57
With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra Cold Atoms to the Hot QGP 22 nd Aug - 9 th Sept, 2011 Helmholtz Alliance Extremes of Density and Temperature: Cosmic Matter in the Laboratory (EMMI) in collaboration with Yukawa Institute for Theoretical Physics (YITP) Kyoto, Japan With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 1/35

With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

With the FRG towards the QCD Phase diagram

Bernd-Jochen Schaefer

University of Graz, Austria

RG Approach from Ultra Cold Atoms to the Hot QGP

22nd Aug - 9th Sept, 2011

Helmholtz Alliance Extremes of Density and Temperature: Cosmic Matter in the Laboratory (EMMI)

in collaboration with Yukawa Institute for Theoretical Physics (YITP)

Kyoto, Japan

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 1/35

Page 2: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

QCD Phase TransitionsQCD→ two phase transitions:

1 restoration of chiral symmetry

SUL+R(Nf )→ SUL(Nf )× SUR(Nf )

order parameter:

〈qq〉

> 0⇔ symmetry broken, T < Tc= 0⇔ symmetric phase, T > Tc

2 de/confinement

order parameter: Polyakov loop variable

Φ

= 0⇔ confined phase, T < Tc> 0⇔ deconfined phase, T > Tc

Φ =

⟨trcP exp

(i∫ β

0dτA0(τ,~x)

)⟩/Nc

Tem

pera

ture

µ

early universe

neutron star cores

LHCRHIC

SIS

AGS

quark−gluon plasma

hadronic fluid

nuclear mattervacuum

FAIR/JINR

SPS

n = 0 n > 0

<ψψ> ∼ 0

<ψψ> = 0/

<ψψ> = 0/

phases ?

quark matter

crossover

CFLB B

superfluid/superconducting

2SC

crossover

At densities/temperatures of interest

only model calculations available

alternative: Ü dressed Polyakov loop (dual condensate)

relates chiral and deconfinement transition→ spectral properties of Dirac operator

effective models:1 Quark-meson model or other models e.g. NJL

2 Polyakov–quark-meson model or PNJL models

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 2/35

Page 3: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

The conjectured QCD Phase DiagramT

em

pera

ture

µ

early universe

neutron star cores

LHCRHIC

SIS

AGS

quark−gluon plasma

hadronic fluid

nuclear mattervacuum

FAIR/JINR

SPS

n = 0 n > 0

<ψψ> ∼ 0

<ψψ> = 0/

<ψψ> = 0/

phases ?

quark matter

crossover

CFLB B

superfluid/superconducting

2SC

crossover

At densities/temperatures of interestonly model calculations available

Open issues:related to chiral & deconfinementtransition

B existence of CEP? Its location?

B additional CEPs?How many?

B coincidence of both transitions atµ = 0?

B quarkyonic phase at µ > 0?

B chiral CEP/deconfinement CEP?

B finite volume effects?→ lattice comparison

B so far only MFA resultseffects of fluctuations?→ size of crit. region

non-perturbative functional methods (FunMethods)→ here: FRG

→ complementary to lattice

• no sign problem µ > 0 • chiral symmetry/fermions (small masses/chiral limit) ...

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 3/35

Page 4: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

The conjectured QCD Phase DiagramT

em

pera

ture

µ

early universe

neutron star cores

LHCRHIC

SIS

AGS

quark−gluon plasma

hadronic fluid

nuclear mattervacuum

FAIR/JINR

SPS

n = 0 n > 0

<ψψ> ∼ 0

<ψψ> = 0/

<ψψ> = 0/

phases ?

quark matter

crossover

CFLB B

superfluid/superconducting

2SC

crossover

At densities/temperatures of interestonly model calculations available

Open issues:related to chiral & deconfinementtransition

B existence of CEP? Its location?

B additional CEPs?How many?

B coincidence of both transitions atµ = 0?

B quarkyonic phase at µ > 0?

B chiral CEP/deconfinement CEP?

B finite volume effects?→ lattice comparison

B so far only MFA resultseffects of fluctuations?→ size of crit. region

non-perturbative functional methods (FunMethods)→ here: FRG

→ complementary to lattice

lattice versus FRG

Nc = 2 Polyakov-quark-meson-diquark (PQMD) model [Strodthoff, BJS, von Smekal; in prep. ’11]

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 3/35

Page 5: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Outline

Three-Flavor Chiral Quark-Meson Model

...with Polyakov loop dynamics

Taylor expansions and generalized susceptibilities

Functional Renormalization Group

Finite volume effects

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 4/35

Page 6: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Nf = 3 Quark-Meson (QM) model

Model Lagrangian: Lqm = Lquark + Lmeson

Quark part with Yukawa coupling h:

Lquark = q(i∂/− hλa

2(σa + iγ5πa))q

Meson part: scalar σa and pseudoscalar πa nonet

meson fields: M =8∑

a=0

λa

2(σa + iπa)

Lmeson = tr[∂µM†∂µM]−m2tr[M†M]−λ1(tr[M†M])2−λ2tr[(M†M)2]+c[det(M) + det(M†)]

+tr[H(M + M†)]

explicit symmetry breaking matrix: H =∑

a

λa

2ha

U(1)A symmetry breaking implemented by ’t Hooft interaction

Ü talk by Mario Mitter

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 5/35

Page 7: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Phase diagram for Nf = 2 + 1 (µ ≡ µq = µs)

Model parameter fitted to (pseudo)scalar meson spectrum:

one parameter precarious: f0(600) ’particle’ (i.e. sigma)→ broad resonance

PDG: mass=(400 . . . 1200) MeV

we use fit values for mσ between (400 . . . 1200) MeV

Ü existence of CEP depends on mσ !

Example: mσ = 600 MeV (lower lines), 800 and 900 MeV (here mean-field approximation)

with U(1)A [BJS, M. Wagner ’09]

0

50

100

150

200

250

0 50 100 150 200 250 300 350 400

T [M

eV]

µ [MeV]

crossover1st order

CEP

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 6/35

Page 8: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Chiral critical surface (mσ = 800 MeV)

Ü standard scenario for mσ = 800 MeV (as expected)

here: ’t Hooft coupling µ-independent (might change if µ-dependence is considered)

with U(1)A

0 25

50 75

100 125

150 175

0 100

200 300

400 500

600

100

200

300

400

µ [MeV]

mπ [MeV]mK [MeV]

µ [MeV]

physical point

without U(1)A

0 25

50 75

100 125

150 175

0 100

200 300

400 500

600

100

200

300

400

µ [MeV]

mπ [MeV]mK [MeV]

µ [MeV]

physical point

[BJS, M. Wagner, ’09]

non-standard scenario in PNJL with (unrealistic) large vector int. → bending of surface

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 7/35

Page 9: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Outline

Three-Flavor Chiral Quark-Meson Model

...with Polyakov loop dynamics

Taylor expansions and generalized susceptibilities

Functional Renormalization Group

Finite volume effects

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 8/35

Page 10: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Polyakov-quark-meson (PQM) modelLagrangian LPQM = Lqm + Lpol with Lpol = −qγ0A0q− U(φ, φ)

1. polynomial Polyakov loop potential: Polyakov 1978, Meisinger 1996, Pisarski 2000

U(φ, φ)

T4= −

b2(T, T0 )

2φφ−

b3

6

(φ3 + φ3

)+

b4

16

(φφ)2

b2(T, T0) = a0 + a1(T0/T) + a2(T0/T)2 + a3(T0/T)3

2. logarithmic potential: Rößner et al. 2007

Ulog

T4= −

12

a(T)φφ+ b(T) ln[

1− 6φφ+ 4(φ3 + φ3

)− 3

(φφ)2]

a(T) = a0 + a1(T0/T) + a2(T0/T)2 and b(T) = b3(T0/T)3

3. Fukushima Fukushima 2008

UFuku = −bT

54e−a/Tφφ+ ln[

1− 6φφ+ 4(φ3 + φ3

)− 3

(φφ)2]

a controls deconfinement b strength of mixing chiral & deconfinement

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 9/35

Page 11: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Polyakov-quark-meson (PQM) modelLagrangian LPQM = Lqm + Lpol with Lpol = −qγ0A0q− U(φ, φ)

1. polynomial Polyakov loop potential: Polyakov 1978, Meisinger 1996, Pisarski 2000

U(φ, φ)

T4= −

b2(T, T0 )

2φφ−

b3

6

(φ3 + φ3

)+

b4

16

(φφ)2

b2(T, T0) = a0 + a1(T0/T) + a2(T0/T)2 + a3(T0/T)3

back reaction of the matter sector to the YM sector: Nf and µ-modifications

in presence of dynamical quarks: T0 = T0(Nf , µ,mq) BJS, Pawlowski, Wambach; 2007

Nf 0 1 2 2 + 1 3T0 [MeV] 270 240 208 187 178

matter back reaction to the YM sector important at µ 6= 0

for µ 6= 0 : φ > φ is expected

since φ is related to free energy gain of antiquarks

in medium with more quarks→ antiquarks are more easily screened.

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 9/35

Page 12: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

QCD Thermodynamics Nf = 2 + 1

[BJS, M. Wagner, J. Wambach ’10]

(P)QM models (three different Polyakov loop potentials) versus QCD lattice simulations

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3

p/p

SB

T/Tχ

QM

PQM log

PQM pol

PQM Fuku

p4

asqtad

Stefan-Boltzmann limit:pSB

T4= 2(N2

c − 1)π2

90+ Nf Nc

7π2

180

B solid lines:PQM with lattice masses (HotQCD)

mπ ∼ 220,mK ∼ 503 MeV

B dashed lines:(P)QM with realistic masses

data taken from: [Bazavov et al. ’09]

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 10/35

Page 13: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Nf = 2 + 1 (P)QM phase diagramsSummary of QM and PQM models in mean field approximation

chiral transition and ’deconfinement’ coincideat small densities

0

50

100

150

200

250

0 50 100 150 200 250 300 350 400

T [M

eV

]

µ [MeV]

Φ,Φ−

crossover

CEP

χ crossover

χ first order

for PQM model

(upper lines)

for QM model

(lower lines)

[BJS, M. Wagner; in prep. ’11]

Nf = 2: [BJS, Pawlowski, Wambach; 2007]

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 11/35

Page 14: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Nf = 2 + 1 (P)QM phase diagramsSummary of QM and PQM models in mean field approximation

chiral transition and ’deconfinement’ coincideat small densities

0

50

100

150

200

250

0 50 100 150 200 250 300 350 400

T [M

eV

]

µ [MeV]

Φ,Φ−

crossover

CEP

χ crossover

χ first order

for PQM model

(upper lines)

withmatter back reactionin Polyakov looppotential

→ shrinking ofpossible quarkyonicphase

for QM model

(lower lines)

[BJS, M. Wagner; in prep. ’11]

Nf = 2: [BJS, Pawlowski, Wambach; 2007]

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 11/35

Page 15: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Critical region

contour plot of size of the critical region around CEP

defined via fixed ratio of susceptibilities: R = χq/χfreeq

Ü compressed with Polyakov loop

QM model (2+1) PQM model (2+1)

-20

-10

0

10

20

-60 -40 -20 0 20 40

(T-T

c)

[MeV

]

(µ-µc) [MeV]

R=2

R=3

R=5

-20

-15

-10

-5

0

5

10

15

-40 -30 -20 -10 0 10 20 30 40

(T-T

c)

[MeV

]

(µ-µc) [MeV]

R=2

R=3

R=5

[BJS, M. Wagner; in preparation 11]

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 12/35

Page 16: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Outline

Three-Flavor Chiral Quark-Meson Model

...with Polyakov loop dynamics

Taylor expansions and generalized susceptibilities

Functional Renormalization Group

Finite volume effects

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 13/35

Page 17: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Finite density extrapolations Nf = 2 + 1

Taylor expansion:

p(T, µ)

T4=∞∑

n=0

cn(T)

T

)n

with cn(T) =1n!

∂n (p(T, µ)/T4)∂ (µ/T)n

∣∣∣∣∣µ=0

•Taylor-expansion of the pressure p

T 4=

1

V T 3lnZ(V, T, µu, µd, µs) =

i,j,k

cu,d,si,j,k

µu

T

i µd

T

j µs

T

k

nuclear matter density

T

∼ 190MeV

µB

quark-gluon plasma

deconfined, symmetric

hadron gasconfined,

broken color super-conductor

χ-

χ-

method for small µ/T

convergence-radius has to be determined non-

perturbatively

•no sign-problem: all simulations at µ = 0

cu,d,si,j,k ≡ 1

i!j!k!

1

V T 3

· ∂i∂j∂k ln Z

∂(µu

T)i∂(µd

T)j∂(µs

T)k

µu,d,s=0

•method is conceptually easy

Allton et al., PRD66:074507,2002;Allton et al., PRD68:014507,2003;Allton et al., PRD71:054508,2005.

•calculate Taylor coefficients at fixed temperature

12Lattice QCD at nonzero density (I)

[C. Schmidt ’09]

convergence radii:

limited by first-order line?

ρ2n =

∣∣∣∣ c2

c2n

∣∣∣∣1/(2n−2)

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 14/35

Page 18: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Finite density extrapolations Nf = 2 + 1

Taylor expansion:

p(T, µ)

T4=∞∑

n=0

cn(T)

T

)n

with cn(T) =1n!

∂n (p(T, µ)/T4)∂ (µ/T)n

∣∣∣∣∣µ=0

Non-zero density QCD by the Taylor expansion method Chuan Miao and Christian Schmidt

0

0.1

0.2

0.3

0.4

0.5

0.6

150 200 250 300 350 400 450

T[MeV]

c2u

SB

filled: N! = 4

open: N! = 6

nf=2+1, m"=220 MeV

nf=2, m"=770 MeV

0

0.02

0.04

0.06

0.08

0.1

150 200 250 300 350 400 450

T[MeV]

c4u

SB

filled: N! = 4

open: N! = 6

nf=2+1, m"=220 MeV

nf=2, m"=770 MeV

-0.02

-0.01

0

0.01

0.02

0.03

150 200 250 300 350 400 450

T[MeV]

c6u

SB

nf=2+1, m"=220 MeV

nf=2, m"=770 MeV

Figure 1: Taylor coefficients of the pressure in term of the up-quark chemical potential. Results are obtained

with the p4fat3 action onN! = 4 (full) andN! = 6 (open symbols) lattices. We compare preliminary results of

(2+1)-flavor a pion mass of m" ! 220 MeV to previous results of 2-flavor simulations with a corresponding

pion mass of mp ! 770 [2].

1. Introduction

A detailed and comprehensive understanding of the thermodynamics of quarks and gluons,

e.g. of the equation of state is most desirable and of particular importance for the phenomenology

of relativistic heavy ion collisions. Lattice regularized QCD simulations at non-zero temperatures

have been shown to be a very successful tool in analyzing the non-perturbative features of the

quark-gluon plasma. Driven by both, the exponential growth of the computational power of re-

cent super-computer as well as by drastic algorithmic improvements one is now able to simulate

dynamical quarks and gluons on fine lattices with almost physical masses.

At non-zero chemical potential, lattice QCD is harmed by the “sign-problem”, which makes

direct lattice calculations with standard Monte Carlo techniques at non-zero density practically

impossible. However, for small values of the chemical potential, some methods have been success-

fully used to extract information on the dependence of thermodynamic quantities on the chemical

potential. For a recent overview see, e.g. [1].

2. The Taylor expansion method

We closely follow here the approach and notation used in Ref. [2]. We start with a Taylor

expansion for the pressure in terms of the quark chemical potentials

p

T 4= #

i, j,k

cu,d,si, j,k (T )

!µuT

"i!µdT

" j !µsT

"k. (2.1)

The expansion coefficients cu,d,si, j,k (T ) are computed on the lattice at zero chemical potential, using

stochastic estimators. Some details on the computation are given in [3, 4]. Details on our cur-

rent data set and the number of random vectors used for the stochastic random noise method are

summarized in Table 1.

In Fig. 1 we show results on the diagonal expansion coefficients with respect to the up-quark

2

[Miao et al. ’08]

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 14/35

Page 19: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Finite density extrapolations Nf = 2 + 1New method: based on algorithmic differentiation [M. Wagner, A. Walther, BJS, CPC ’10]

Taylor coefficients cn numerically known to high order, e.g. n = 22

-6

-4

-2

0

2

4

c6-150

-100

-50

0

c8

-3000-2000-10000100020003000

c10

-50000

0

50000

c12 -1e+06

0

1e+06

c14 -5e+07

0

5e+07

c16

0,98 1 1,02-4e+09-3e+09-2e+09-1e+09

01e+092e+093e+09

c18

0,98 1 1,02T/Tχ

-5e+10

0

5e+10

c20

0,98 1 1,02

-4e+12

-2e+12

0

2e+12

c22

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 15/35

Page 20: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Taylor coefficients for Nf = 2 + 1 PQM model

-6

-4

-2

0

2

4

c6-150

-100

-50

0

c8

-3000-2000-10000100020003000

c10

-50000

0

50000

c12 -1e+06

0

1e+06

c14 -5e+07

0

5e+07

c16

0,98 1 1,02-4e+09-3e+09-2e+09-1e+09

01e+092e+093e+09

c18

0,98 1 1,02T/Tχ

-5e+10

0

5e+10

c20

0,98 1 1,02

-4e+12

-2e+12

0

2e+12

c22

B this technique applied to PQM model

B investigation of convergenceproperties of Taylor series

B properties of cn

oscillating

increasing amplitude

no numerical noise

small outside transition region

number of roots increasing

26th order[F. Karsch, BJS, M. Wagner, J. Wambach; arXiv:1009.5211]

Can we locate the QCD critical endpoint with the Taylor expansion ?

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 16/35

Page 21: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Taylor expansionsFindings:

simply Taylor expansion: slow convergencehigh orders neededdisadvantage for lattice simulations

Taylor applicable within convergence radiusalso for µ/T > 1

but 1st order transition not resolvableexpansion around µ = 0

r2n =

∣∣∣∣ c2n

c2n+2

∣∣∣∣1/2

, rχ2n =

∣∣∣∣ (2n + 2)(2n + 1)

(2n + 3)(2n + 4)

∣∣∣∣1/2

r2n+2 Padé [N/N]

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

T/T

χ

µ/Tχ

n=8

n=16

n=24

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

4 6 8 10 12 14 16 18 20 22 24

µ/T

nmax

rnp [N/N]

p [N+2/N]p [N+2/N-2]

nχ [N/N]

χ [N+2/N]

[F.Karsch, BJS, M.Wagner, J.Wambach; arXiv:1009.5211]

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 17/35

Page 22: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Taylor expansionsFindings:

simply Taylor expansion: slow convergencehigh orders neededdisadvantage for lattice simulations

Taylor applicable within convergence radiusalso for µ/T > 1

but 1st order transition not resolvableexpansion around µ = 0

0

20

40

60

80

100

90 95 100 105 110

σ x [M

eV]

T [MeV]

24th orderPQM

185

190

195

200

205

210

6 8 10 12 14 16 18 20

Tc,

n [M

eV]

n

[F.Karsch, BJS, M.Wagner, J.Wambach; arXiv:1009.5211]

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 17/35

Page 23: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Generalized SusceptibilitiesCan we use these coefficients to locate CEP experimentally?

Is there a memory effect that the system (HIC) has passed through the QCDphase transition?

Probing phase diagram with fluctuations of e.g. net baryon number

Example: Kurtosis RB4,2 =

19

c4

c2→ probe of deconfinement?

It measures quark content of particles carrying baryon number B

in HRG model R4,2 = 1 (always positive)

-80

-60

-40

-20

0

20

40

60

196 198 200 202 204 206 208

c4 / c

2

T [MeV]

0.0

0.1

0.2

0.3

0.4 200 203 206 209 0 10 20 30 40 50 60

-100

0

100

200

R4,2

100 0

-100

T [MeV]

µ [MeV]

R4,2

[BJS, M.Wagner; in prep. 11]

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 18/35

Page 24: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Generalized SusceptibilitiesFluctuations of higher moments (more sensitive to criticality)

exhibit strong variation from HRG model

→ turn negative [Karsch, Redlich; 11] see also [Friman, Karsch, Redlich, Skokov; 11]

see talk by V. Skokov

higher moments: Rqn,m = cn/cm

regions where Rn,m are negative along crossover line in the phase diagram

PQM with T0(µ) QM model

170

175

180

185

190

195

200

205

210

0 20 40 60 80 100 120 140 160 180

T [M

eV

]

µ [MeV]

R4,2R6,2R8,2R10,2R12,2

crossover

CEP 80

90

100

110

120

130

140

150

160

0 50 100 150 200

T [M

eV

]

µ [MeV]

R4,2R6,2R8,2R10,2R12,2

crossover

CEP

[BJS, M.Wagner; in prep. 11]

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 19/35

Page 25: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Outline

Three-Flavor Chiral Quark-Meson Model

...with Polyakov loop dynamics

Taylor expansions and generalized susceptibilities

Functional Renormalization Group

Finite volume effects

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 20/35

Page 26: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Functional RG Approach

Γk[φ] scale dependent effective action ; t = ln(k/Λ) ; Rk regulators

FRG (average effective action) [Wetterich ’93]

∂tΓk[φ] =12

Tr ∂tRk

(1

Γ(2)k + Rk

); Γ

(2)k =

δ2Γk

δφδφ

k∂kΓk[φ] ∼12

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 21/35

Page 27: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

T0(Nf , µ) modificationfull dynamical QCD FRG flow: fluctuations ofgluon, ghost, quark and meson (via hadronization) fluctuations

[Braun, Haas, Marhauser, Pawlowski; ’09]

∂tΓk[φ] =12 − − + 1

2

in presence of dynamical quarksgluon propagator modified:

→ pure Yang Mills flow + these modifications

pure Yang Mills flowreplaced by effective Polyakov loop potential:(fit to YM thermodynamics)

T0 ↔ ΛQCD : T0 → T0(Nf , µ,mq)

[BJS, Pawlowski, Wambach; 2007]

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 22/35

Page 28: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Functional Renormalization Group[Wetterich ’93]

∂tΓk[φ] =12

Tr ∂tRk

(1

Γ(2)k + Rk

); Γ

(2)k =

δ2Γk

δφδφ

∂tΓk[φ] =12 − − + 1

2

Γk[φ] scale dependent effective action ; t = ln(k/Λ) ; Rk regulators

PQM truncation Nf = 2 [Herbst, Pawlowski, BJS; 2011]

see also [Skokov, Friman, Redlich; 2010]

Γk =

∫d4xψ (D/ + µγ0 + ih(σ + iγ5~τ~π))ψ +

12

(∂µσ)2 +12

(∂µ~π)2 + Ωk[σ, ~π,Φ, Φ]

Initial action at UV scale Λ:

ΩΛ[σ, ~π,Φ, Φ] = U(σ, ~π) + U(Φ, Φ) + Ω∞Λ [σ, ~π,Φ, Φ]

U(σ, ~π) =λ

4(σ2 + ~π2 − v2)2 − cσ

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 23/35

Page 29: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Phase diagram T0 = 208 MeV

0

50

100

150

200

0 50 100 150 200 250 300 350

T [M

eV]

µ [MeV]

χ crossoverΦ crossover—Φ crossoverCEPχ first order

[Herbst, Pawlowski, BJS; 2011]

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 24/35

Page 30: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Phase diagram T0(µ),T0(0) = 208 MeV

0

50

100

150

200

0 50 100 150 200 250 300 350

T [M

eV]

µ [MeV]

χ crossoverΦ crossover—Φ crossoverCEPχ first order

[Herbst, Pawlowski, BJS; 2011]

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 25/35

Page 31: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Phase diagram T0(µ),T0(0) = 208 MeV

0

50

100

150

200

0 50 100 150 200 250 300 350

T [M

eV]

µ [MeV]

χ crossoverΦ crossover—Φ crossoverCEPχ first order

[Herbst, Pawlowski, BJS; 2011]

Ü CEP unlikely for small µB/T Ü baryons

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 26/35

Page 32: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Phase diagram (DSE - HTL)

0 100 200 300µ [MeV]

0

50

100

150

200T

[M

eV]

dressed Polyakov-loopdressed conjugate P.-loopchiral crossoverchiral CEPchiral first order region

[Ch. S. Fischer, J. Luecker, J. A. Mueller; 2011]

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 27/35

Page 33: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Critical regionsimilar conclusion if fluctuations are included

fluctuations via Functional Renormalization Group

comparison: Nf = 2 QM model

Mean Field ↔ RG analysis

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

(T-T

c)/T

c

(µ-µc)/µc

Mean FieldRG1st order

[BJS, Wambach ’06]

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 28/35

Page 34: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Outline

Three-Flavor Chiral Quark-Meson Model

...with Polyakov loop dynamics

Taylor expansions and generalized susceptibilities

Functional Renormalization Group

Finite volume effects

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 29/35

Page 35: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Finite volume effects

B Finite Euclidean Volume: L3 × 1/T cf. talk by Bertram Klein∫d3p→

(2πL

)3 ∑n1∈Z

∑n2∈Z

∑n3∈Z

with p2 →4π2

L2

(n2

1 + n22 + n2

3

)grand potential (Nf = 2 quark-meson truncation) [A Tripolt, J Braun, B Klein, BJS; 2011]

∂tΩk = Bp(k, L)k5

12π2

[−

2Nf Nc

Eq

tanh

(Eq − µ

2T

)+ tanh

(Eq + µ

2T

)+

1Eσ

coth(

Eσ2T

)+

3Eπ

coth(

Eπ2T

)]

with Eσ,π,q =√

k2 + m2σ,π,q , m2

σ = 2Ω′k + 4σ2Ω′′k , m2π = 2Ω′k , m2

q = h2σ2

mode counting functions

Bp(k, L) : periodic

Bap(k, L) : antiperiodic

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 30/35

Page 36: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Finite volume effectsmode counting functions (periodic and antiperiodic (lower) boundary)

Bp(k, L) =6π2

(kL)3

∑n1,n2,n3∈Z

Θ

(k2 −

4π2

L2

(n2

1 + n22 + n2

3

))

Bap(k, L) =6π2

(kL)3

∑n1,n2,n3∈Z

Θ

(k2 −

4π2

L2

((n1 +

12

)2

+

(n2 +

12

)2

+

(n3 +

12

)2))

periodic L = 5 fm antiperiodic L = 5 fm

0 200 400 600 800 1000k [MeV]

1

2

3

0 200 400 600 800 1000k [MeV]

1

2

3

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 31/35

Page 37: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Finite volume effectsmode counting functions (periodic and antiperiodic (lower) boundary)

Bp(k, L) =6π2

(kL)3

∑n1,n2,n3∈Z

Θ

(k2 −

4π2

L2

(n2

1 + n22 + n2

3

))

Bap(k, L) =6π2

(kL)3

∑n1,n2,n3∈Z

Θ

(k2 −

4π2

L2

((n1 +

12

)2

+

(n2 +

12

)2

+

(n3 +

12

)2))

periodic L = 2 fm antiperiodic L = 2 fm

0 200 400 600 800 1000k [MeV]

0

0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000k [MeV]

1

2

3

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 31/35

Page 38: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Finite volume effects

[A. Tripolt, J. Braun, B. Klein, BJS, in preparation ’11]

preliminary results for periodic BC

L→∞

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 32/35

Page 39: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Finite volume effects[A. Tripolt, J. Braun, B. Klein, BJS, in preparation ’11]

preliminary results for periodic BC

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 32/35

Page 40: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Finite volume effects[A. Tripolt, J. Braun, B. Klein, BJS, in preparation ’11]

preliminary results for periodic BC

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 32/35

Page 41: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Finite volume effects[A. Tripolt, J. Braun, B. Klein, BJS, in preparation ’11]

preliminary results for periodic BC

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 32/35

Page 42: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Finite volume effects[A. Tripolt, J. Braun, B. Klein, BJS, in preparation ’11]

preliminary results for periodic BC

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 32/35

Page 43: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Finite volume effects[A. Tripolt, J. Braun, B. Klein, BJS, in preparation ’11]

preliminary results for periodic BC

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 32/35

Page 44: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Finite volume effects[A. Tripolt, J. Braun, B. Klein, BJS, in preparation ’11]

preliminary results for periodic BC

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 32/35

Page 45: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Finite volume effects[A. Tripolt, J. Braun, B. Klein, BJS, in preparation ’11]

preliminary results for periodic BC

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 32/35

Page 46: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Finite volume effects[A. Tripolt, J. Braun, B. Klein, BJS, in preparation ’11]

preliminary results for periodic BC

movement of the CEP (L→∞ . . . 2 fm)

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 32/35

Page 47: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Finite volume effects

[A. Tripolt, J. Braun, B. Klein, BJS, in preparation ’11]

preliminary results for antiperiodic BC

L→∞

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 33/35

Page 48: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Finite volume effects[A. Tripolt, J. Braun, B. Klein, BJS, in preparation ’11]

preliminary results for antiperiodic BC

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 33/35

Page 49: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Finite volume effects[A. Tripolt, J. Braun, B. Klein, BJS, in preparation ’11]

preliminary results for antiperiodic BC

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 33/35

Page 50: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Finite volume effects[A. Tripolt, J. Braun, B. Klein, BJS, in preparation ’11]

preliminary results for antiperiodic BC

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 33/35

Page 51: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Finite volume effects[A. Tripolt, J. Braun, B. Klein, BJS, in preparation ’11]

preliminary results for antiperiodic BC

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 33/35

Page 52: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Finite volume effects[A. Tripolt, J. Braun, B. Klein, BJS, in preparation ’11]

preliminary results for antiperiodic BC

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 33/35

Page 53: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Finite volume effects[A. Tripolt, J. Braun, B. Klein, BJS, in preparation ’11]

preliminary results for antiperiodic BC

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 33/35

Page 54: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Finite volume effects[A. Tripolt, J. Braun, B. Klein, BJS, in preparation ’11]

preliminary results for antiperiodic BC

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 33/35

Page 55: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Finite volume effects[A. Tripolt, J. Braun, B. Klein, BJS, in preparation ’11]

preliminary results for antiperiodic BC

movement of the CEP (L→∞ . . . 2 fm)

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 33/35

Page 56: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

Finite volume effects[A. Tripolt, J. Braun, B. Klein, BJS, in preparation ’11]

curvature κTχ(L, µ)

Tχ(L, 0)= 1− κ(L)

πTχ(L, 0)

)2

+ . . .

relative change

∆κ(L) =κ(L)− κ(∞)

κ(∞)

2.5 3 3.5 4 4.5 5L [fm]

-0.1

-0.05

0

0.05

∆κ (periodic)∆κ (antiperiodic)

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 34/35

Page 57: With the FRG towards the QCD Phase diagram · 2011. 8. 29. · With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra

SummaryNf = 2 and Nf = 2 + 1 chiral (Polyakov)-quark-meson model study

Ü Mean-field approximation and FRG

Ü fluctuations are important

functional approaches (such as the presented FRG) are suitable and controllable tools

to investigate the QCD phase diagram and its phase boundaries

Findings:

B matter back-reaction to YM sector:T0 ⇒ T0(Nf , µ)

B FRG with PQM truncation: Chiral &deconfinement transition coincide forNf = 2 with T0(µ)-corrections

B similar conclusion for Nf = 2 + 1

size of the critical region around CEP smaller

B Finite volume effects

B Higher moments

0

50

100

150

200

0 50 100 150 200 250 300 350T

[MeV

]

µ [MeV]

χ crossoverΦ crossover—Φ crossoverCEPχ first order

Outlook:

B FRG methods suitable→ test lattice predictions (such as finite volume or Nc = 2, . . .)

B include glue dynamics with FRG Ü towards full QCD

With the FRG towards the QCD Phase Diagram B.-J. Schaefer (KFU Graz) 35/35