WINSEM2014-15_CP3050_12-Feb-2015_RM01_angleModulation (1)

  • Upload
    murthy

  • View
    212

  • Download
    0

Embed Size (px)

Citation preview

  • 7/23/2019 WINSEM2014-15_CP3050_12-Feb-2015_RM01_angleModulation (1)

    1/7

    Angle Modulation

    Phase and frequency modulation together is called Angle Modulation

    c t+ ( t)

    ()x ( t)=Acos

    (t)=c t+ (t)

    Also represented as exponential modulation

    x ( t)={a e(j c t+ (t)) }

    Where,

    ( t)= Instantaneous phase of the carrier signal

    d(t)dt

    = Instantaneous frequency of the carrier signal

    (t)= Instantaneous phase deviation

    d(t)dt = Instantaneous frequency deviation

    Phase Modulation

    ( t)m ( t)

    (t)=kp m (t)

    kp=phase sensitivity (radians

    volt )

    c t+kp m (t)()

    xpm (t)=Acos

    =kpAm=Modulation Index

    Frequency Modulation

  • 7/23/2019 WINSEM2014-15_CP3050_12-Feb-2015_RM01_angleModulation (1)

    2/7

    d (t)dt

    m (t)

    d (t)dt

    =kfm (t)

    ( t)=kf

    t

    m ( s )ds

    kf=frequency sensitivity (radians

    volt )

    c t+kf

    t

    m ( s) ds

    ()x fm ( t)=Acos

    m(s )=kf

    t

    Amcos wm t dt

    ( t)=kfAm

    m

    sinm (t)

    c t+ sinm ( t)()

    x fm(t)=Acos

    =kfAm

    m=Modulation Index

    Taking Fourier series of periodic part of the signal

    x ( t)=Ae {e (j c t) ! e(j sin m ) }

    e(jsin m )="eriodic #i$nal (%iscrete&ime 'ourier #eries)

    f( t)=e (jsinm )=

    n=

    (n ! ejnm t

    (n=m2 )

    )/m

    )/m

    ejn

    mt! e

    (j sinm ) dt

  • 7/23/2019 WINSEM2014-15_CP3050_12-Feb-2015_RM01_angleModulation (1)

    3/7

    &=2 )

    m

    !et m=x

    (n= 1

    2 ))

    )

    ejnx

    ! e(j sinx ) dx

    1

    2 ))

    )

    ej ( sinxnx)

    dx

    This is the standard equation of "essel function of order n

    (n=*n()

    x ( t)=A{e(j c t)!n=

    (n ! ejnm t}

    A{n=

    *n( ) ! e(j ct) ! e

    jnm t}

    A{n=

    *n( ) ! ej ( ct+n m t) }

    xfm( t)=An=

    *n( ) !cos (c t+n m t)

    A series expansion of FM spectral #and$idth gives #and$idth of

    +andwidth=

    FM %eneration

    Indirect method

    a& %enerate '"FM#& Frequency multiplication

    %enerate '"FM

    x ( t)=A cos(c t+(t))

    A cosc tcos ( t)A sinc tsin (t)

  • 7/23/2019 WINSEM2014-15_CP3050_12-Feb-2015_RM01_angleModulation (1)

    4/7

    'o$ (ince (t),2) -cos (t) ,1 - sin (t) , (t)

    x.+'M(t)=Acosc t

    Inphase

    A(t)sinc t

    /uadrature phase

    Frequency multiplier

    x ( t)=A cos(c t+(t))

    e ( t)=A cos(n c t+n sinmt)

    After passing through "PF $ith centre frequency as fc=n fc

    e i ( t)=Acos(c t+ sinmt)

    )irect method

    a& *artley +scillator

    #& "alanced FM discriminator

    *artley oscillator

  • 7/23/2019 WINSEM2014-15_CP3050_12-Feb-2015_RM01_angleModulation (1)

    5/7

    o= 1

    0(

    (=(okm ( t)

    = 1

    0 (o(1km (t)

    (o)

    1

    0 (o1

    1km ( t)

    (o

    =o(1+ km ( t)(o)

    o(1kf1

    m ( t) )

    okfm (t)

    Where,kf=kf

    1okf

    1= km

    2(o

    "alanced FM discriminator

  • 7/23/2019 WINSEM2014-15_CP3050_12-Feb-2015_RM01_angleModulation (1)

    6/7

    (lope )etector

    omplex envelope representation of 21 ( f) (#lope(ircuit)

    ~21( f)={j4 )a ( f++ t/2 )|f|

  • 7/23/2019 WINSEM2014-15_CP3050_12-Feb-2015_RM01_angleModulation (1)

    7/7

    d ~s ( t)dt =

    d

    dt[A c e(j2) kf

    t

    m (3) d3)]

    j 2) kfm (t)A c e(j2) kf

    t

    m (3) d3

    )

    ~s1 (t)=j) + tA c a[1+ 2kfm ( t)+ t ]e(j2) kf

    t

    m (3) d3)

    ~s( t)

    |~s1(t)|=) +ta A c[1+ 2kfm ( t)+t ](econd slope circuit

    ~

    22 ( f)=~

    21(f)=j)a (f++t/2 )

    |~s2(t)|=) +ta A c[12kfm ( t)+t ]|~s1(t)||~s2( t)|=4 ) kfa A c m ( t)

    |~s1(t)||~s2(t)|=4 ) kfa A c m ( t)

    "alanced FM

    )iscriminator