wk7b

Embed Size (px)

Citation preview

  • 7/29/2019 wk7b

    1/47

    Todays summary

    Multiple beam interferometers: Fabry-Perot resonators

    Stokes relationships

    Transmission and reflection coefficients for a dielectric slab Optical resonance

    Principles of lasers

    Coherence: spatial / temporal

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-1

  • 7/29/2019 wk7b

    2/47

    Fabry-Perot interferometers

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-2

  • 7/29/2019 wk7b

    3/47

    Relation between r, r and t, t

    a

    ar

    at

    air

    a

    at

    a

    r

    glass airglass

    Proof: algebraic from the Fresnel coefficients

    or using the property ofpreservation of thepreservation of the

    field properties upon time reversal12 =+

    =

    ttrrr

    field properties upon time reversal

    Stokes relationships

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-3

  • 7/29/2019 wk7b

    4/47

    Proof using time reversal

    a

    ar

    at

    air glass

    att

    ar

    at

    air

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-4

    glass

    atr

    art

    ar2

    ( )

    ( ) 10

    22 =+=+

    ==+

    ttrattra

    rrtrra

  • 7/29/2019 wk7b

    5/47

    Fabry-Perot Interferometer

    incident

    reflected

    transmitted

    L

    Resonance condition: reflected wave = 0

    all reflected waves interfere destructively

    n

    mL

    2

    =

    wavelength in free space

    refractive index

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-5

  • 7/29/2019 wk7b

    6/47

    Calculation of the reflected wave

    incoming a

    reflected ar

    transmitted atei

    reflected atei2

    r

    transmitted ateit

    reflected atei3(r)2

    transmitted atei2rt

    reflected atei4(r)3

    transmitted atei3(rt)2

    reflected atei5(r)4

    transmitted atei4(r)3t

    nL

    2=

    air, n=1 glass, n air, n=1

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-6

  • 7/29/2019 wk7b

    7/47

    Calculation of the reflected wave

    ( ){ }

    +=

    ++++=

    22

    2

    44222

    reflected

    e11e

    ee1e

    i

    i

    iii

    rrttra

    rrrttraa "

    12 =+=ttr

    rrUse Stokes relationships

    ( )

    22

    2

    reflectede1e1

    i

    i

    rraa=

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-7

  • 7/29/2019 wk7b

    8/47

    Transmission & reflection coefficients

    ( )

    22

    2

    reflected

    e1

    e1i

    i

    r

    raa

    = 22dtransmitte e1 ir

    ttaa

    =

    2rR

    ( )

    ( )( )

    22

    22

    dtransmitte

    22

    22

    reflected

    sin41

    1

    tcoefficien

    ontransmissi

    sin41

    sin4

    tcoefficien

    reflection

    RR

    R

    a

    a

    RR

    R

    a

    a

    +

    ==

    +==

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-8

  • 7/29/2019 wk7b

    9/47

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-9

    Transmission & reflection vspath

    R=0.95

    R=0.5

  • 7/29/2019 wk7b

    10/47

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-10

    Fabry-Perot terminology

    nLmc2

    ( )nL

    cm2

    1+ ( )nL

    cm2

    2+ frequency

    band

    width

    free

    spectral

    range

    resonance

    frequencies

  • 7/29/2019 wk7b

    11/47

    Fabry-Perot terminology

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-11

    FWHM

    FWHM Bandwidth is

    inversely proportional

    to thefinessefinesse F(orquality factorquality factor)

    of the cavity

    FSR

    R

    R

    F

    1

    nLF

    c

    2FWHM =

    F

    FSRFWHM

    = ( )

    ( )( )finesse

    rangespectralfreebandwidth =

  • 7/29/2019 wk7b

    12/47

    Spectroscopy using Fabry-Perot cavity

    Goal:Goal: to measure the specimens absorption as function of

    frequency

    Experimental measurement principle:Experimental measurement principle:

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-12

    container with

    specimen to be measured

    transparent

    windows

    light beam of

    known spectrum

    spectrum of light beam

    is modified by substance

    scanning

    stage

    (controls cavity

    lengthL)

    partiallyreflecting

    mirrors (FP cavity)

    power

    meter

  • 7/29/2019 wk7b

    13/47

    Spectroscopy using Fabry-Perot cavity

    Goal:Goal: to measure the specimens absorption as function of

    frequency

    Experimental measurement principle:Experimental measurement principle:

    container with

    specimen to be measured

    transparent

    windows

    light beam of

    known spectrum

    spectrum of light beam

    is modified by substance

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-13

    partiallyreflecting

    mirrors (FP cavity)

    power

    meter

    electro-optic

    (EO) modulator

    (controls refr.

    index n)

  • 7/29/2019 wk7b

    14/47

    Spectroscopy using Fabry-Perot cavity

    I()

    unknownspectrum

    FabryPerot

    transmissivity

    1

    sample measured:

    I(1)MIT 2.71/2.710 Optics

    10/20/04 wk7-b-14

  • 7/29/2019 wk7b

    15/47

    Spectroscopy using Fabry-Perot cavity

    I()

    unknownspectrum

    FabryPerot

    transmissivity

    2

    sample measured:

    I(2)MIT 2.71/2.710 Optics

    10/20/04 wk7-b-15

  • 7/29/2019 wk7b

    16/47

    Spectroscopy using Fabry-Perot cavity

    I()

    unknownspectrum

    FabryPerot

    transmissivity

    3

    sample measured:

    I(3)MIT 2.71/2.710 Optics

    10/20/04 wk7-b-16

  • 7/29/2019 wk7b

    17/47

    Spectroscopy using Fabry-Perot cavity

    I()

    unknownspectrum

    FabryPerot

    transmissivity

    3

    sample measured:

    I(3)

    unknown spectrum

    width should not

    exceed the FSR

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-17

  • 7/29/2019 wk7b

    18/47

    Spectroscopy using Fabry-Perot cavity

    I()

    unknownspectrum

    FabryPerot

    transmissivity

    3

    sample measured:

    I(3)

    spectral resolutionspectral resolutionis determined by the

    cavity bandwidth

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-18

  • 7/29/2019 wk7b

    19/47

    Lasers

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-19

  • 7/29/2019 wk7b

    20/47

    Absorption spectra

    (m)

    Atmospherictransm

    ission

    human visionMIT 2.71/2.710 Optics

    10/20/04 wk7-b-20

  • 7/29/2019 wk7b

    21/47

    Semi-classical view of atom excitations

    Energy

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-21

    Ze+e-

    Atom in ground stateAtom in ground state

    Energy

    Atom in excited stateAtom in excited state

  • 7/29/2019 wk7b

    22/47

    Light generation

    Energy

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-22

    ground state

    excited state

    equilibrium: most atoms

    in ground state

  • 7/29/2019 wk7b

    23/47

    Light generation

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-23

    ground state

    Energyexcited state

    A pump mechanism (e.g. thermal

    excitation or gas discharge) ejects

    some atoms to the excited state

  • 7/29/2019 wk7b

    24/47

    Light generation

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-24

    ground state

    Energyexcited state

    h

    h

    The excited atoms radiatively

    decay, emitting one photon each

  • 7/29/2019 wk7b

    25/47

    Light amplification: 3-level system

    Energy

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-25

    ground state

    super-excited state

    excited state

    equilibrium: most atoms

    in ground state; note the existence

    of a third, super-excited state

  • 7/29/2019 wk7b

    26/47

    Light amplification: 3-level system

    Energy

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-26

    ground state

    super-excited state

    excited state

    Utilizing the super-excited state

    as a short-lived pivot point, the

    pump creates a population inversion

  • 7/29/2019 wk7b

    27/47

    Light amplification: 3-level system

    Energy

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-27

    ground state

    super-excited state

    excited state

    h

    When a photon enters, ...

  • 7/29/2019 wk7b

    28/47

    Light amplification: 3-level system

    ground state

    Energysuper-excited state

    excited state

    hh

    h

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-28

    When a photon enters, it knocks

    an electron from the inverted population

    down to the ground state, thus creating

    a new photon. This amplification processis called stimulated emission

  • 7/29/2019 wk7b

    29/47

    Light amplifier

    Gain medium

    (e.g. 3-level system

    w population inversion)

    Pin

    Pout =gPin

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-29

  • 7/29/2019 wk7b

    30/47

    Light amplifier w positive feedback

    Gain medium

    (e.g. 3-level system

    w population inversion)

    Pin

    Pout =gPin

    When the gain exceeds the roundtrip losses, the system goes

    into oscillation

    g++

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-30

  • 7/29/2019 wk7b

    31/47

    Laser

    initial photon

    Gain medium

    (e.g. 3-level system

    w population inversion)

    Partiallyreflecting

    mirrorLight

    Amplification through

    StimulatedEmission of

    Radiation

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-31

  • 7/29/2019 wk7b

    32/47

    Laser

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-32

    Gain medium

    (e.g. 3-level system

    w population inversion)

    amplified once initial photon

    Partiallyreflecting

    mirrorLight

    Amplification through

    StimulatedEmission of

    Radiation

  • 7/29/2019 wk7b

    33/47

    Laser

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-33

    Gain medium

    (e.g. 3-level system

    w population inversion)

    amplified once

    reflected

    initial photon

    Partiallyreflecting

    mirrorLight

    Amplification through

    StimulatedEmission of

    Radiation

  • 7/29/2019 wk7b

    34/47

    Laser

    Gain medium

    (e.g. 3-level system

    w population inversion)

    initial photonamplified once

    reflected

    amplified twice

    Partiallyreflecting

    mirrorLight

    Amplification through

    StimulatedEmission of

    Radiation

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-34

  • 7/29/2019 wk7b

    35/47

    Laser

    Gain medium

    (e.g. 3-level system

    w population inversion)

    initial photonamplified once

    reflected

    amplified twice

    reflected

    output

    Partiallyreflecting

    mirrorLight

    Amplification through

    StimulatedEmission of

    Radiation

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-35

  • 7/29/2019 wk7b

    36/47

    Laser

    Gain medium

    (e.g. 3-level system

    w population inversion)

    initial photonamplified once

    reflected

    amplified twice

    Partiallyreflecting

    mirror

    reflected

    output

    amplified again

    etc.

    Light

    Amplification through

    StimulatedEmission of

    Radiation

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-36

  • 7/29/2019 wk7b

    37/47

    Confocal laser cavities

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-37

    waist w0

    diffraction

    angle0tan

    nw

    =

    Beam profile:

    2D Gaussian function

    TE00 mode

  • 7/29/2019 wk7b

    38/47

    Other transverse modes

    TE10 TE11

    (usually undesirable)

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-38

  • 7/29/2019 wk7b

    39/47

    Types of lasers

    Continuous wave (cw)

    Pulsed

    Q-switched

    mode-locked

    Gas (Ar-ion, HeNe, CO2)

    Solid state (Ruby, Nd:YAG, Ti:Sa)

    Diode (semiconductor)

    Vertical cavity surface-emitting lasers VCSEL (also sc)

    Excimer (usually ultra-violet)

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-39

  • 7/29/2019 wk7b

    40/47

    CW (continuous wave lasers)

    Laser oscillation well approximated by a sinusoid

    1/

    t

    Typical sources:

    Argon-ion: 488nm (blue) or 514nm (green); power ~1-20W

    Helium-Neon (HeNe): 633nm (red), also in green and yellow; ~1-100mW

    doubled Nd:YaG: 532nm (green); ~1-10W

    Quality of sinusoid maintained over a time duration known as

    coherence time tc

    Typical coherence times ~20nsec (HeNe), ~10sec (doubled Nd:YAG)MIT 2.71/2.710 Optics

    10/20/04 wk7-b-40

  • 7/29/2019 wk7b

    41/47

    Two types of incoherence

    temporaltemporal

    incoherence

    spatialspatial

    incoherenceincoherence incoherence

    1r

    2r1r

    matched

    pathspoint

    sourced2d1

    Michelson interferometer Young interferometer

    poly-chromatic light

    (=multi-color, broadband)

    mono-chromatic light

    (= single color, narrowband)

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-41

    T f i h

  • 7/29/2019 wk7b

    42/47

    Two types of incoherence

    temporaltemporal

    incoherence

    spatialspatial

    incoherenceincoherence incoherence

    1r

    2r1r

    matched

    pathspoint

    sourced2d1

    waves from unequal pathswaves from unequal paths

    do not interfere

    waves with equal pathswaves with equal paths

    but from different pointsbut from different points

    on the wavefronton the wavefrontdo not interfere

    do not interfere

    do not interfereMIT 2.71/2.710 Optics

    10/20/04 wk7-b-42

    C h t i h t b

  • 7/29/2019 wk7b

    43/47

    Coherent vs incoherent beams

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-43

    1e11iaa =

    2e22iaa =

    Mutually coherent: superposition field amplitudeamplitude

    is described bysum of complex amplitudessum of complex amplitudes

    2

    21

    2

    2121

    21

    eeaaaI

    aaaaa

    ii

    +==

    +=+=

    Mutually incoherent: superposition field intensityintensity

    is described bysum of intensities1I

    sum of intensities

    21 III+=

    (the phases of the individual beams vary

    randomly with respect to each other; hence,

    we would need statistical formulation to

    describe them properly statistical optics)

    2I

    C h ti d h l th

  • 7/29/2019 wk7b

    44/47

    Coherence time and coherence length

    Intensity

    l1

    l1-l2 much shortershorter than

    coherence length ctcsharp interference fringes

    l1

    l2

    0

    2I0

    l1-l2 much longerlonger than

    coherence length ctc

    incoming

    laser

    beamno interference

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-44

    Michelson interferometer Intensity

    I0

    l1

    C h t i h t b

  • 7/29/2019 wk7b

    45/47

    Coherent vs incoherent beams

    MIT 2.71/2.710 Optics

    10/20/04 wk7-b-45

    1e11iaa =

    2e22iaa =

    Coherent: superposition field amplitudeamplitude

    is described bysum of complex amplitudessum of complex amplitudes

    2

    21

    2

    2121

    21

    eeaaaI

    aaaaa

    ii

    +==

    +=+=

    Incoherent: superposition field intensityintensity

    is described bysum of intensities1I

    sum of intensities

    21 III+=

    (the phases of the individual beams vary

    randomly with respect to each other; hence,

    we would need statistical formulation to

    describe them properly statistical optics)

    2I

    M d l k d l

  • 7/29/2019 wk7b

    46/47

    Mode-locked lasers

    Typical sources: Ti:Sa lasers (major vendors: Coherent, Spectra Phys.)

    Typical mean wavelengths: 700nm 1.4m (near IR)can be doubled to visible wavelengths

    or split to visible + mid IR wavelengths using OPOs or OPAs

    (OPO=optical parametric oscillator;

    OPA=optical parametric amplifier)Typical pulse durations: ~psec to few fsec

    (just a few optical cycles)

    Typical pulse repetition rates (rep rates): 80-100MHz

    Typical average power: 1-2W; peak power ~MW-GWMIT 2.71/2.710 Optics

    10/20/04 wk7-b-46

    O i f li ht

  • 7/29/2019 wk7b

    47/47

    Overview of light sources

    Lasernon-LaserThermal:polychromatic,

    spatially incoherent

    (e.g. light bulb)

    Gas discharge: monochromatic,

    spatially incoherent(e.g. Na lamp)

    Light emitting diodes (LEDs):

    monochromatic, spatially

    incoherent

    Continuous wave (or cw):

    strictly monochromatic,

    spatially coherent(e.g. HeNe, Ar+, laser diodes)

    Pulsed: quasi-monochromatic,spatially coherent

    (e.g. Q-switched, mode-locked)

    ~nsec ~psec to few fsec

    pulse duration

    mono/poly-chromatic = single/multi colorMIT 2.71/2.710 Optics

    10/20/04 wk7-b-47