14
PROJECT : PAGE : CLIENT : DESIGN BY : JOB NO. : DATE : REVIEW BY : Wind Analysis for Low-rise Building, Based on ASCE 7-2010 INPUT DATA C 1.00 for all Category V = 120 mph, (193.12 kph) 1 Flat Building height to eave 13 ft, (3.96 m) Building height to ridge 25 ft, (7.62 m) Building length L = 100 ft, (30.48 m) Building width B = 100 ft, (30.48 m) Effective area of components (or Solar Pane A = 4 ( 0.37 DESIGN SUMMARY Max horizontal force normal to building length, L, = 30.40 kips, (135 kN), SD level (LRFD level), Typ. Max horizontal force normal to building length, B, = 38.62 kips, (172 kN) Max total horizontal torsional load = 548.63 ft-kips, (744 kN-m) Max total upward force = 218.73 kips, (973 kN) ANALYSIS Velocity pressure = 27.89 psf where: = 0.89 = 0.85 h = mean roof height = 19.00 ft < 60 ft, [Satisfactory] (ASCE 7-10 26 < Min (L, B), [Satisfactory] (ASCE 7-10 26 Design pressures for MWFRS where: p = pressure in appropriate zone. (Eq. 28.4-1, page 16 psf (ASCE 7-10 28.4.4) = 0.18 or -0.18 a = width of edge strips, Fig 28.4-1, note 9, page 301, MAX[ MIN(0.1B, 0.1L, 0.4h), MIN(0.0 7.60 Net Pressures (psf), Basic Load Cases Net Pressures (psf), Torsional Load Case Surface 13.50 0.00 Surface 13.50 Net Pressure with Net Pressure with Net Pressure with 1 0.47 8.19 18.23 -0.45 -17.57 -7.53 1T 0.47 2.05 4.56 2 -0.69 -24.26 -14.22 -0.69 -24.26 -14.22 2T -0.69 -6.07 -3.56 3 -0.43 -17.08 -7.04 -0.37 -15.34 -5.30 3T -0.43 -4.27 -1.76 4 -0.37 -15.32 -5.28 -0.45 -17.57 -7.53 4T -0.37 -3.83 -1.32 5 0.40 6.14 16.17 Surface 0.00 6 -0.29 -13.11 -3.07 Net Pressure with 1E 0.72 14.99 25.03 -0.48 -18.41 -8.37 2E -1.07 -34.86 -24.82 -1.07 -34.86 -24.82 5T 0.40 1.53 4.04 3E -0.62 -22.33 -12.29 -0.53 -19.80 -9.76 6T -0.29 -3.28 -0.77 4E -0.55 -20.33 -10.29 -0.48 -18.41 -8.37 5E 0.61 11.99 22.03 6E -0.43 -17.01 -6.97 Exposure category (B, C or D, ASCE 7-10 26.7.3) Importance factor (ASCE 7-10 Table 1.5-2) Iw = Basic wind speed (ASCE 7-10 26.5.1 or 2015 IBC) Topographic factor (ASCE 7-10 26.8 & Table 26.8-1) Kzt = he = hr = ft 2 m 2 ) qh = 0.00256 Kh Kzt Kd V 2 qh = velocity pressure at mean roof height, h. (Eq. 28.3-1 page 298 & Eq. 30.3-1 page 316) Kh = velocity pressure exposure coefficient evaluated at height, h, (Tab. 28.3 Kd = wind directionality factor. (Tab. 26.6-1, for building, page 250) p = qh [(G Cpf )-(G Cpi )] pmin = G Cp f = product of gust effect factor and external pressure coefficient, see table below. (Fig. 28.4 G Cp i = product of gust effect factor and internal pressure coefficient.(Tab. 26.11-1, Enclosed Buil Roof angle q = Roof angle q = Roof angle q = G Cp f G Cp f G Cp f (+GCp i ) (-GCp i ) (+GCp i ) (-GCp i ) (+GCp i ) (-GCp i ) Roof angle q = G Cp f (+GCp i ) (-GCp i )

Wind - ASCE7-10 - Structural Design Software - ASCE7-10 - Structural Design Software

  • Upload
    ngothu

  • View
    233

  • Download
    4

Embed Size (px)

Citation preview

Page 1: Wind - ASCE7-10 - Structural Design Software - ASCE7-10 - Structural Design Software

PROJECT : PAGE :

CLIENT : DESIGN BY : JOB NO. : DATE : REVIEW BY :

Wind Analysis for Low-rise Building, Based on ASCE 7-2010

INPUT DATAC

1.00 for all CategoryV = 120 mph, (193.12 kph)

1 Flat

Building height to eave 13 ft, (3.96 m)

Building height to ridge 25 ft, (7.62 m)Building length L = 100 ft, (30.48 m)Building width B = 100 ft, (30.48 m)Effective area of components (or Solar Panel area) A = 4

( 0.37

DESIGN SUMMARYMax horizontal force normal to building length, L, face = 30.40 kips, (135 kN), SD level (LRFD level), Typ.Max horizontal force normal to building length, B, face = 38.62 kips, (172 kN)Max total horizontal torsional load = 548.63 ft-kips, (744 kN-m)Max total upward force = 218.73 kips, (973 kN)

ANALYSISVelocity pressure

= 27.89 psf

where:

= 0.89= 0.85

h = mean roof height = 19.00 ft< 60 ft, [Satisfactory] (ASCE 7-10 26.2.1)< Min (L, B), [Satisfactory] (ASCE 7-10 26.2.2)

Design pressures for MWFRS

where: p = pressure in appropriate zone. (Eq. 28.4-1, page 298). 16 psf (ASCE 7-10 28.4.4)

= 0.18 or -0.18a = width of edge strips, Fig 28.4-1, note 9, page 301, MAX[ MIN(0.1B, 0.1L, 0.4h), MIN(0.04B, 0.04L), 3] = 7.60 ft

Net Pressures (psf), Basic Load Cases Net Pressures (psf), Torsional Load Cases

Surface

13.50 0.00Surface

13.50Net Pressure with Net Pressure with Net Pressure with

1 0.47 8.19 18.23 -0.45 -17.57 -7.53 1T 0.47 2.05 4.562 -0.69 -24.26 -14.22 -0.69 -24.26 -14.22 2T -0.69 -6.07 -3.563 -0.43 -17.08 -7.04 -0.37 -15.34 -5.30 3T -0.43 -4.27 -1.764 -0.37 -15.32 -5.28 -0.45 -17.57 -7.53 4T -0.37 -3.83 -1.325 0.40 6.14 16.17

Surface

0.006 -0.29 -13.11 -3.07 Net Pressure with

1E 0.72 14.99 25.03 -0.48 -18.41 -8.372E -1.07 -34.86 -24.82 -1.07 -34.86 -24.82 5T 0.40 1.53 4.043E -0.62 -22.33 -12.29 -0.53 -19.80 -9.76 6T -0.29 -3.28 -0.774E -0.55 -20.33 -10.29 -0.48 -18.41 -8.375E 0.61 11.99 22.036E -0.43 -17.01 -6.97

Exposure category (B, C or D, ASCE 7-10 26.7.3)

Importance factor (ASCE 7-10 Table 1.5-2) Iw =Basic wind speed (ASCE 7-10 26.5.1 or 2015 IBC)

Topographic factor (ASCE 7-10 26.8 & Table 26.8-1) Kzt =

he =

hr =

ft2

m2)

qh = 0.00256 Kh Kzt Kd V2

qh = velocity pressure at mean roof height, h. (Eq. 28.3-1 page 298 & Eq. 30.3-1 page 316)

Kh = velocity pressure exposure coefficient evaluated at height, h, (Tab. 28.3-1, pg 299)

Kd = wind directionality factor. (Tab. 26.6-1, for building, page 250)

p = qh [(G Cpf )-(G Cpi )]pmin =

G Cp f = product of gust effect factor and external pressure coefficient, see table below. (Fig. 28.4-1, page 300 & 301)

G Cp i = product of gust effect factor and internal pressure coefficient.(Tab. 26.11-1, Enclosed Building, page 258)

Roof angle q = Roof angle q = Roof angle q =

G Cp f G Cp f G Cp f(+GCp i ) (-GCp i ) (+GCp i ) (-GCp i ) (+GCp i ) (-GCp i )

Roof angle q =

G Cp f (+GCp i ) (-GCp i )

Page 2: Wind - ASCE7-10 - Structural Design Software - ASCE7-10 - Structural Design Software

Basic Load Case A (Transverse Direction) Basic Load Case B (Longitudinal Direction)

SurfaceArea Pressure (k) with

SurfaceArea Pressure (k) with

1 1102 9.03 20.09 2 4360 -105.79 -62.022 4360 -105.79 -62.02 3 4360 -66.88 -23.103 4360 -74.46 -30.68 5 1689 10.36 27.314 1102 -16.89 -5.82 6 1689 -22.13 -5.18

1E 198 2.96 4.95 2E 782 -27.25 -19.402E 782 -27.25 -19.40 3E 782 -15.48 -7.633E 782 -17.45 -9.60 5E 211 2.54 4.664E 198 -4.02 -2.03 6E 211 -3.60 -1.47

S Horiz. 23.29 23.29 S Horiz. 38.62 38.62Vert. -218.73 -118.34 Vert. -168.94 -79.67

Min. wind Horiz. 30.40 30.40 Min. wind Horiz. 30.40 30.4028.4.4 Vert. -160.00 -160.00 28.4.4 Vert. -160.00 -160.00

Torsional Load Case A (Transverse Direction) Torsional Load Case B (Longitudinal Direction)

SurfaceArea Pressure (k) with Torsion (ft-k)

SurfaceArea Pressure (k) with Torsion (ft-k)

1 452 3.70 8.25 79 175 2 4360 -105.79 -62.02 -94 -552 1789 -43.42 -25.45 -215 -126 3 4360 -66.88 -23.10 59 203 1789 -30.56 -12.59 151 62 5 739 4.53 11.95 88 2324 452 -6.93 -2.39 147 51 6 739 -9.68 -2.27 188 44

1E 198 2.96 4.95 126 210 2E 782 -27.25 -19.40 294 2092E 782 -27.25 -19.40 -270 -192 3E 782 -15.48 -7.63 -167 -823E 782 -17.45 -9.60 173 95 5E 211 2.54 4.66 117 2154E 198 -4.02 -2.03 170 86 6E 211 -3.60 -1.47 166 681T 650 1.33 2.96 -33 -74 5T 950 1.46 3.84 -33 -862T 2571 -15.59 -9.14 91 53 6T 950 -3.11 -0.73 -70 -16

3T 2571 -10.98 -4.52 -64 -26 548.6 548.64T 650 -2.49 -0.86 -62 -21

292 292

Design pressures for components and cladding

where: p = pressure on component. (Eq. 30.4-1, pg 318)

16.00 psf (ASCE 7-10 30.2.2)

see table below. (ASCE 7-10 30.4.2)

Effective Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

Comp. 4 0.50 -0.90 0.50 -1.90 0.50 -2.60 1.00 -1.10 1.00 -1.40

Comp. & Cladding Zone 1 Zone 2 Zone 3 Zone 4 Zone 5Pressure Positive Negative Positive Negative Positive Negative Positive Negative Positive Negative

( psf ) 18.96 -30.12 18.96 -58.01 18.96 -77.53 32.91 -35.70 32.91 -44.06

Note: If the effective area is roof Solar Panel area, the only zone 1, 2 , or 3 apply.

(ft2) (+GCp i ) (-GCp i ) (ft2) (+GCp i ) (-GCp i )

(ft2) (+GCp i ) (-GCp i ) (+GCp i ) (-GCp i ) (ft2) (+GCp i ) (-GCp i ) (+GCp i ) (-GCp i )

Total Horiz. Torsional Load, MT

Total Horiz. Torsional Load, MT

p = qh[ (G Cp) - (G Cpi)]

pmin =

G Cp = external pressure coefficient.

Area (ft2) GCP - GCP GCP - GCP GCP - GCP GCP - GCP GCP - GCP

Page 3: Wind - ASCE7-10 - Structural Design Software - ASCE7-10 - Structural Design Software

PROJECT : PAGE :

CLIENT : DESIGN BY : JOB NO. : DATE : REVIEW BY :

Wind Analysis for Building with h > 60 ft, Based on ASCE 7-2010

INPUT DATAC

1.00 for all CategoryV = 113.842 mph, (183.21 kph)

1 FlatBuilding height to roof H = 157 ft, (47.85 m)

Parapet height 4 ft, (1.22 m)Building length L = 300 ft, (91.44 m)Building width B = 180 ft, (54.86 m)

0.95541 Hz, (1 / T)

Effective area of mullion 55 5.12Effective area of panel 27 2.51

DESIGN SUMMARYMax building horizontal force normal to building length, L, face = 1917.6 kips, (8530 kN), SD/LRFD level, Typ.Max overturning moment at wind normal to building length, L, face = 288910.1 ft-kips, (391710 kN-m)Max building horizontal force normal to building length, B, face = 1020.7 kips, (4540 kN)Max overturning moment at wind normal to building length, B, face = 256214.3 ft-kips, (347380 kN-m)Max building upward force = 2142.0 kips, (9528 kN)Max building torsion force = 64720.4 ft-kips, (87749 kN-m)

ANALYSISVelocity pressures

where: 16 psf (ASCE 7-10 27.4.7)

= 0.85z = height above ground

z (ft) 0 - 15 20 25 30 40 50 60 70 80 90 100 120

0.85 0.90 0.94 0.98 1.04 1.09 1.13 1.17 1.21 1.24 1.26 1.31

23.97 25.38 26.51 27.64 29.33 30.74 31.87 33.00 34.12 34.97 35.53 36.94

z (ft) 140 160 161 161 161 161 161 161 161 161

1.36 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39

38.35 39.20 39.26 39.26 39.26 39.26 39.26 39.26 39.26 39.26

Design pressures for MWFRS

where: p = pressure on surface for rigid building with all h. (Eq. 27.4-1, page 260).

= 0.18 or -0.18

G = gust effect factor (ASCE 7-10 26.9, Page 254)

0.17 94.2 Q = 0.84

15 3.4 617

= 0.856 c = 0.2 4.18 0.05

0.168 0.148 0.028

4.62 0.053 R = 0.120

h = 157 3.4 127.5

Roof h / B Distance CpTo L Face 0.89 80.5 -1.01To L Face 0.89 161 -0.74To L Face 0.89 180 -0.66To L Face 0.89 180

Roof h / L Distance Cp

To B Face 0.54 80.5 -0.91 Fig. 27.4-1, page 263 To B Face 0.54 161 -0.89

Wall Direction L / B Cp To B Face 0.54 300 -0.51Windward Wall All All 0.80 To B Face 0.54 300Leeward Wall To L Dir 0.60 -0.50Leeward Wall To B Dir 1.67 -0.37

Exposure category (B, C or D, ASCE 7-10 26.7.3)

Importance factor (ASCE 7-10 Table 1.5-2) Iw =Basic wind speed (ASCE 7-10 26.5.1 or 2015 IBC)

Topographic factor (ASCE 7-10 26.8 & Table 26.8-1) Kzt =

HP =

Natural frequency (ASCE 7-10 26.9) n1 =

AM = ft2 ( m2)AP = ft2 ( m2)

qz = 0.00256 Kz Kzt Kd V2

qz = velocity pressure at height, z. (Eq. 27.3-1, page 260 & Eq. 30.3-1 page 316) pmin =

Kz = velocity pressure exposure coefficient evaluated at height, z. (Tab. 27.3-1, page 261)

Kd = wind directionality factor. (Tab. 26.6-1, for building, page 250)

Kz

qz (psf)

Kz

qz (psf)

p = q G Cp - qh (G Cpi)

q = qz for windward wall at height z above the ground, see table above.

G Cp i = internal pressure coefficient. (Tab. 26.11-1, Enclosed Building, page 258)

qh = qz value at mean roof height, h, for leeward wall, side walls, and roof.

Cp = external pressure coefficient, see right down tables. (Tab. 27.4-1, page 263)

Iz = z =

zmin = gQ = Lz =

gR = b =

Rh = RB = RL =

N1 = Rn =

gv = Vz =

Fig. 27.4-1 fo q < 10o, page 263

q G Cp Figure for Gable, Hip Roof, page 263

2 2 2 2

1

1

1 1.70.925 , 1.0

1 1.7

1 1.70.925 , 1.0

1 1.7

Q R

zv

Q

zv

g Q gI Rz for ng I

GQg I z for n

g I

Page 4: Wind - ASCE7-10 - Structural Design Software - ASCE7-10 - Structural Design Software

Side Wall All All -0.70

Page 5: Wind - ASCE7-10 - Structural Design Software - ASCE7-10 - Structural Design Software

(cont'd)Hence, MWFRS Net Pressures are given by following tables (ASCE 7-10 27.4.1, Page 260)

P (psf) with P (psf) withSurface z (ft) Surface z (ft)

Win

dwar

d W

all

0 - 15 9.35 23.49 Side Wall All -30.59 -16.4620 10.32 24.4525 11.09 25.2230 11.86 26.00 Normal to L Face P (psf) with Normal to B Face P (psf) with40 13.02 27.16 Surface z (ft) Surface z (ft)50 13.99 28.12 Leeward All -23.87 -9.74 Leeward All -19.39 -5.2660 14.76 28.8970 15.53 29.6780 16.31 30.44 Normal to L Face P (psf) with Normal to B Face P (psf) with90 16.89 31.02 Surface Dist. (ft) Surface Dist. (ft)100 17.27 31.41

Roof

0 - 80.5 -41.03 -26.90

Roof

0 - 80.5 -37.66 -23.53120 18.24 32.37 161 -32.01 -17.88 161 -36.82 -22.69140 19.20 33.34 180 -29.17 -15.04 300 -24.36 -10.23160 19.78 33.92161 19.82 33.95

Figure 27.4-8, page 271Base Forces

Normal to L Face Normal to B Face Wind with AngleASCE-7Case 1 Case 2 Case 1 Case 2 Case 3 Case 4

(kips) 1918 1438 1021 766 2204 1223

(ft - kips) 288910 216683 256214 192161 408843 217405 Fig. 27.4-8

(ft - kips) 0 64720 0 20669 0 64099 Page 271

(kips) 1549 1162 1307 980 2142 1141

(kips) 773 773 464 464 927 901 Min. wind

(kips) 864 864 864 864 864 864 27.4.7

Design pressures for components and cladding

where: p = pressure on component for building with h > 60 ft. (Eq. 30.6-1, page 320)

16.00 psf (ASCE 7-10 30.2.2)

0.18 or -0.18a = Zone width = MAX[ MIN(0.1B, 0.1L), 3] = 18.0 ft, (Fig 30.6-1 note 8, pg 348)

Wall Actual Effective Zone 4 Zone 5Comp.

Mullion 55 0.81 -0.84 0.81 -1.55Panel 27 0.87 -0.88 0.87 -1.73

z (ft)

Mullion Pressure (psf) Panel Pressure (psf)Zone 4 Zone 5 Zone 4 Zone 5

Positive Negative Positive Negative Positive Negative Positive Negative

0 - 15 23.63 -39.93 23.63 -67.86 25.22 -41.66 25.22 -74.8020 25.02 -39.93 26.70 -67.86 26.70 -41.66 26.70 -74.8025 26.13 -39.93 27.89 -67.86 27.89 -41.66 27.89 -74.8030 27.24 -39.93 29.07 -67.86 29.07 -41.66 29.07 -74.8040 28.91 -39.93 30.86 -67.86 30.86 -41.66 30.86 -74.8050 30.30 -39.93 32.34 -67.86 32.34 -41.66 32.34 -74.8060 31.41 -39.93 33.53 -67.86 33.53 -41.66 33.53 -74.8070 32.52 -39.93 34.71 -67.86 34.71 -41.66 34.71 -74.8080 33.64 -39.93 35.90 -67.86 35.90 -41.66 35.90 -74.8090 34.47 -39.93 36.79 -67.86 36.79 -41.66 36.79 -74.80

100 35.03 -39.93 37.38 -67.86 37.38 -41.66 37.38 -74.80120 36.42 -39.93 38.87 -67.86 38.87 -41.66 38.87 -74.80140 37.81 -39.93 40.35 -67.86 40.35 -41.66 40.35 -74.80160 38.64 -39.93 41.24 -67.86 41.24 -41.66 41.24 -74.80161 38.70 -39.93 41.30 -67.86 41.30 -41.66 41.30 -74.80

GCPi - GCPi GCPi - GCPi

GCPi - GCPi GCPi - GCPi

GCPi - GCPi GCPi - GCPi

VBase

MBase

MT

FUpward

Vmin

FUp,min

p = q (G Cp) - qi (G Cpi)

pmin =

q = qz for windward wall at height z above the ground, see table above.

qh = qz value at mean roof height, h, for leeward wall, side walls, and roof.

G Cp i = internal pressure coefficient. (Tab. 26.11-1, pg 258) =

G Cp = external pressure coefficient. (Fig 30.6-1 note 8, pg 348)

Area ( ft2 ) GCP - GCP GCP - GCP

Page 6: Wind - ASCE7-10 - Structural Design Software - ASCE7-10 - Structural Design Software
Page 7: Wind - ASCE7-10 - Structural Design Software - ASCE7-10 - Structural Design Software

cont'd

RoofEffective Zone 1 Zone 2 Zone 3

Com

pone

nts

and

Cla

ddin

g

0 -1.40 -2.30 -3.2010 -1.40 -2.30 -3.2059 -1.17 -1.98 -2.79

108 -1.10 -1.87 -2.65157 -1.05 -1.81 -2.57206 -1.01 -1.76 -2.50255 -0.99 -1.72 -2.45304 -0.96 -1.69 -2.41353 -0.94 -1.66 -2.38402 -0.93 -1.64 -2.35451 -0.91 -1.62 -2.32500 -0.90 -1.60 -2.30

38016 -0.90 -1.60 -2.3038016 4104 972

RoofEffective Net Pressure (psf)

Zone 1 Zone 2 Zone 3

Com

pone

nts

and

Cla

ddin

g

0 -62.02 -97.35 -132.6810 -62.02 -97.35 -132.6859 -53.12 -84.89 -116.65

108 -50.09 -80.64 -111.19157 -48.21 -78.01 -107.82206 -46.85 -76.10 -105.36255 -45.77 -74.60 -103.44304 -44.89 -73.37 -101.85353 -44.14 -72.32 -100.50402 -43.49 -71.41 -99.32451 -42.91 -70.60 -98.29500 -42.40 -69.88 -97.35

38016 -42.40 -69.88 -97.35

Area ( ft2 ) - GCP - GCP - GCP

Area ( ft2 )