31
Widianto, K. Hairiah, W.S. Dewi, Hascaryo, D. Saputra, F.K. Aini, D. Suprayogo, N.Khasanah and M. van Noordwijk L Litter layer, population density of earthworm and soil macroporosity UNIV. UNIV. BRAWIJAYA BRAWIJAYA [email protected]

Widianto, K. Hairiah, W.S. Dewi, Hascaryo, D. Saputra, F.K. Aini, D. Suprayogo, N.Khasanah and M. van Noordwijk L Litter layer, population density of earthworm

Embed Size (px)

Citation preview

Widianto, K. Hairiah, W.S. Dewi, Hascaryo, D. Saputra, F.K. Aini, D. Suprayogo, N.Khasanah and M. van Noordwijk

LLitter layer, population density of earthworm and soil macroporosity

UNIV. BRAWIJAYAUNIV. BRAWIJAYA

[email protected]

Land Cover in East Java (Malang)

Land Cover in Sumatra (West Lampung)

stem-flow

through-fall

rainfall cloudinterception

lateral

outflow

percolation

rechargeinfiltrasi

surfaceevaporation

transpiration

canopy waterevaporation

uptake

Quick flow

baseflow

{

surface run-on

sub-surfacelateral

inflow

surface run-off

Flow:

tree

Soil

Hydrology function of ‘forest’:

lanscape

?

Forest Agriculture: Monoculture / Polyculture

De

co

mp

osi

tio

n &

M

ine

ralis

atio

n

Water QualityRun - off

Other macrofauna

Earthworm

SOM Macroporosity &

Water Infiltration

Thickness of Surface Litter

Slope and rainfall

Protection to soil surface

Reduced Run-off IF:Reduced Run-off IF:

1. Good and long soil cover ~ Litter

thickness, slowly decomposed litter

2. High soil roughness ~ branches,

understorey3. Good water infiltration ~ enough soil

macro pore

PurposePurpose

West Lampung

Malang

SUMATRA

JAVA

2.Multistrata coffee

3. Shaded coffee

1.Forest

4.Monoculture Coffee

SurveySurvey

1. Litterfall

2. Prunning

Do litter composition of LUS differs one to another?

11.5

9.210.0

6.1

3.6

0

2

4

6

8

10

12

14

Fores

t

Mul

tistra

ta

Shaded

-Par

Shaded

-Glir

i

Coffee

Mono

Lit

ter

inp

ut,

Mg

/ha/

yr

0%

20%

40%

60%

80%

100%

Forest

Mult

istra

ta

Shade

d -Par

Shade

d -Glir

i

Coffe

e M

ono

Lit

ter

co

mp

os

itio

n

Branch Leaf Flower Fruit

Annual Litter Input in Sumatra

LUSLitterfall

Mg ha-1yr-1

N L P(L+P)/N

--------------%-----------

Forest 11.1 1.24 21.1 6.37 22.2

Multistrata C. 7.7 2.2 34.9 6.12 18.6

Shaded C. 6.0 2.15 32.3 4.25 17.0Monoculture C. 3.9 1.95 37.7 5.19 22.0

Annual Litter input and its quality of Annual Litter input and its quality of various LUS in Javavarious LUS in Java

(L+P)/N > 10 low quality slow decompose (Van Lauwe et al, 1997)

DECOMPOSITION RATE OF DECOMPOSITION RATE OF LITTERLITTERLUS Equation R2 k

week-1

Residence time (1/k),

week

Half life time, week

Forest Y = - 0.0068 x – 0.0101 0.6 0.0068 147 101Multi. Y = - 0.0131 x – 0.0553 0.7 0.0131 76 53Shaded Y = - 0.0143 x – 0.0408 0.9 0.0143 70 48Monocul. Y = - 0.0176 x – 0.0367 0.9 0.0176 57 39

Cast production weekly observed

Measurement of Earthworm

Klitelum

Dominant Spesies in Indonesian Agriculture:

Pontoscolex corethrurus

Prostomium

Seta

cocon

Genetal pore & TP

Anterior

Taken by: Dewi

Taken by: Fragoso

Total: 11 species

Earthworm population

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

RemnantForest

Multistrata Shaded Monoculture

Ra

tio

to

t. b

iom

as

s t

o p

op

ula

tio

n, g

/ in

div

.

0

20

40

60

80

100

120

140

160

No

an

ec

ic +

en

do

ge

ic, i

nd

iv m

-2

Number anecic + endogeic

Forest: Amynthas gracillis & Peryonix excavatus (bigger size)

Coffee based: Dichogaster bolaui (smaller size)

(Lavelle, 1997) (Van Noordwijk, 1985)

Role of Earthworm and Roots on Macropore

Soil Macro porosity measurement (Methylen Blue), Feb. 2008

Macropore in- vertical plane

Coffee monoculture

Imperata grassland

Coffee-based Agroforestry

Forest

100 cm

30

cm

30

cm

30

cm

30

cm

20 %

8 %

6 %

12 %

Measurement of water infiltration

Macroporosity and Infiltration

Earthworm (Pontoscolex) vs Soil porosity

Macropore = 0.78 Roots – 15.6 B/Pnon-Pontoscolex + 5.02

Litter thickness (R2 = 0.98**)

Managing Crop Diversity is the key factor for maintaining Soil macropore

Variable T-value

P-value

Y R2

Roots DW 9.37 0.001** PV = 4.79 + 0.74 Root Dw 0.85** Litter

thickness 6.10 0.004** PV = - 0.40 + 10.1 Litter thickness 0.58*

Ratio B:Pnon

Pontoscolex -3.27 0.031* PV = 9.65 + 34.5 B/P non

Pontoscolex 0.47*

Litter, earthworm, roots and MacroporeLitter, earthworm, roots and MacroporeDewi et al., 2006)

Worm size+po-pulation

Worm Biomass

SOM

LITTER

LAYER

Litter Input (various shade trees in AF

coffee based systems)

Worm Activity

Macro pore

“SoilStructDyn” (as a part of WaNuLCAS model)Van Noordwijk et al, 2005

LUS

Surface litter,

Mg ha-1

Corg relative

to Corg forest,

%

Macropore, %

EarthwormBiomass,

g m-2

M S M S M S M S

Forest4.2 4.9 1.0 1.0 12.3 12.5 31 25.8

Multistrata3.3 2.3 0.44 0.47 3.6 4.8 18 17.8

Shaded3 1.1 0.55 0.42 3.5 2.6 7 14.1

Monokulture

1.6 1.5 0.43 0.40 3 2.2 12 9.5

Estimation of “SoilStruct Dyn” Estimation of “SoilStruct Dyn” ModellingModelling

1. Better litter layer improved soil macroporosity and Water infiltration

2.2. Improvement of macroporosity in AF ~ Improvement of macroporosity in AF ~ Size of Earthworms (anecic group)

3. A combination of trees with slowly decomposing litter protect the soil surface, and trees with deep root systems create macroporosity

This activity was funded by ACIAR- ICRAF S.E. Asia, Ministry of Education (DIKTI- A2 Program) and CIFOR

- Tropical Forest and Climate Change Adaptation (TroFCCA) project