29
WinBUGS code WinBUGS code for the state-space model fitted to Argos/GPS and geolocation data. This model and code are modifications of the 'DCRW' model presented by Jonsen et al. (2005). model; { pi <- 3.141592653589 pi2 <- 2 * pi npi <- pi * -1 Omega[1, 1] <- 1 Omega[1, 2] <- 0 Omega[2, 1] <- 0 Omega[2, 2] <- 1 ## priors on process uncertainty iSigma[1:2, 1:2] ~ dwish(Omega[, ], 2) Sigma[1:2, 1:2] <- inverse(iSigma[, ]) ## Priors for first location for(k in 1:2){ x[1, k] ~ dt(y[1, k], 100, 2) } ## Assume simple random walk to estimate 2nd regular position x[2, 1:2] ~ dmnorm(x[1, ], iSigma[, ]) theta ~ dunif(npi, pi) ## prior for theta (mean turn angle) gamma ~ dbeta(1, 1) ## prior for gamma (persistence) logpsi ~ dunif(-10, 10) ## prior for scaling factor applied to Argos/GPS measurement error psi <- exp(logpsi) ## Priors for precisions in geolocation estimates of longitude and latitude. logvarg[1] ~ dunif(-1000, 1000) logvarg[2] ~ dunif(-1000, 1000) taug[1] <- 1 / exp(logvarg[1]) taug[2] <- 1 / exp(logvarg[2]) ## Transition equation for(t in 2:(RegN - 1)){ ## Build transition matrix for rotational component T[t, 1, 1] <- cos(theta) T[t, 1, 2] <- -sin(theta) T[t, 2, 1] <- sin(theta) T[t, 2, 2] <- cos(theta) for(k in 1:2){ Tdx[t, k] <- T[t, k, 1] * (x[t, 1] - x[t - 1, 1]) + T[t, k, 2] * (x[t, 2] - x[t - 1, 2]) ## matrix multiplication x.mn[t, k] <- x[t, k] + gamma * Tdx[t, k] ## predict next location (no process error) } x[t + 1, 1:2] ~ dmnorm(x.mn[t, ], iSigma[, ]) ## predict next location (with process error) } ## Measurement equation for Argos/GPS data. 1

WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

  • Upload
    dophuc

  • View
    215

  • Download
    3

Embed Size (px)

Citation preview

Page 1: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

WinBUGS code

WinBUGS code for the state-space model fitted to Argos/GPS and geolocation data. This model and code are modifications of the 'DCRW' model presented by Jonsen et al. (2005).

model;{

pi <- 3.141592653589pi2 <- 2 * pinpi <- pi * -1

Omega[1, 1] <- 1Omega[1, 2] <- 0Omega[2, 1] <- 0Omega[2, 2] <- 1

## priors on process uncertaintyiSigma[1:2, 1:2] ~ dwish(Omega[, ], 2)Sigma[1:2, 1:2] <- inverse(iSigma[, ])

## Priors for first locationfor(k in 1:2){

x[1, k] ~ dt(y[1, k], 100, 2)}

## Assume simple random walk to estimate 2nd regular positionx[2, 1:2] ~ dmnorm(x[1, ], iSigma[, ])

theta ~ dunif(npi, pi) ## prior for theta (mean turn angle)gamma ~ dbeta(1, 1) ## prior for gamma (persistence)logpsi ~ dunif(-10, 10) ## prior for scaling factor applied to Argos/GPS measurement errorpsi <- exp(logpsi)

## Priors for precisions in geolocation estimates of longitude and latitude.logvarg[1] ~ dunif(-1000, 1000)logvarg[2] ~ dunif(-1000, 1000)taug[1] <- 1 / exp(logvarg[1])taug[2] <- 1 / exp(logvarg[2])

## Transition equationfor(t in 2:(RegN - 1)){

## Build transition matrix for rotational componentT[t, 1, 1] <- cos(theta)T[t, 1, 2] <- -sin(theta)T[t, 2, 1] <- sin(theta)T[t, 2, 2] <- cos(theta)for(k in 1:2){

Tdx[t, k] <- T[t, k, 1] * (x[t, 1] - x[t - 1, 1]) + T[t, k, 2] * (x[t, 2] - x[t - 1, 2]) ## matrix multiplicationx.mn[t, k] <- x[t, k] + gamma * Tdx[t, k] ## predict next location (no process error)

}x[t + 1, 1:2] ~ dmnorm(x.mn[t, ], iSigma[, ]) ## predict next location (with process error)

}

## Measurement equation for Argos/GPS data.

1

Page 2: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

for(t in 2:RegN){ ## loops over regular time intervals (t)for(i in idx[t - 1]:(idx[t] - 1)){ ## loops over observed locations within interval t

for(k in 1:2){itau2.psi[i, k] <- itau2[i, k] * psizhat[i, k] <- (1 - j[i]) * x[t - 1, k] + j[i] * x[t, k] ## interpolate irregularly observed locationsy[i, k] ~ dt(zhat[i, k], itau2.psi[i, k], nu[i, k]) ## robust measurement equation

}}

}

##Measurement equation for geolocation data.for(t in 2:RegN){ ## loops over regular time intervals (t)

for(i in idxg[t - 1]:(idxg[t] - 1)){ ## loops over observed locations within interval tfor(k in 1:2){

zhatg[i, k] <- (1 - jg[i]) * x[t - 1, k] + jg[i] * x[t, k] ## interpolate irregularly observed locationsyg[i, k] ~ dnorm(zhatg[i, k], taug[k]) ## measurement equation

}}

}

}

2

Page 3: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

Tagging methods

The following sections describe details of the tagging methods for each species group.

Sharks

We analyzed data from four shark species that together provided a broad latitu-dinal coverage: blue (Prionace glauca Linnaeus, 1758), Galapagos (Carcharhinusgalapagensis Snodgrass and Heller, 1905), short-finned mako (Isurus oxyrinchusRafinesque, 1810), and salmon (Lamna ditropis Hubbs and Follett, 1947). Sharksranged in size from 125 to 230 cm in total length and were double-tagged withgeolocation PAT (pop-up archival transmitting) tags (Wildlife Computers PAT2,PAT3, PAT4 and Mk10) and Argos-positioning SPOT tags (Wildlife Computers,Redmond, WA, USA). Blue sharks (n = 14) were tagged off the coast of California,USA and Baja California, Mexico in 2004 and 2006-2008 during January, June, Julyand November. Mako sharks (n = 25) were tagged in the same geographic regionbetween 2003 and 2008 mainly during June and July but one mako shark was taggedin each of January, October and November. Salmon sharks (n = 34) were taggedin Prince William Sound, Alaska, USA during July and August between 2003 and2007. Galapagos sharks (n = 2) were tagged near the Galapagos Islands, Ecuadorduring July 2006. Release locations were known exactly for all shark deployments,but sharks were not recaptured so exact final positions were not available.

Birds

We analyzed data from two albatross species: black-footed (Phoebastria nigripesAudubon, 1839) and Laysan (P. immutabilis Rothschild, 1893). Both species weretagged during the breeding season at Tern Island (23◦N, 166◦W), French FrigateShoals, Northwest Hawaiian Islands, USA from mid-December to late January. Allbirds were of breeding age (> 6 years) and there were roughly equal numbers of bothsexes for each species. Individuals were captured off the nest and tagged prior totheir departure to sea to forage during the egg incubation period. After returningfrom sea (5-30 days later), birds were captured either before or shortly after resumingnest duties. Albatrosses were equipped with a satellite platform transmitter terminal

3

Page 4: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

(PTT), which was either a Microwave Telemetry 35g Pico-100 (Microwave Telemetry,Columbia, MD, USA) or a Wildlife Computers 35g SPOT4. These tags were attachedto mantle feathers on the bird’s back using Tesa R© adhesive tape, wrapped aroundseveral layers of feathers. Each bird was also equipped with a Lotek LTD 2400 orLAT 2500 archival geolocation data logger (Lotek Wireless, St. John’s, NL, Canada)programmed to record ambient light, temperature, and pressure every 2-32 seconds,and to calculate daily light-based latitude and longitude. These loggers were fixedto a plastic band worn around a bird’s leg. In total, the combined mass of alltags added to each bird ranged from 1-1.5%. Black-footed albatross were taggedin the 2004/2005 and 2005/2006 seasons, and Laysan albatross were tagged in the2002/2003, 2004/2005 and 2005/2006 seasons. Further details about data processingare explained in Shaffer et al. (2005).

Pinnipeds

California sea lions (Zalophus californianus Lesson, 1828) were tagged at San Nico-las Island, California, USA in November 2007 and were recaptured in January andFebruary 2008. All sea lions were lactating adult females (n = 9). Sea lions weretagged with Wildlife Computers model Mk10-AF (Argos-linked Fastloc GPS) andLotek LTD 2300 or 2310 archival geolocation tags. All tags were attached to thedorsal pelage of the back. GPS tags were programmed to not store locations duringtimes when the sea lions were hauled out on land. Haul-out periods were inferredby visual identification of gaps in the GPS data preceded and followed by directedmovements to and from the deployment/recapture location, respectively. Geoloca-tion data that occurred between the two GPS data points defining these inferredhaul-out periods were removed from the analysis. Release and recovery locationswere known exactly for all sea lions.

Error estimates

The following describes how estimates of geolocation errors were calculated for eachindividual, species and species group from the posterior probability distributions.For each individual i, the samples of SDlon and SDlat from the joint posterior proba-bility distribution were log-transformed and the means and variances were calculated

4

Page 5: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

( ˆlog SDlon,i and σ2ˆlog SDlon,i

, respectively, and similarly for latitude). We used means

on the log scale so that the mean estimated precision would equal the reciprocal ofthe mean estimated variance. Estimates were also calculated for each group j on thelog-scale ( ˆlog SDlon,j and ˆlog SDlat,j) as the average of the relevant individual meansweighted by the inverse of their variance. The weighted average on the log-scale wasmore appropriate as the individual means were weighted by their CVs rather thantheir variances and thus the weighting partially reflected the number of geolocationdata for each animal rather than the positive relationship between a variance esti-mate and the variance of that estimate. Group estimates were calculated as followsusing formulas for a fixed-effects meta-analysis (Normand, 1999):

ˆlog SDlon,j =

∑iWi

ˆlog SDlon,i∑iWi

(1)

where

Wi =1

σ2ˆlog SDlon,i

(2)

and individuals subscripted by i belong to group j. The variance of the group meanon the log-scale (σ2

ˆlog SDlon,j) was calculated as (Normand, 1999):

σ2ˆlog SDlon,j

= (∑i

Wi)−1 (3)

Individual and group estimates and their variances were then back-transformed sothat:

SDlon = eˆlog SDlon (4)

and assuming a normal distribution for ˆlog SDlon:

σ2SDlon

= e2ˆlog SDlone

σ2ˆlog SDlon (e

σ2ˆlog SDlon − 1) (5)

References

Jonsen, I. D., Flemming, J. M. & Myers, R. A. (2005). Robust state-space modelingof animal movement data. Ecology , 86, 2874–2880.

Normand, S.-L. T. (1999). Meta-analysis: formulating, evaluating, combining andreporting. Statistics in Medicine, 18, 321–359.

5

Page 6: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

Shaffer, S. A., Tremblay, Y., Awkerman, J. A., Henry, R. W., Teo, S. L. H., Anderson,D. J., Croll, D. A., Block, B. A. & Costa, D. P. (2005). Comparison of light- andSST-based geolocation with satellite telemetry in free-ranging albatrosses. MarineBiology , 147, 833–843.

6

Page 7: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

Supple

men

tary

Tab

le1.

Num

ber

ofA

rgos

/GP

Sdat

a(n

Argos/GPS),

num

ber

ofge

oloca

tion

dat

a(n

geo

loca

tion),

model

trac

kle

ngt

h(d

),es

tim

ated

SD

ofer

rors

inlo

ngi

tude

(SD

lon)

and

lati

tude

(SD

lat)

geol

oca

tion

s(d

egre

es),

SD

sof

thes

eer

ror

esti

mat

es(σ

SD

lon

andσSD

lat),

and

the

pro

por

tion

ofm

ean

esti

mat

edlo

ngi

tudes

and

lati

tudes

from

the

model

fitt

edto

Arg

os/G

PS

and

geol

oca

tion

dat

ath

atfe

llw

ithin

the

95%

pos

teri

orpro

bab

ilit

y

inte

rval

for

the

corr

esp

ondin

ges

tim

ates

from

the

model

fitt

edto

only

geol

oca

tion

dat

a(c

over

age;n

=num

ber

oflo

cati

ons

that

wer

eco

mpar

edb

etw

een

model

s)fo

rea

chin

div

idual

.

Indiv

idual

nArgos/GPS

ngeo

loca

tion

Tra

ckle

ngt

hS

Dlon

σSD

lon

SD

lat

σSD

lat

Cov

erag

e

Lon

.L

at.

n

blu

esh

ark

166

1145

0.4

0.1

0.9

0.2

1.00

1.00

22

287

1642

0.7

0.1

1.0

0.2

0.96

1.00

23

323

16

920.

20.

11.

50.

51.

001.

0012

428

559

0.5

0.2

1.0

0.4

1.00

1.00

10

533

1133

0.5

0.1

0.9

0.2

1.00

1.00

22

691

1348

0.4

0.1

0.6

0.1

1.00

1.00

16

766

1530

0.4

0.1

1.9

0.4

1.00

0.61

18

814

69

138

0.4

0.1

6.7

1.8

1.00

0.36

14

927

326

151

0.4

0.1

1.4

0.2

1.00

1.00

49

1020

215

107

0.6

0.1

3.3

0.6

0.97

0.57

30

1130

711

208

0.4

0.1

3.9

0.9

1.00

0.59

22

7

Page 8: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

Supple

men

tary

Tab

le1.

Con

tinued

.

Sp

ecie

s/In

div

idual

nArgos/GPS

ngeo

loca

tion

Tra

ckle

ngt

hS

Dlon

σSD

lon

SD

lat

σSD

lat

Cov

erag

e

Lon

.L

at.

n

1211

28

217

0.4

0.1

6.4

1.8

1.00

0.63

16

1337

316

246

0.5

0.1

1.5

0.3

1.00

0.81

32

1450

49

303

0.5

0.1

0.5

0.1

1.00

1.00

16

Gal

apag

ossh

ark

162

645

0.5

0.2

0.4

0.1

1.00

1.00

7

254

1126

0.8

0.2

1.2

0.3

0.92

1.00

13

mak

osh

ark

150

453

670.

60.

10.

50.

11.

001.

0061

257

128

442

0.7

0.1

1.3

0.2

1.00

0.96

56

320

316

157

0.5

0.1

1.1

0.2

1.00

0.91

32

431

121

217

0.6

0.1

1.9

0.3

1.00

0.95

42

574

718

396

0.5

0.1

1.0

0.2

1.00

1.00

29

618

17

841.

10.

32.

00.

60.

861.

0014

790

780

125

0.7

0.1

1.5

0.1

0.95

0.87

103

897

170

240

0.6

0.05

1.7

0.1

0.99

0.85

105

912

1797

290

0.7

0.05

1.3

0.1

0.99

0.86

136

1031

225

640.

70.

11.

30.

21.

000.

9539

1110

916

470.

50.

10.

70.

11.

001.

0031

1266

714

346

0.6

0.1

1.2

0.2

1.00

1.00

28

8

Page 9: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

Supple

men

tary

Tab

le1.

Con

tinued

.

Sp

ecie

s/In

div

idual

nArgos/GPS

ngeo

loca

tion

Tra

ckle

ngt

hS

Dlon

σSD

lon

SD

lat

σSD

lat

Cov

erag

e

Lon

.L

at.

n

1326

612

118

0.6

0.1

2.1

0.4

1.00

0.91

23

1416

923

810.

50.

12.

30.

31.

000.

8046

1558

918

347

0.5

0.1

3.2

0.6

1.00

0.74

35

1642

017

388

0.6

0.1

2.0

0.4

1.00

0.85

34

1713

315

126

0.8

0.1

1.0

0.2

1.00

1.00

30

1899

125

707

0.5

0.1

0.8

0.1

0.98

1.00

50

1929

319

364

0.5

0.1

0.9

0.1

1.00

1.00

38

2049

427

301

0.5

0.1

1.0

0.1

1.00

1.00

54

2169

121

581

0.6

0.1

0.7

0.1

1.00

1.00

41

2249

027

416

0.6

0.1

1.0

0.1

1.00

0.92

52

2352

825

283

0.6

0.1

1.5

0.2

0.98

1.00

47

2434

927

257

0.7

0.1

1.0

0.1

1.00

1.00

53

2522

516

249

0.5

0.1

2.8

0.5

1.00

0.84

31

salm

onsh

ark

116

87

274

0.6

0.2

4.5

1.4

1.00

0.62

13

254

1030

0.9

0.2

6.8

1.7

1.00

0.14

14

354

736

1.1

0.3

3.3

1.0

0.92

0.38

13

413

3646

619

1.0

0.1

3.2

0.4

0.94

0.51

71

513

2050

934

1.1

0.1

1.9

0.2

0.93

0.86

81

9

Page 10: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

Supple

men

tary

Tab

le1.

Con

tinued

.

Sp

ecie

s/In

div

idual

nArgos/GPS

ngeo

loca

tion

Tra

ckle

ngt

hS

Dlon

σSD

lon

SD

lat

σSD

lat

Cov

erag

e

Lon

.L

at.

n

679

77

1326

0.7

0.2

1.5

0.5

1.00

1.00

12

711

6018

677

0.5

0.1

2.5

0.4

1.00

0.79

33

812

7513

714

0.9

0.2

5.2

1.1

1.00

0.60

25

970

116

973

0.7

0.1

3.4

0.6

1.00

0.72

32

1021

323

300

0.9

0.1

5.4

0.9

0.96

0.26

46

1159

19

370

0.8

0.2

3.5

0.9

0.94

0.78

18

1210

2213

1034

1.1

0.2

5.5

1.2

0.88

0.52

25

1312

5414

987

1.7

0.3

18.0

3.7

0.83

0.00

24

1410

0185

483

0.8

0.1

7.1

0.6

0.91

0.57

159

1581

424

590

2.2

0.3

7.3

1.1

0.67

0.46

48

1631

548

211

0.8

0.1

1.8

0.2

0.96

0.93

94

1727

39

763

0.6

0.2

7.0

1.8

1.00

0.78

18

1863

338

470

0.6

0.1

3.6

0.4

1.00

0.59

76

1924

88

581

0.8

0.2

7.7

2.2

1.00

0.56

16

2010

8868

549

1.4

0.1

5.0

0.4

0.82

0.64

136

2146

530

0.9

0.3

1.4

0.5

1.00

1.00

10

2213

214

441.

00.

21.

20.

20.

931.

0028

2312

4759

756

1.1

0.1

5.5

0.5

0.91

0.59

103

2467

277

551

0.7

0.1

2.7

0.2

0.93

0.71

123

10

Page 11: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

Supple

men

tary

Tab

le1.

Con

tinued

.

Sp

ecie

s/In

div

idual

nArgos/GPS

ngeo

loca

tion

Tra

ckle

ngt

hS

Dlon

σSD

lon

SD

lat

σSD

lat

Cov

erag

e

Lon

.L

at.

n

2545

537

277

0.9

0.1

2.8

0.3

0.93

0.77

60

2654

1559

0.6

0.1

5.3

1.1

1.00

0.29

24

2740

254

300

0.7

0.1

2.8

0.3

0.93

0.87

87

2869

924

447

0.6

0.1

2.1

0.3

1.00

0.94

48

2912

9014

620

0.8

0.2

4.4

0.9

0.96

0.50

28

3040

320

224

0.7

0.1

2.6

0.4

1.00

0.71

38

3156

519

337

0.8

0.1

4.1

0.7

1.00

0.62

37

3223

819

510.

60.

12.

60.

41.

000.

7629

3311

1235

674

1.1

0.1

1.0

0.1

0.92

1.00

48

3476

544

673

0.5

0.1

5.8

0.6

1.00

0.33

61

blac

k-fo

oted

alba

tros

s

129

115

17.2

52.

50.

52.

30.

50.

940.

8816

236

210

21.7

53.

50.

91.

50.

40.

620.

9213

340

511

214.

00.

91.

50.

30.

751.

0016

417

36

104.

51.

51.

30.

50.

830.

836

516

59

10.5

2.7

0.7

0.8

0.2

1.00

1.00

9

621

310

114.

41.

12.

60.

60.

670.

789

725

810

12.2

55.

71.

41.

40.

30.

730.

9111

835

313

235.

31.

15.

11.

10.

800.

7315

11

Page 12: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

Supple

men

tary

Tab

le1.

Con

tinued

.

Sp

ecie

s/In

div

idual

nArgos/GPS

ngeo

loca

tion

Tra

ckle

ngt

hS

Dlon

σSD

lon

SD

lat

σSD

lat

Cov

erag

e

Lon

.L

at.

n

927

26

105.

01.

70.

90.

30.

571.

007

1023

17

114.

71.

41.

20.

41.

001.

008

1128

85

11.2

56.

12.

42.

30.

80.

710.

717

1224

38

9.25

2.1

0.6

2.7

0.7

1.00

1.00

8

Lay

san

alba

tros

s

169

318

302.

00.

31.

50.

30.

951.

0021

257

916

281.

50.

31.

40.

31.

000.

9020

354

119

27.5

2.6

0.4

0.8

0.1

0.92

0.92

24

460

523

32.2

52.

50.

41.

30.

20.

960.

8824

533

616

17.2

51.

70.

31.

60.

31.

000.

8816

650

824

272.

40.

41.

40.

20.

920.

9624

736

918

222.

10.

41.

20.

21.

000.

8919

843

722

231.

10.

21.

00.

20.

951.

0021

920

511

122.

10.

50.

70.

20.

801.

0010

1019

26

8.75

2.0

0.7

0.9

0.3

0.71

1.00

7

1130

015

16.7

51.

50.

30.

80.

21.

001.

0015

1239

86

151.

10.

40.

80.

31.

001.

007

1349

213

20.2

54.

61.

01.

60.

31.

000.

9111

1431

211

122.

10.

51.

10.

31.

001.

0010

12

Page 13: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

Supple

men

tary

Tab

le1.

Con

tinued

.

Sp

ecie

s/In

div

idual

nArgos/GPS

ngeo

loca

tion

Tra

ckle

ngt

hS

Dlon

σSD

lon

SD

lat

σSD

lat

Cov

erag

e

Lon

.L

at.

n

1544

016

16.7

50.

80.

21.

30.

30.

870.

9315

Cal

ifor

nia

sea

lion

172

756

76.2

50.

80.

12.

70.

30.

960.

3974

291

864

85.2

50.

80.

12.

90.

30.

920.

4174

311

7451

80.2

50.

90.

12.

90.

30.

990.

5169

493

857

78.2

50.

70.

11.

30.

10.

990.

9970

595

356

75.2

51.

20.

12.

70.

30.

960.

4372

612

9230

81.2

50.

70.

13.

00.

40.

920.

3839

774

936

77.2

51.

10.

11.

30.

21.

000.

7642

813

0655

83.2

51.

20.

12.

00.

20.

930.

6773

917

4939

87.2

50.

90.

12.

40.

30.

960.

7557

13

Page 14: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

Supplementary Figures

Supplementary Figures 1-7. State-space model fitted to Argos/GPS and geolocationdata for example individual black-footed albatrosses (Supplementary Fig. 1, individ-uals #5 (a-c), #1 (d-f), #6 (g-i) and #11 (j-l)), Laysan albatrosses (SupplementaryFig. 2, individuals #8 (a-c), #3 (d-f), #13 (g-i) and #10 (j-l)), mako sharks (Sup-plementary Fig. 3, individuals #1 (a-c), #9 (d-f), #6 (g-i) and #13 (j-l)), bluesharks (Supplementary Fig. 4, individuals #1 (a-c), #2 (d-f), #8 (g-i) and #3 (j-l)),salmon sharks (Supplementary Fig. 5, individuals #28 (a-c), #14 (d-f), #20 (g-i)and #3 (j-l)), Galapagos sharks (Supplementary Fig. 6, individuals #1 (a-c) and#2 (d-f)), and California sea lions (Supplementary Fig. 7, individuals #4 (a-c), #2(d-f), #5 (g-i) and #6 (j-l)). Blue and red points represent Argos/GPS location andgeolocation estimates, respectively. Blue and red lines represent the mean estimatedpaths from the state-space model fitted to Argos/GPS and geolocation data simulta-neously and only geolocation data, respectively. Dashed lines represent intervals of95% posterior probability. Light grey lines in panels a, d, g and j represent a sampleof estimated paths (n = 100) from the posterior probability distribution of the modelfitted to only geolocation data. Triangles indicate known deployment and invertedtriangles indicate known recapture locations. Dark grey represents land. Note thatsome outlying Argos data are outside of the plot boundaries and are not shown.

Supplementary Figures 8-11. Prior and posterior probability distributions for SDof errors in longitude (SDlon) for all individuals. Red lines indicate means on log-scale back-transformed. Much of the prior density was near zero, however, there wasnon-zero prior density across the full range of the x-axis and beyond its upper limitalthough it is not visible on the plot.

Supplementary Figures 12-15. Prior and posterior probability distributions for SDof errors in latitude (SDlat) for all individuals. Red lines indicate means on log-scale back-transformed. Much of the prior density was near zero, however, there wasnon-zero prior density across the full range of the x-axis and beyond its upper limitalthough it is not visible on the plot.

14

Page 15: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

Supplementary Figure 1

15

Page 16: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

Supplementary Figure 2

16

Page 17: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

Supplementary Figure 3

17

Page 18: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

Supplementary Figure 4

18

Page 19: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

Supplementary Figure 5

19

Page 20: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

Supplementary Figure 6

20

Page 21: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

Supplementary Figure 7

21

Page 22: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

prior

0.0 0.2 0.4 0.6 0.8 1.0

0

0.1

0.2

0.3

0.4

m. shark 1

0.0 0.2 0.4 0.6

0

0.01

0.02

0.03

0.04

Estimated longitude error SD (degrees)

Pro

babi

lity

m. shark 2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

0.01

0.02

0.03

m. shark 3

0.0 0.2 0.4 0.6 0.8 1.0

0

0.01

0.02

0.03

m. shark 4

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

0.01

0.02

0.03

0.04

m. shark 5

0.0 0.2 0.4 0.6 0.8 1.0

0

0.01

0.02

0.03

m. shark 6

0 1 2 3 4

0

0.01

0.02

0.03

0.04

0.05

m. shark 7

0.0 0.2 0.4 0.6 0.8

0

0.01

0.02

0.03

0.04

0.05

m. shark 8

0.0 0.2 0.4 0.6 0.8

0

0.01

0.02

0.03

0.04

m. shark 9

0.0 0.2 0.4 0.6 0.8

0

0.01

0.02

0.03

0.04

0.05

m. shark 10

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

0.01

0.02

0.03

0.04

m. shark 11

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

0.01

0.02

0.03

0.04

m. shark 12

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

0.01

0.02

0.03

0.04

m. shark 13

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

0.04

m. shark 14

0.0 0.2 0.4 0.6 0.8 1.0

0

0.01

0.02

0.03

0.04

m. shark 15

0.0 0.2 0.4 0.6 0.8 1.0

0

0.01

0.02

0.03

m. shark 16

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

0.01

0.02

0.03

0.04

m. shark 17

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

0.04

m. shark 18

0.0 0.2 0.4 0.6 0.8 1.0

0

0.01

0.02

0.03

m. shark 19

0.0 0.2 0.4 0.6 0.8

0

0.01

0.02

0.03

0.04

m. shark 20

0.0 0.2 0.4 0.6 0.8

0

0.01

0.02

0.03

m. shark 21

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

0.01

0.02

0.03

m. shark 22

0.0 0.2 0.4 0.6 0.8 1.0

0

0.01

0.02

0.03

m. shark 23

0.0 0.2 0.4 0.6 0.8 1.0

0

0.01

0.02

0.03

m. shark 24

0.0 0.2 0.4 0.6 0.8 1.0

0

0.01

0.02

0.03

m. shark 25

0.0 0.2 0.4 0.6 0.8 1.0

0

0.01

0.02

0.03

b. shark 1

0.0 0.2 0.4 0.6 0.8 1.0

0

0.01

0.02

0.03

0.04

b. shark 2

0.0 0.4 0.8 1.2

0

0.01

0.02

0.03

b. shark 3

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.01

0.02

0.03

b. shark 4

0.0 0.5 1.0 1.5 2.0

0

0.01

0.02

0.03

0.04

b. shark 5

0.0 0.4 0.8 1.2

0

0.01

0.02

0.03

0.04

b. shark 6

0.0 0.2 0.4 0.6 0.8

0

0.01

0.02

0.03

Supplementary Figure 8

22

Page 23: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

b. shark 7

0.0 0.2 0.4 0.6 0.8

0

0.01

0.02

0.03

b. shark 8

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

0.01

0.02

0.03

0.04

Estimated longitude error SD (degrees)

Pro

babi

lity

b. shark 9

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.01

0.02

0.03

0.04b. shark 10

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

0.01

0.02

0.03

b. shark 11

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

0.04

0.05

b. shark 12

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

0.04

0.05

b. shark 13

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

0.01

0.02

0.03

b. shark 14

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

0.01

0.02

0.03

s. shark 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

0.01

0.02

0.03

0.04

0.05

s. shark 2

0.0 0.5 1.0 1.5 2.0 2.5

0

0.01

0.02

0.03

0.04

s. shark 3

0.0 1.0 2.0 3.0

0

0.01

0.02

0.03

s. shark 4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

0.01

0.02

0.03

0.04

s. shark 5

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

0.04

s. shark 6

0.0 0.5 1.0 1.5 2.0 2.5

0

0.01

0.02

0.03

0.04

s. shark 7

0.0 0.2 0.4 0.6 0.8 1.0

0

0.01

0.02

0.03

s. shark 8

0.0 0.5 1.0 1.5 2.0

0

0.01

0.02

0.03

s. shark 9

0.0 0.4 0.8 1.2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035s. shark 10

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

s. shark 11

0.0 0.5 1.0 1.5 2.0 2.5

0

0.01

0.02

0.03

0.04

s. shark 12

0.0 0.5 1.0 1.5 2.0 2.5

0

0.01

0.02

0.03

s. shark 13

0.0 1.0 2.0 3.0

0

0.01

0.02

0.03

s. shark 14

0.0 0.2 0.4 0.6 0.8 1.0

0

0.01

0.02

0.03

0.04

s. shark 15

0 1 2 3 4

0

0.01

0.02

0.03

0.04

s. shark 16

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

0.01

0.02

0.03

0.04

s. shark 17

0.0 0.5 1.0 1.5 2.0

0

0.01

0.02

0.03

0.04

0.05s. shark 18

0.0 0.2 0.4 0.6 0.8

0

0.01

0.02

0.03

0.04

s. shark 19

0.0 0.5 1.0 1.5 2.0 2.5

0

0.01

0.02

0.03

0.04

s. shark 20

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

0.04

s. shark 21

0 1 2 3 4

0

0.01

0.02

0.03

0.04

0.05

s. shark 22

0.0 0.5 1.0 1.5 2.0

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035s. shark 23

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

0.04

s. shark 24

0.0 0.2 0.4 0.6 0.8 1.0

0

0.01

0.02

0.03

0.04

0.05

Supplementary Figure 9

23

Page 24: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

s. shark 25

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

0.01

0.02

0.03

0.04

s. shark 26

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

0.04

Estimated longitude error SD (degrees)

Pro

babi

lity

s. shark 27

0.0 0.2 0.4 0.6 0.8

0

0.01

0.02

0.03

0.04

s. shark 28

0.0 0.2 0.4 0.6 0.8 1.0

0

0.01

0.02

0.03

0.04

s. shark 29

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

s. shark 30

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

0.01

0.02

0.03

s. shark 31

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

0.04s. shark 32

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

0.04

s. shark 33

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

0.04

s. shark 34

0.0 0.2 0.4 0.6 0.8

0

0.01

0.02

0.03

0.04

G. shark 1

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

0.04

G. shark 2

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

b. albatross 1

0 1 2 3 4 5

0

0.01

0.02

0.03

b. albatross 2

0 2 4 6 8 10

0

0.01

0.02

0.03

b. albatross 3

0 2 4 6 8

0

0.01

0.02

0.03

b. albatross 4

0 5 10 15

0

0.01

0.02

0.03

0.04

b. albatross 5

0 1 2 3 4 5 6 7

0

0.01

0.02

0.03

b. albatross 6

0 5 10 15

0

0.01

0.02

0.03

0.04

0.05

b. albatross 7

0 5 10 15

0

0.01

0.02

0.03

0.04

b. albatross 8

0 2 4 6 8 10 12 14

0

0.01

0.02

0.03

0.04

b. albatross 9

0 5 10 15

0

0.01

0.02

0.03

0.04

b. albatross 10

0 5 10 15

0

0.01

0.02

0.03

0.04

0.05b. albatross 11

0 5 10 15 20 25 30

0

0.01

0.02

0.03

0.04

0.05

b. albatross 12

0 1 2 3 4 5 6 7

0

0.01

0.02

0.03

0.04

L. albatross 1

0 1 2 3

0

0.01

0.02

0.03

L. albatross 2

0.0 0.5 1.0 1.5 2.0 2.5

0

0.01

0.02

0.03

L. albatross 3

0 1 2 3 4 5

0

0.01

0.02

0.03

L. albatross 4

0 1 2 3 4 5

0

0.01

0.02

0.03

0.04

L. albatross 5

0.0 1.0 2.0 3.0

0

0.01

0.02

0.03

0.04L. albatross 6

0 1 2 3 4

0

0.01

0.02

0.03

0.04

L. albatross 7

0 1 2 3 4

0

0.01

0.02

0.03

0.04

L. albatross 8

0.0 0.5 1.0 1.5 2.0

0

0.01

0.02

0.03

Supplementary Figure 10

24

Page 25: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

L. albatross 9

0 1 2 3 4 5 6

0

0.01

0.02

0.03

0.04

L. albatross 10

0 2 4 6 8 10

0

0.01

0.02

0.03

0.04

0.05

0.06

Estimated longitude error SD (degrees)

Pro

babi

lity

L. albatross 11

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0

0.01

0.02

0.03

0.04

L. albatross 12

0 1 2 3 4 5

0

0.01

0.02

0.03

0.04

L. albatross 13

0 2 4 6 8

0

0.01

0.02

0.03

L. albatross 14

0 1 2 3 4

0

0.005

0.01

0.015

0.02

0.025

0.03

L. albatross 15

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

0.04

C. sea lion 1

0.0 0.2 0.4 0.6 0.8 1.0

0

0.01

0.02

0.03

0.04

0.05

C. sea lion 2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

0.01

0.02

0.03

0.04

0.05

C. sea lion 3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

0.01

0.02

0.03

0.04

C. sea lion 4

0.0 0.2 0.4 0.6 0.8 1.0

0

0.01

0.02

0.03

0.04

0.05C. sea lion 5

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

0.04

0.05

C. sea lion 6

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

0.01

0.02

0.03

C. sea lion 7

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

0.04

C. sea lion 8

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

0.04

C. sea lion 9

0.0 0.4 0.8 1.2

0

0.01

0.02

0.03

0.04

Supplementary Figure 11

25

Page 26: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

prior

0.0 0.2 0.4 0.6 0.8 1.0

0

0.1

0.2

0.3

0.4

m. shark 1

0.0 0.2 0.4 0.6

0

0.01

0.02

0.03

0.04

Estimated latitude error SD (degrees)

Pro

babi

lity

m. shark 2

0.0 0.5 1.0 1.5 2.0 2.5

0

0.01

0.02

0.03

0.04

m. shark 3

0.0 0.5 1.0 1.5 2.0

0

0.01

0.02

0.03

m. shark 4

0 1 2 3 4

0

0.01

0.02

0.03

0.04

m. shark 5

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

m. shark 6

0 1 2 3 4 5 6 7

0

0.01

0.02

0.03

0.04

m. shark 7

0.0 0.5 1.0 1.5 2.0

0

0.01

0.02

0.03

0.04

0.05

m. shark 8

0.0 0.5 1.0 1.5 2.0

0

0.01

0.02

0.03

0.04

m. shark 9

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

0.04

0.05

m. shark 10

0.0 0.5 1.0 1.5 2.0 2.5

0

0.01

0.02

0.03

0.04

m. shark 11

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

0.04

m. shark 12

0.0 0.5 1.0 1.5 2.0 2.5

0

0.01

0.02

0.03

m. shark 13

0 1 2 3 4

0

0.01

0.02

0.03

m. shark 14

0 1 2 3

0

0.01

0.02

0.03

m. shark 15

0 1 2 3 4 5 6

0

0.01

0.02

0.03

m. shark 16

0 1 2 3

0

0.01

0.02

0.03

m. shark 17

0.0 0.5 1.0 1.5 2.0

0

0.01

0.02

0.03

m. shark 18

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

0.01

0.02

0.03

0.04m. shark 19

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

m. shark 20

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

0.04

m. shark 21

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

0.005

0.01

0.015

0.02

0.025

0.03

m. shark 22

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

m. shark 23

0.0 0.5 1.0 1.5 2.0 2.5

0

0.01

0.02

0.03

m. shark 24

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

m. shark 25

0 1 2 3 4 5 6

0

0.01

0.02

0.03

b. shark 1

0.0 0.5 1.0 1.5 2.0 2.5

0

0.01

0.02

0.03

0.04

b. shark 2

0.0 0.5 1.0 1.5 2.0 2.5

0

0.01

0.02

0.03

0.04

b. shark 3

0 1 2 3 4 5 6

0

0.01

0.02

0.03

0.04

b. shark 4

0 1 2 3 4

0

0.01

0.02

0.03

0.04

b. shark 5

0.0 0.5 1.0 1.5 2.0 2.5

0

0.01

0.02

0.03

0.04

b. shark 6

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

0.01

0.02

0.03

Supplementary Figure 12

26

Page 27: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

b. shark 7

0 1 2 3 4

0

0.01

0.02

0.03

0.04

b. shark 8

0 5 10 15 20

0

0.01

0.02

0.03

0.04

Estimated latitude error SD (degrees)

Pro

babi

lity

b. shark 9

0.0 0.5 1.0 1.5 2.0 2.5

0

0.01

0.02

0.03

0.04

b. shark 10

0 1 2 3 4 5 6 7

0

0.01

0.02

0.03

b. shark 11

0 2 4 6 8

0

0.01

0.02

0.03

b. shark 12

0 5 10 15 20

0

0.01

0.02

0.03

0.04

b. shark 13

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

0.01

0.02

0.03

b. shark 14

0.0 0.5 1.0 1.5 2.0

0

0.01

0.02

0.03

0.04

0.05

0.06

s. shark 1

0 5 10 15

0

0.01

0.02

0.03

0.04

s. shark 2

0 5 10 15

0

0.005

0.01

0.015

0.02

0.025

0.03

s. shark 3

0 2 4 6 8 10 12 14

0

0.01

0.02

0.03

0.04

0.05

s. shark 4

0 1 2 3 4 5

0

0.01

0.02

0.03

0.04

0.05

s. shark 5

0.0 0.5 1.0 1.5 2.0 2.5

0

0.01

0.02

0.03

0.04

s. shark 6

0 2 4 6 8

0

0.01

0.02

0.03

0.04

0.05

0.06

s. shark 7

0 1 2 3 4 5

0

0.01

0.02

0.03

s. shark 8

0 2 4 6 8 10 12

0

0.01

0.02

0.03

0.04

s. shark 9

0 1 2 3 4 5 6 7

0

0.01

0.02

0.03

s. shark 10

0 2 4 6 8

0

0.01

0.02

0.03

0.04

s. shark 11

0 2 4 6 8 10

0

0.01

0.02

0.03

0.04

s. shark 12

0 2 4 6 8 10 12 14

0

0.01

0.02

0.03

0.04

s. shark 13

0 10 20 30 40

0

0.01

0.02

0.03

s. shark 14

0 2 4 6 8

0

0.01

0.02

0.03

0.04

0.05

s. shark 15

0 2 4 6 8 10 12 14

0

0.01

0.02

0.03

0.04

s. shark 16

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

0.01

0.02

0.03

0.04

s. shark 17

0 5 10 15 20

0

0.01

0.02

0.03

0.04

s. shark 18

0 1 2 3 4 5 6

0

0.01

0.02

0.03

0.04

s. shark 19

0 5 10 15 20

0

0.01

0.02

0.03

0.04

s. shark 20

0 1 2 3 4 5 6 7

0

0.01

0.02

0.03

0.04

0.05

s. shark 21

0 1 2 3 4 5 6

0

0.01

0.02

0.03

0.04

s. shark 22

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

0.01

0.02

0.03

0.04

s. shark 23

0 2 4 6 8

0

0.01

0.02

0.03

0.04

0.05

s. shark 24

0.0 1.0 2.0 3.0

0

0.01

0.02

0.03

0.04

0.05

Supplementary Figure 13

27

Page 28: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

s. shark 25

0 1 2 3 4

0

0.01

0.02

0.03

0.04

s. shark 26

0 2 4 6 8 10 12

0

0.01

0.02

0.03

0.04

Estimated latitude error SD (degrees)

Pro

babi

lity

s. shark 27

0 1 2 3 4

0

0.01

0.02

0.03

0.04

s. shark 28

0 1 2 3 4

0

0.01

0.02

0.03

s. shark 29

0 2 4 6 8 10

0

0.01

0.02

0.03

0.04

s. shark 30

0 1 2 3 4

0

0.01

0.02

0.03

s. shark 31

0 2 4 6 8

0

0.01

0.02

0.03

s. shark 32

0 1 2 3 4 5

0

0.01

0.02

0.03

s. shark 33

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

s. shark 34

0 2 4 6 8

0

0.01

0.02

0.03

0.04

G. shark 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

0.01

0.02

0.03

0.04

G. shark 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

0.01

0.02

0.03

0.04

b. albatross 1

0 1 2 3 4 5

0

0.01

0.02

0.03

0.04

b. albatross 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

0.005

0.01

0.015

0.02

0.025

0.03

b. albatross 3

0 1 2 3 4

0

0.01

0.02

0.03

0.04

b. albatross 4

0 1 2 3 4 5

0

0.01

0.02

0.03

0.04

b. albatross 5

0.0 1.0 2.0 3.0

0

0.01

0.02

0.03

0.04

0.05

b. albatross 6

0 1 2 3 4 5 6 7

0

0.01

0.02

0.03

b. albatross 7

0 1 2 3 4

0

0.01

0.02

0.03

0.04b. albatross 8

0 2 4 6 8 10 12

0

0.01

0.02

0.03

0.04

b. albatross 9

0 1 2 3 4

0

0.01

0.02

0.03

0.04

0.05

b. albatross 10

0 1 2 3 4 5

0

0.01

0.02

0.03

0.04

0.05

b. albatross 11

0 2 4 6 8 10

0

0.01

0.02

0.03

0.04

b. albatross 12

0 2 4 6 8

0

0.01

0.02

0.03

0.04

L. albatross 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

0.01

0.02

0.03

0.04L. albatross 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

0.01

0.02

0.03

0.04

L. albatross 3

0.0 0.5 1.0 1.5 2.0

0

0.01

0.02

0.03

0.04

L. albatross 4

0.0 0.5 1.0 1.5 2.0

0

0.01

0.02

0.03

0.04

L. albatross 5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0

0.01

0.02

0.03

L. albatross 6

0.0 0.5 1.0 1.5 2.0

0

0.01

0.02

0.03

0.04L. albatross 7

0.0 0.5 1.0 1.5 2.0

0

0.005

0.01

0.015

0.02

0.025

0.03

L. albatross 8

0.0 0.5 1.0 1.5 2.0

0

0.01

0.02

0.03

0.04

Supplementary Figure 14

28

Page 29: WinBUGS code - Macquarie Universityweb.science.mq.edu.au/~ijonsen/papers/2012-winship-etal-suppl.pdf · ranged in size from 125 to 230 cm in ... Albatrosses were equipped with a satellite

L. albatross 9

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

L. albatross 10

0 1 2 3 4 5

0

0.02

0.04

0.06

Estimated latitude error SD (degrees)

Pro

babi

lity

L. albatross 11

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

0.04

L. albatross 12

0.0 1.0 2.0 3.0

0

0.01

0.02

0.03

0.04

0.05

L. albatross 13

0 1 2 3 4

0

0.01

0.02

0.03

0.04

L. albatross 14

0.0 0.5 1.0 1.5 2.0 2.5

0

0.01

0.02

0.03

L. albatross 15

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

0.01

0.02

0.03

0.04

C. sea lion 1

0 1 2 3

0

0.01

0.02

0.03

0.04

C. sea lion 2

0 1 2 3 4

0

0.01

0.02

0.03

0.04

C. sea lion 3

0 1 2 3 4

0

0.01

0.02

0.03

0.04

C. sea lion 4

0.0 0.5 1.0 1.5 2.0

0

0.01

0.02

0.03

0.04

0.05

C. sea lion 5

0 1 2 3 4

0

0.01

0.02

0.03

0.04

0.05

C. sea lion 6

0 1 2 3 4 5

0

0.01

0.02

0.03

0.04

C. sea lion 7

0.0 0.5 1.0 1.5

0

0.01

0.02

0.03

0.04

C. sea lion 8

0.0 0.5 1.0 1.5 2.0 2.5

0

0.01

0.02

0.03

0.04

C. sea lion 9

0 1 2 3

0

0.01

0.02

0.03

0.04

Supplementary Figure 15

29