19
Mattias Mohr, Johan Arnqvist, Hans Bergström Uppsala University (Sweden) Wind resource, turbulence and electricity production in forests

Wind resource, turbulence and electricity production in ...standupforwind.se/digitalAssets/491/491178_3vindk... · Wind resource assessment • Better estimations of roughness (z

  • Upload
    others

  • View
    9

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Wind resource, turbulence and electricity production in ...standupforwind.se/digitalAssets/491/491178_3vindk... · Wind resource assessment • Better estimations of roughness (z

Mattias Mohr, Johan Arnqvist, Hans Bergström

Uppsala University (Sweden)

Wind resource, turbulence and electricity

production in forests

Page 2: Wind resource, turbulence and electricity production in ...standupforwind.se/digitalAssets/491/491178_3vindk... · Wind resource assessment • Better estimations of roughness (z

Project:

Wind Power in Forests II - Forestwind

• Continuation of Wind Power in Forests project

• Better estimation of wind resource

• Better estimation of turbine loads (wind shear/veer,

turbulence, inhomogeneous forests)

• Quantify effects on energy production

Use and develop models for these purposes

Page 3: Wind resource, turbulence and electricity production in ...standupforwind.se/digitalAssets/491/491178_3vindk... · Wind resource assessment • Better estimations of roughness (z

Problems

• What is the wind resource over Swedish forests at

150 m height above ground?

• What about the loads?

• Is energy production affected?

Forest height depends on mainly latitude and altitude.

New laser scans give very detailed picture of Swedish forest.

Swedish forest is inhomogeneous (”patchwork”)!!!

Page 4: Wind resource, turbulence and electricity production in ...standupforwind.se/digitalAssets/491/491178_3vindk... · Wind resource assessment • Better estimations of roughness (z

Old mast: Ryningsnäs

140m high mast

18m high

mast

T1, T2 = wind turbines

Page 5: Wind resource, turbulence and electricity production in ...standupforwind.se/digitalAssets/491/491178_3vindk... · Wind resource assessment • Better estimations of roughness (z

New mast: ”Mossen”, Småland

One important question: Can Sodar & Lidar replace masts in forests?

180 m mast

with

turbulence

instruments

Page 6: Wind resource, turbulence and electricity production in ...standupforwind.se/digitalAssets/491/491178_3vindk... · Wind resource assessment • Better estimations of roughness (z

Wind resource assessment

• Better estimations of roughness (z0),

displacement height (d) and leaf area density

improves models (mesoscale and CFD)

• 42 sites in Wind power in forests I (final report) :

d = 16 m; z0 = 1.4 m (median values)

Page 7: Wind resource, turbulence and electricity production in ...standupforwind.se/digitalAssets/491/491178_3vindk... · Wind resource assessment • Better estimations of roughness (z

Wind profile over forest

• Correct input

parameters crucial

for models!

• Especially: How does

inhomogeneous

influence parameters?

Page 8: Wind resource, turbulence and electricity production in ...standupforwind.se/digitalAssets/491/491178_3vindk... · Wind resource assessment • Better estimations of roughness (z

Modelling of forest:

Different approaches

1. Mesoscale models simulate flow down to

displacement height (with drag = f(z0))

2. CFD models simulate flow all the way down

(with drag = f(leaf area density))

Can CFD-type forest parameterisations improve mesoscale

models? Maybe

Can mesoscale models be used instead of CFD models

for micro siting Maybe

For small clearings/forests approach 1 does not work!

Page 9: Wind resource, turbulence and electricity production in ...standupforwind.se/digitalAssets/491/491178_3vindk... · Wind resource assessment • Better estimations of roughness (z

Drag parameterisations

𝜕𝑢

𝜕𝑡= …− Cd · LAD · | 𝑢horizontal | · 𝑢 (same for v-component)

𝑢 = horizontal wind vector, 𝑢 = wind component W-E

Page 10: Wind resource, turbulence and electricity production in ...standupforwind.se/digitalAssets/491/491178_3vindk... · Wind resource assessment • Better estimations of roughness (z

Example results: WRF mesoscale

model

x [km]

z [

m]

Wind Speed Reduction over Forest

-10 -5 0 5 100

50

100

150

200

250

300

0

1

2

3

4

5

6

7

8

9

10

11

WIND

Forest edge

Page 11: Wind resource, turbulence and electricity production in ...standupforwind.se/digitalAssets/491/491178_3vindk... · Wind resource assessment • Better estimations of roughness (z

Forest leaf area density

problematic

How should

we average

data from all

pixels?

Forest leaf area density profile different to theoretical profile!

Theoretical profile

(for mature

homegeneous

forest)

Figur: Johan Arnqvist

Page 12: Wind resource, turbulence and electricity production in ...standupforwind.se/digitalAssets/491/491178_3vindk... · Wind resource assessment • Better estimations of roughness (z

Better input parameters for models

• Nationwide maps of

– Surface roughness

– Displacement height

– Leaf are density = f(height)

from airborne laser scans

• Suggestions of averaging

methods

Tree height from laser scan

Figur: Johan Arnqvist

Page 13: Wind resource, turbulence and electricity production in ...standupforwind.se/digitalAssets/491/491178_3vindk... · Wind resource assessment • Better estimations of roughness (z

Turbulence & loads

• IEC standard exceeded, but does it matter???

Ryningsnäs

Figure: Johan Arnqvist

Page 14: Wind resource, turbulence and electricity production in ...standupforwind.se/digitalAssets/491/491178_3vindk... · Wind resource assessment • Better estimations of roughness (z

Turbulence simulations

• LES = Large Eddy Simulation model (simulates

largest turbulent vortices)

• Forced by data

from WRF

mesoscale

model

• Methods have

to be deve-

loped for this Figure: Bastian Nebenführ (Chalmers)

Wind field during ≈ 1 second

Page 15: Wind resource, turbulence and electricity production in ...standupforwind.se/digitalAssets/491/491178_3vindk... · Wind resource assessment • Better estimations of roughness (z

Energy Production in Forests

Power Curve Working Group identified four main

factors:

1. Air density

2. Vertical wind shear

3. Vertical wind veer

4. Turbulence intensity

5. (Directional variation)

6. (Vertical inflow angle)

Especially high above

forests and in Sweden!!!

Factors 2 - 4 probably most important in South.

Factor 3 probably most important in North.

Page 16: Wind resource, turbulence and electricity production in ...standupforwind.se/digitalAssets/491/491178_3vindk... · Wind resource assessment • Better estimations of roughness (z

Wind shear effects on power curve

• As turbines get bigger and bigger, important to

consider shear and veer! Ekman layer

• Rotor equivalent wind speed with wind veer:

𝑈𝑒𝑞𝑢𝑖𝑣 = (𝑈 𝑖cos(𝜙𝑖))3 ∙𝐴𝑖𝐴

𝑖

1/3

Page 17: Wind resource, turbulence and electricity production in ...standupforwind.se/digitalAssets/491/491178_3vindk... · Wind resource assessment • Better estimations of roughness (z

Turbulence effects on power curve

• Energy gain/loss depending on curvature of

power curve

𝑃 = 𝑃 𝑢 +1

2

𝑑2𝑃(𝑢 )

𝑑𝑢2𝜎𝑢2

Vestas V90-3.0 MW

+

-

≈ 0

Power curve

valid for 10

minute

averages,

but wind

speed

variations

due to

turbulence

wind speed variance

Page 18: Wind resource, turbulence and electricity production in ...standupforwind.se/digitalAssets/491/491178_3vindk... · Wind resource assessment • Better estimations of roughness (z

Förutsätt- ningar

Miljö & Samhälle

Drift &

Underhåll

Nätintegration

Projektering & Etablering

Konstruktion & Produktion

THANK YOU FOR YOUR ATTENTION!

Page 19: Wind resource, turbulence and electricity production in ...standupforwind.se/digitalAssets/491/491178_3vindk... · Wind resource assessment • Better estimations of roughness (z

References

• Halldin, S. (1985): Leaf and bark area distribution in a pine forest. In The forest atmosphere interaction, edited by B.

A. Hutchison and B. B. Hicks (Dordrecht: Reidel Publishing Company), p. 39–58.

• Lalic, B. and D. T. Mihailovic (2004): An Empirical Relation Describing Leaf-Area Density inside the Forest for

Environmental Modeling. Journal of Applied Meteorology, Notes and Correspondence, Vol. 43, p. 641-645.

• Hans Bergström, Henrik Alfredsson, Johan Arnqvist, Ingemar Carlén, Ebba Dellwik, Jens Fransson, Hans

Ganander, Matthias Mohr, Antonio Segalini and Stefan Söderberg: Wind power in forests. Winds and effects on

loads Elforsk rapport 13:09.

• Power Curve Working Group: http://www.pcwg.org/

• Matthias Mohr, Wasana Jayawardena, Johan Arnqvist and Hans Bergström: Wind energy estimation over forest

canopies using WRF mesoscale model. EWEA Annual Event 2014. Poster presentation.