgeographicarea,followedbysixplotsofpacketloss.Notethattherangeonthey‐axisvariesfromplottoplot.Themostobviousfeatureofthelatencyplotsistheclearvariationacrosstime.Aseachpointistheaverageover24hours,thevariationinlatencyisonlongertimescalesthandailyvariation(whichisconsideredinthenextsection).Sometimeshigherlatencycanpersistformonths,asforexampleoverv6totunneleddestinations(thegreenline)inNorthAmerica,AsiaandSouthAmerica.Also,allofthegeographicregionshavespikesinlatency.Notethatsometimesthevariationisstronglycorrelatedacrossthefourcases,asforEurope,andsometimesnot,asforNorthAmerica.Theseobservationssuggestthatamoredetailedstudycouldmake

Page 10: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page10of30 March29,2011

inferencesastowherecongestionwasoccurring.ThiscouldbepossiblefutureworkfortheIPv6project.Considernowthedifferenceinlatencyacrossthefourcaseswithineachgeographicregion.Ineachgeographicregion,thehighestlatencyisonthev6pathtotunneleddestinations,whichisconsistentwiththesummarystatisticsinSection2.Likewise,thelowestlatencyisonthev4pathtodestinationswhosev6interfaceisnative,exceptforSouthAmerica.Considerthedifferencebetweenthegreenandbluelines,i.e.thelatencyoverv6totunneledversusnativedestinations.Someofthedifferenceisduetothewell‐knownpoorerarchitectureofv6tunnelsand,some,assuggestedinSection2,islikelyduethetunneleddestinationsbeinginnetworksthataresmaller,furtherdowninthehierarchy(callthissecondfactor“inferiortopology”).Asaroughestimateofthissecondfactor,wecanusethedifferencebetweenthev4latencytodestinationswhosev6interfacesaretunneledversusnative,i.e.thedifferencebetweentheyellowandredlinesintheplots.Forexample,inNorthAmerica,thespacebetweentheyellowandredlinesisfairlysmallandsoisthespacebetweentheblueandyellowlinesuntilroughlyOct.1.Thesubsequentjumpinthegreenlineisprobablyduetosomethingregardingthetunnels,asopposedtotheinferiortopology,astheyellowlineremainsrelativelyflat.Itisworthemphasizingthatthedifferencebetweentheyellowandredlinesisjustaroughestimateofthe“inferiortopology”factor:forexample,intheNorth‐Americaplottherearepointswherethedifferencebetweentheyellowandredlinesisgreaterthanthatbetweenthegreenandblue,andthusmakesnosensetobeviewedasapieceofthelatter.IntheEuropeplot,thespacebetweentheyellowandredlinesisaboutequaltothatbetweenthegreenandbluethussuggestingthepoorerperformancewithv6tunnels,versusnative,isduetotheinferiortopology.Noticealsothatthefourlinesarequiteinsyncwitheachother,whichsuggeststhatthevariationinlatencyisduetocongestiononfacilitiesthataresharedbyallfourcases,suchastrans‐oceanicopticalcables.Theremaininggeographicregionscanbeviewedwiththeabovecommentsinmind.Inaddition,notethatintheAsiaplot,theredlineissignificantlymorevariablethantheyellow(thoughisstilllower).Ihaven’tthoughtofalikelyexplanationthoughafurtherexaminationofthedatamightbeilluminating.NoticealsothatinAsiathebluelineissometimesbelowthered‐thelatencyoverv6,tonativedestinations,issometimesfasterthanoverv4.ThisisexaminedmorethoroughlyinAppendixB.InSouthAmerica,theredandyellowlinesroughlyoverlap,and,asreportedinTable1ofSection2,thev4latencytodestinationswhosev6interfaceisnativeisactuallyabithigherthantodestinationswhosev6interfaceistunneled.Thus,thisdatadoesnotsupportthesuppositionof“inferiortopology”fortunneledinterfacesforSouthAmerica.

Page 11: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page11of30 March29,2011

Figure3.TimeHistoryofLatency,April–Dec.,2010

Page 12: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page12of30 March29,2011

Page 13: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page13of30 March29,2011

Thefollowingaretheanalogoussixplotsforpacketloss.Notethattherangeonthey‐axisvaries.Themoststrikingfeatureisthatthereareperiodsofhighloss.FromSeptemberthroughDecember,thereishighv6losstotunneleddestinationsinallgeographicregions.Allthreeoriginregionshadhighloss.Thusthecausewasbroadenoughtoaffectmultipleorigins.Apossibleexplanationisthatforallthreeorigins,theroutetotheanycast6to4address,2002::/16,ledtorelaysthatwereoverloaded,andthatthisconditionpersisted.AnycastroutingisbasedonBGP,whichdoesnotadapttocongestion.Assuch,anetworkoperatorwouldneedtointerveneandchangepolicy.AlsonotethatduringJuneandJuly,therewashighv6losstonativedestinationsinoneofthegeographicregions:NorthAmerica.Inthiscase,justoneofthreeoriginregionshadthehighloss,thusthecausewaslocalized.Notethatthelosstooverv4andoverv6todestinationswithv6tunneledinterfaces(yellowandgreenlines)ishigherthantodestinationswithv6nativeinterfaces,exceptforAsiawherethereversepertainsforperiodsforv4.(ThisisconsistentwithTable1inSection2.)Idon’thaveanexplanationforthisexceptioninAsia.

Figure4.TimeHistoryofPacketLoss,April–Dec.,2010

Page 14: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page14of30 March29,2011

Page 15: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page15of30 March29,2011

4.2 July12through14,2010Togetasenseofanhour‐of‐daypattern,ifany,weplotathree‐dayperiodinJuly.Eachplottedpointisthemeanoveraone‐hourperiod.Againtherearesixplotsoflatency,followedbysixplotsofpacketloss.Therangeonthey‐axisvariesfromplottoplot.Dailyvariationinlatencyandlossistypicallyduehigherloadsandthusincreasedcongestionduringthebusyperiodoftheday.Relativelyconstantlatencyandlossoverthecourseofthedaytypicallyisindicativeofeitherconstant(lightorheavy)load,orvariableloadthathoweverremainslight.ThelatencyplotforSouthAmericashowsstrongdailyvariationforallfourcases,indicatingcongestiononthepathsbetweenthereandtheUS.Fordestinationsin

Page 16: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page16of30 March29,2011

Europe,thedailyvariationinlatencyisalsoevident,thoughlessextreme.ForNorthAmericathedailyvariationisaslight,ifany.ForAustralia,noneisapparent.ThelatencyplotforAsiaismorecurious:thereisstrongdailyvariationforthreeofthefourcases,butthelatencyisratherconstantfortrafficoverv6tonativedestinations.Possiblytheroutesfromthethreeoriginstothenativev6addressesinAsiaareonanuncongestedtrans‐oceanicchannelthoughIwouldbesurprisedifafiberchannelwerereservedforv6traffic,butmaybeitis.(Theroutestothetunneledv6addressesmostlikelygoviaanycast6to4relaysintheU.S.,inwhichcasethetrans‐oceanichopinalllikelihoodisoverv4.)ThelatencyplotforAfricainonesenseisthereverseofAsia’s–threeofthecaseshavelittletonodailyvariation,andonedoes:v6totunneleddestinations.Apossibilityisthatatthefar‐endofthetunnel,thev6networksareresourceconstrained.(Althoughlatencyoverv4todestinationswithnativev6interfacesisalsovariable,theredline,thevariabilityisnotsomuchinadailypattern.)Ifthereisinterest,futureworkcouldinvestigatetheaboveconjecturesandingeneralinvestigatethecausesforvariousbehaviordisplayedintheseplots.Asafinalnote:whenIexaminedotherthree‐dayintervals,Iwouldsometimesseethesamepatternsashereandsometimesseedifferentones.Whatpertainedforonethree‐dayintervalneednotpertainmonthslater.

Figure5.TimeHistoryofLatency,July12­14,2010

Page 17: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page17of30 March29,2011

Page 18: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page18of30 March29,2011

Thefollowingarethecorrespondingplotsforpacketloss.Notethattherangeonthey‐axisvariesfromplottoplotAswithlatency,SouthAmericahasveryevidentdailyvariationinloss.Againaswithlatency,adailyvariationinlossisalsoevidentforEurope,thoughmoremodest.NorthAmericahasnoevidentdailyvariation;also,asdiscussedaboveinSection4.1,therelativelyhighv6losstonativedestinationsinNorthAmericaisduetojustoneofthethreeorigins.Asiahasdailyvariationinlossforallfourcases,including,thoughmoremodest,v6probestonativev6,whoselatencyhadbeenflat.Africaisnotableforhighspikesinloss.

Page 19: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page19of30 March29,2011

Australia,whichhadnodailyvariationinlatency,hasnoticeablevariationinloss,thatsomewhatfollowsadailypattern.Asaroughsummary,thepresenceorabsenceofdailyvariationinlossmirrorsthatoflatency.

Figure6.TimeHistoryofPacketLoss,July12­14,2010

Page 20: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page20of30 March29,2011

Page 21: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page21of30 March29,2011

5 RelatedWorkHereisasampling,inreversechronologicalorder,ofstudiesthatcomparev4andv6performance.Narayanetal.[1]onatestbed,comparev4andv6onWindowsVistaandUbuntu.Theyfindthatv4hadslightlyhigherthroughput.v6hadsignificantlyhigherlatencyonUbuntu,ascomparedwithVista.Lawetal.[2]probefromalocationinHongKongto2,000dual‐stack,globalhosts.v6hadlowerhop‐countsandhigherRTTandhigherthroughput.RTTwas40%higherontunneledv6versusnativev6.Zhuoetal.[3]used26testboxesofRIPE,globallydistributed,thoughconcentratedinEurope,and600end‐to‐endpaths.TheyreportthatIPv6hashigherlossandlatency,mainlyduetotunneling.Siauetal.[4]inalarge‐scalenetworkenvironmentfindaminordegradationinthroughputofTCP,aslightlyhigherthroughputofUDP,alowerpacketlossrateandaslightlylongerroundtriptimeoverv6ascomparedwithv4.Zhouetal.[5]reportthatv6pathshadlargerdelayvariation,andlongerdelay.Fromabout1,000dual‐stackwebserversin44countries,Wangetal.[6]foundthatv6connectionstendtohavesmallerRTTs,butsufferhigherpacketloss.Theauthorsalsofindthattunneledpathsdonotshowanotabledegradedperformancecomparedwithnative.Choetal.[7]introducetechniquesforidentifyingIPv6networkproblemsatdual‐stacknodes.TheyfindthatIPv6networkqualitycanbeimprovedbyfixingalimitedamountoferroneoussettings.ARINandRIPEhavelinkstovariousmeasurementstudies,[8,9].

Page 22: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page22of30 March29,2011

6 References[1] S.Narayan,P.Shang&N.Fan,"PerformanceEvaluationofIPv4andIPv6on

WindowsVistaandLinuxUbuntu,"Inter.ConferenceonNetworksSecurity,WirelessCommunicationsandTrustedComputing,2009

[2] Y.N.Law,M.C.Lai,W.Tan&W.Lau,"EmpiricalperformanceofIPv6vs.IPv4underadual‐stackenvironment,"IEEEInter.ConferenceonCommunications,2008.

[3] X.Zhou,M.Jacobsson,H.Uijterwaal&P.Mieghem,"IPv6delayandlossperformanceevaluation,"Inter.J.ofCommunicationSystems,Vol.21,2008.

[4] W.L.Siau,Y.F.Li,H.C.Chao&P.Y.Hsu,"EvaluatingIPv6onalarge‐scalenetwork,"ComputerCommunications,Vol.29,No.16,2006.

[5] X.Zhou&P.Mieghem,"HopcountandE2EDelay:IPv6versusIPv4,"PassiveandActiveNetworkMeasurements,2005.

[6] Y.Wang,S.Ye&X.Li,"UnderstandingCurrentIPv6Performance:Ameasurementstudy,"IEEESymposiumonComputersandCommunications,2005.

[7] K.Cho,M.Luckie&B.Huffaker,"IdentifyingIPv6NetworkProblemsintheDual‐StackWorld,"ACMSIGCOMMWorkshoponNetworkTroubleshooting,2004.

[8] labs.ripe.net/Members/mirjam/content‐ipv6‐measurement‐compilation.

[9] www.getipv6.info/index.php/IPv6_Penetration_Survey_Results

Page 23: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page23of30 March29,2011

7 AppendixA.DistributionofPacketLossThefollowingplotsshowthecomplementarydistributionfunctionofpacketloss(a.k.a.thecomplementarycumulativedistributionfunction,i.e.1minusthecumulativedistributionfunction,i.e.theprobabilitytherandomvariableisgreaterthanagivenvalue).Thecomplementarydistributionfunctionisoftenusedwhentheinterestisinthetailbehavior.Thereisoneplotforeachofthesixgeographicareas.Notethatrangeonthey‐axisvaries.Tointerprettheseplots,considerthefirstone,forNorthAmerica,andtheredlinerepresentingv6packetlosstotunneledv6interfaces.Thepoint(5,0.2)ontheplotmeansthat20%ofthemeasurementshadpacketlossof5%ormore.TheseplotsemphasizetheobservationsmadeinSection2.Thehigherv6packetlosstotunneledinterfacesisclearlyevident.

Figure7.ComplementaryDistributionFunctionsofPacketLoss

Page 24: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page24of30 March29,2011

Page 25: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page25of30 March29,2011

Page 26: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page26of30 March29,2011

Page 27: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page27of30 March29,2011

8 AppendixB.AdditionalLatencyDistributionsThefollowingplotsareanalogoustothoseinSection3exceptinadditiontodisplayingthecaseofallthedestinationsinagivengeo‐region,alsoshownisthepartitionofdestinationsintonativeandtunneled.Therangeontheaxesisheldconstantacrosstheplots,andischosentohighlighttheportionwherethereisthemostaction.(Thedistributionsdoincreaseto1,ifthefullrangeonthex‐axiswereshown.)Notethatthedistributiongivennative(blueline)liesabovethatgiventunneled(redline).Thisimpliesthattheamountthattransportisbetteroverv4(inthesenseoflowerlatency)isgreaterfordestinationswithv6tunneledinterfacesthanfornative.Forexample,considerthe0.5valueonthey‐axis,themedian.ForNorthAmerica,50%ofthetimethev4latencyisatleast14msbetterthanv6fornativedestinations(blueline),andissignificantlymore,atleast40msbetterfortunneleddestinations(redline).ForSouthAmerica,thesetimesare7msand43ms.Foranotherviewpointonthesameconcept,considerSouthAmerica(andlookingat20msonthex‐axis,andtakingthecomplementofthey‐value),fordestinationswherev6istunneled(redline),thev4latencyisbetterbyatleast20ms68%ofthetime,whereasfordestinationswherev6isnative,thev4latencyisbetterbyatleast20msonly31%ofthetime.Lookingat‐20msonthex‐axis,v6isbetterbyatleast20ms14%ofthetimefornativeinterfacesandisbetterbyatleast20msnotasfrequently,5%ofthetime,fortunneledinterfaces.

Figure8.Distributionofdifferenceinlatencies,partitionedbyv6interface

Page 28: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page28of30 March29,2011

Page 29: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page29of30 March29,2011

Page 30: Working Paper on Comparison of Performance over IPv6 versus

ArthurBerger Page30of30 March29,2011