58
What Robo)cists Need to Know About NeuroMusculoSkeletal Systems Gerald E. Loeb, M.D. Professor of Biomedical Engineering Director of the Medical Device Development Facility University of Southern California

What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

What  Robo)cists  Need  to  Know  About  NeuroMusculoSkeletal  Systems  

Gerald  E.  Loeb,  M.D.  Professor  of  Biomedical  Engineering  

Director  of  the  Medical  Device  Development  Facility  University  of  Southern  California  

Page 2: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Gerald  E.  Loeb    •  Background  

–  1965-­‐1973  B.A.,  M.D.  Johns  Hopkins  University,  internship  in  surgery  –  1973-­‐1988  Lab.  Of  Neural  Control,  NaQonal  InsQtutes  of  Health  –  1988-­‐1999  Professor  of  Physiology,  Queen’s  Univ.,  Canada  –  1994-­‐1999  Chief  ScienQst,  Advanced  Bionics  Corp.,  Los  Angeles  –  1999-­‐present  Professor  of  Biomedical  Engineering,  Director  of  the  Medical  

Device  Development  Facility,  Univ.  Southern  California  –  2008-­‐present  CEO,  SynTouch  LLC,  Los  Angeles  

•  Research  Interests  –  Sensorimotor  neurophysiology  and  control  –  BiomimeQc  prostheQc  and  roboQc  systems  

•  Issues  in  Impedance  Control  –  Biological  components  (actuators,  sensors,  feedback  loops)  are  much  more  

nonlinear,  noisy  and  slow  than  their  mechatronic  counterparts,  yet  they  perform  much  be]er  on  unpredictable  tasks  and  a  baby  can  learn  to  use  them.      

–  We  need  to  understand  why  if  we  are  going  to  repair  or  replace  them.  

Page 3: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

InvesQgaQng  the  role  of  muscle  physiology  and  spinal  circuitry    in  movement  

Current  and  recent  collaborators:  Research  Asst.Professor:    Dr.  Rahman  Davoodi  Post-­‐doctoral  fellows:    Giby  Raphael,  Yao  Li  Graduate  students:    George  Tsianos,  Cedric  RusQn,  Jared  Goodner,  Katherine  Quigley  Undergraduates:    Norman  Li,  Travis  Marziani,  Adam  Baybu],  Enrique  Morales,  Michelle  Fung  

CorQcospinal  pathway  

Other    descending    pathways  

Motor    neurons  

Muscle  spindle  

Flexor  muscle  

Extensor  muscle  

Kandel  et  al.,  2000  

Page 4: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Muscle ≠ Torque Motor

Page 5: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Main Components Involved in Human Arm Movement

Muscle Excitation

Muscle Force

Neural Controller

Sensory Feedback

Movement

Muscle Actuator

Skeletal System

Feedback Sensors

Page 6: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Actuator  ProperQes:    Underlying  Mechanisms  

•  Force  –  Length:    Myofilament  overlap  •  Force  –  Velocity:    Cross-­‐bridge  dynamics  

•  Force  –  Frequency:    Calcium  kineQcs  

•  Moment  –  Angle:    Tendon  path  

•  ElasQc  Storage:    Collagen  ultrastructure  •  Energy  Transfer:    MulQarQcular  muscles  

•  Impedance  Control:    CocontracQon  

Muscle  accounts  for  the  majority  of  animal  mass  and  energy  consump)on.    The  evolu)onary  pressures  to  find  and  exploit  any  advantage  are  huge.  

 

Page 7: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Complex Moment Arms at the Human Elbow

Page 8: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Biological  ElasQcity:  Nonlinear  Adap)ve  

Page 9: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Muscle ≠ Torque Motor

Virtual  Muscle,  based  on  ~20  experimental  and  modeling  papers    with  Steve  Sco],  Ian  Brown,  Milana  Mileusnic,  George  Tsianos,  et  al.  

Available  from  h]p://bme.usc.edu/gloeb  

Page 10: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Actuator  ProperQes:    Underlying  Mechanisms  

•  Force  –  Length:    Myofilament  overlap  •  Force  –  Velocity:    Cross-­‐bridge  dynamics  

•  Force  –  Frequency:    Calcium  kineQcs  

•  Moment  –  Angle:    Tendon  path  

•  ElasQc  Storage:    Collagen  ultrastructure  •  Energy  Transfer:    MulQarQcular  muscles  

•  Impedance  Control:    CocontracQon  

Muscle  accounts  for  the  majority  of  animal  mass  and  energy  consump)on.    The  evolu)onary  pressures  to  find  and  exploit  any  advantage  are  huge.  

 

Page 11: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Source:  Kandel  ER,  Schwartz  JH,  Jessel  TM.  Principles  of  Neural  Science.  4th  ed.  New  York  (NY):  McGraw-­‐Hill;  c2000.  Figures  34-­‐2a,3a;  p.680  

In  order  to  produce  acQve  force:  •   Myofilaments  overlap  •   Myosin  heads  cocked  •   Binding  sites  exposed  

Page 12: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

0 50 100 1500.0

0.5

1.0

dispot.

pot.

T

F

0.8 1.0 1.2 1.40.0

0.2

0.4

L

F

dispot.

pot.

0.0

0.2

0.4

0.6

0.8

1.0 SOLmodelCFmodeldata

Force(F0)

Whole-muscle length (cm)

35 pps10 pps5 pps

3 pps

Frequency

…and other nonlinear properties of muscle actuators

Page 13: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Myosin Head

Potentiation Myosin light-chain phosphorylation

shifts resting position of myosin heads

Thin Filaments

Myosin Heads

Ls = 3.65µm Ls = 2.10µm

Light Chain

Page 14: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Cocked  myosin  head   Exposed  ac2n  site  

Source:  Kandel  ER,  Schwartz  JH,  Jessel  TM.  Principles  of  Neural  Science.  4th  ed.  New  York  (NY):  McGraw-­‐Hill;  c2000.  Figures  34-­‐2a,3a;  p.680  

ATP  required  to  release  myosin  head  and  move  it  to  the  cocked  state  

Exb  depends  on  the  number  of    cross-­‐bridges  and  shortening  velocity  

AcQvaQon  requires  acQon  potenQals  and  calcium  release;    ATP  used  to  pump  ions  back.  

Ea  depends    on  calcium  flux  in    the  sarcoplasm  

In  order  to  produce  acQve  force:  •   Myofilaments  overlap  •   Myosin  heads  cocked  •   Binding  sites  exposed  

Erec  ATP  and  PCr  replenishment  results  in  delayed  recovery  heat  

Page 15: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Virtual  MuscleTM  overview    at  the  motor  unit  level    

Note: the continuous recruitment algorithm lumps all motor units within a fiber type into one.

Erec = R*Einitial + =

Recovery energy rate

Total energy rate

Virtual  MuscleTM  

Cheng et. al. 2000 Song et. al. 2008

Tsianos et al. in press IEEE-TNSRE    

Page 16: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

-6 -5 -4 -3 -2 -1 0 1 2 30

0.5

1

1.5

Vce (L0/s)

Forc

e (F

0)

20%  

40%  

60%  

80%  

100%  

20%  0

50

100

150

Ener

gy R

ate

(W)

40%  

0

50

100

150

Ener

gy R

ate

(W)

60%  

0

50

100

150

Ener

gy R

ate

(W) 80%  

0

50

100

150

Ener

gy R

ate

(W)

100%  

0

50

100

150

Ener

gy R

ate

(W)

Exb  Eca  

0

50

100

150

Ener

gy R

ate

(W)

Virtual  Muscle  (analogous  to  Biceps  Long)  

 40%  Slow  twitch  60%  Fast  twitch    Mass  =  300g  F0  =  600N  L0  =    16cm  

Page 17: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

ValidaQon  of  EnergeQcs  Model  

(Andersen  et  al.,  1985;  Gonzalez-­‐Alonso  et  al.,  2000)  

0 50 100 1500

50

100

150

200

250

300

time (s)

Ener

gy ra

te (W

)

ExperimentModelEinitialErecovery

Total  energy  (J)  

Exp:  31,650-­‐44,769    Model:  39,081      

Dynamic knee extension

Task  

Model  

Energe2cs  

Page 18: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Model System to Study Preflexes

Examples of:

Mono-articular muscles

Bi-articular muscles

Initial armposition

Arm positionafter 50 ms.

Trajectory ofhand trackedevery 10 ms.

Gun reaction forceapplied to hand.

level of activationindicated bymuscle width

Passivemuscle

Sample Simulation (50 ms):

Activemuscle

Page 19: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

AMI-USC

The Effectiveness of Preflexes INTRINSICPROPERTIES

OFMUSCLE

MUSCLE ACTIVATION PATTERNS

ConstantTorque

Force-Length

Force-Length&

Force-Velocity

Page 20: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Sensing  &  Control:    Underlying  Mechanisms  

•  ResoluQon:    PopulaQons  of  receptors  •  Dynamic  Range:    PredicQve  gain  control  •  Signal  Processing:    IntegraQve  •  Feedback:    MulQmodal  convergent/divergent  •  Control:    Programmable  regulator  (MIMO)    Fast  &  accurate  movement  is  what  dis)nguishes  even  primi)ve  animals  from  plants.    Servocontrol  is  too  limited  for  mul)ar)cular  organisms  and  inverse  models  and  op)mal  control  are  not  feasible  analy)cally.      

Animals  use  hierarchical  and  “good  enough”  controls.    

Page 21: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

AMI-USC

Muscles have hundreds of proprioceptive sense organs

Spindles are very complex and provide most

sense of posture and movement

Page 22: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Fusimotor System as Optimal Sensor Control

WB Marks, Appendix: Spindle Transduction Properties in GE Loeb (1984) The Control and Responses of Mammalian Muscle Spindles During Normally Executed Motor Tasks, Exer. & Sport Sci. Revs. 12:157-204.

Page 23: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Textbook Robotics & Biology

Goal State

Controller

Regulator

Actuators

MotorCortex

Premotor Extrapyramidal

Movement Stability

Actuatorsfeedback

feedforwardcorrections

spinalinterneurons

α α

sensors

Page 24: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Biomimetic Hierarchical Control

MotorCortex

spinalinterneurons

Task Planning

Plant

ProgrammableRegulator

AdaptiveController

Goal

α α

preflexes

“teacher”

reflexes

Page 25: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Biomechanical  Model    Simplified  2-­‐axis,  4-­‐muscle,  Wrist  Joint  Controller  

Raphael,  G.,  Tsianos,  G.A.  and  Loeb,  G.E.  Spinal-­‐like  regulator  facilitates  control  of    a  two  degree-­‐of-­‐freedom  wrist.    J.  Neuroscience  30:9431-­‐9444,  July,  2010.    

Page 26: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Classical  spinal  circuits  Stretch reflex and Ia inhibitory

Propriospinal

Renshaw

Ib

Page 27: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Par2al  view  of  the  Integrated  Spinal  Cord  Model  “True-­‐Antagonists”  

Extensor Carpi Ulnaris Muscle

Flexor Carpi Radialis Muscle

IaIa

RRIbIb

PNPN

αα

GO

Gam

ma

Sta

tic

G

amm

a D

ynam

ic

s

s

ss

s

s

s

s

s s s

s

s

s s

s

ss

ss

s

ss

ss s

SETSET SET SET SETSETSETSET

SET

SET

SET

SET

GOGO GO GO GO GO GO

SET

SET

ss

Excitatory Synapse

Inhibitory Synapse

Selective Synapse

s

s

Modeled  Pathways  1.  Propriospinal  2.  MonosynapQc  Ia  3.  Reciprocal  Ia  4.  Renshaw    5.  Ib  inhibitory  

Page 28: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Par2al  view  of  the  Integrated  Spinal  Cord  Model  “Par2al-­‐Synergists”  

Extensor Carpi Ulnaris Muscle

Extensor Carpi Radialis Muscle

IaIa

RRIbIb

PNPN

αα

GO

Gam

ma

Sta

tic

G

amm

a D

ynam

ic

s

s

ss

s

s

s

s

s s s

s

s

s s

s

ss

ss

ss

s

s

s

ssss

ss

ss s

SETSET SET SET SETSETSETSET

SET

SET

SET

SET

GOGO GO GO GO GO GO

SET

SET

ss

Excitatory Synapse

Inhibitory Synapse

Selective Synapse

Modeled  Pathways  1.  Propriospinal  2.  MonosynapQc  Ia  3.  Reciprocal  Ia  4.  Renshaw    5.  Ib  inhibitory  

Page 29: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Computa2onal  Model  of  the  Interneuron  

Input  

Output

Page 30: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Command  Space  =  184  dimensions  

Constant  Inputs   SET  Inputs   GO  Inputs  

•   PresynapQc      InhibiQon  

 

•  140  Neural  pathway  gains  •  8  Fusimotor  inputs  •  Bias  to  16  Interneurons  &  

4  Motoneurons  

•   Step  input  to    16  Interneurons  

     

GO      

SET  

0   1   2   3s  

Page 31: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Random  Gradient  Descent  Op2miza2on  

Cost  Func2on  :  

Yes  =  1  iteraQon  

No  

Page 32: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Task  1:  Stabilizing  response  to  external  force  perturba2on    

Angle

500

500

0

Ext

FlexExt 0.5

0.5

0

Flex

αOutput

Ext 30N

30N

0

Flex

Muscle Force

Angle

500

500

0

Ext

Flex

Time (sec)

Perturba2on  response  with  and  without  SLR  

Extensor  [RED],  Flexor  [BLUE]  muscle  force  

Perturba2on  response  a^er  Gradient  Descent  

Extensor  [RED],  Flexor  [BLUE]  motoneuron  o/p  

Liles  S  L  1985  J  Neurophysiology  

AcQvity  of  neurons  in  putamen  during  acQve  and  passive  movements  of  wrist  

Page 33: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Time (sec)

Angle

500

500

0

Ext

FlexExt 50N

50N

0

Flex

Muscle Force

Angle

500

500

0

Ext

FlexExt 0.8

0.8

0

Flex

αOutput

Task  2:  Rapid  voluntary  movement  to  a  posi2on  target    

Extensor  [RED],  Flexor  [BLUE]  motoneuron  o/p  

Extension  a^er  Gradient  Descent  op2miza2on  

Extensor  [RED],  Flexor  [BLUE]  muscle  force  

Extension  to  35°  and  response  to  perturba2on  

Liles  S  L  1985  J  Neurophysiology  

AcQvity  of  neurons  in  putamen  during  acQve  and  passive  movements  of  wrist  

   

Page 34: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Forc

e (N

)

100

0

Forc

e (N

)

100

0Ext +0.8

+0.8

0

0

Time (s)

Flex

α

α

Ext +0.8

+0.8Flex

Step  force  produced  a^er  Gradient  Descent  

Pulse  force  produced  a^er  Gradient  Descent  

(Brief  force  rise  2me)  

(Long  force  rise  2me)  

Ghez  C  and  Gordon  J  1987  Trajectory  control  in  targeted  force  impulses  I.  Role  of  opposing  muscles  Exp.  Brain  Res.  67  225-­‐240    

   

Task  3:  Voluntary  isometric  force  to  a  target  level  

Page 35: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Task  4:  Adapta2on  to  viscous  curl  force  fields  Experiments:  Kluzik  2008,  Scheidt  2001;  2000;  Diedrichsen  2005;  Flanagan  

1999;  Hwang  2005;  Karniel  2002,  etc!  

Time (sec)

Angle

500

500

0

Ext

Flex

Angle

500

500

0

Ext

Flex

Angle

500

500

0

Rad

Uln

Angle

500

500

0

Rad

Uln

Op2mized:  Extension-­‐Flexion  axis  

Op2mized  :  Radio-­‐Ulnar  devia2on  axis  

A^er-­‐effects:  Extension-­‐Flexion  axis  

A^er-­‐effects:  Radio-­‐Ulnar  devia2on  axis  

Scheidt  et.al,  2001      

Page 36: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Learning  Curves  Typical  learning  curves  for  all  tasks  

Random  starQng  condiQons  for  rapid  movement  

Analysis  of  gain  values  Conclusion:  many  local  

“good  enough”  minima  

Page 37: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Comparison  with  Servo-­‐Control  

TRUE-­‐ ANTAGONIST

Ib

Ia

GOGolgi  Tendon  Organ

Muscle  Spindle

gamma-­‐ dynamic

gamma-­‐ static

12 Local projections4 Descending commands8 Gamma commands

24 Gains

1.00E-­‐13 1.00E-­‐11 1.00E-­‐09 1.00E-­‐07 1.00E-­‐05 1.00E-­‐03 1.00E-­‐01

Perturbation

Extension

Force Step

Force Pulse

Viscous Curl

Cocontraction (log scale)

Spinal cord model Servo-control modelc∫  (αEUαFR  +  αERαFU)    dt    

Cost (log scale)

Spinal cord model

Servo-control model

Variability in experimental

data

Singleexperimental

datum

Perturbation

Extension

Force Step

Force Pulse

Viscous Curl

∫  (state*  -­‐    state)2    dt    

Page 38: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

SLR  Controller  for  Planar  Elbow-­‐Shoulder  Musculoskeletal  System  

Learning  to  Resist  Sudden  

Perturbing  Force  

 100N  x  10ms  

Page 39: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

BioSearch™  CorQcospinal  Learning  Algorithm  

delta  gain1  

delta  gain2  

delta  gain3  

…  

delta  gain400  

gain1  

gain2  

gain3  

…  

gain4  

     

Simula2on        

Hypothesis:    Landscape  has  so  many  “good  enough”  local  minima  that  a  Random  Walk  is  a  viable  learning  process  

Prob.  

ΔC*  ΔC  

.

?ΔC  

ΔC*  

. ?

?

?

Steps  vs.  Learning  Curves   OpQmal  step  size   Delta  gain  distribuQons  

Cost  

Cost  

sigm

a  

delta  

Page 40: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Task:

SET the gains of the SLR to resist an impulsive perturbation at the endpoint.

Page 41: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Simple Dyn. Prog.

Cost with no muscular action

Good-enough performance

Learning curves

Jared  Goodner,  George  Tsianos,  Yao  Li    

Page 42: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Simple Dyn. Prog.

Cost with no muscular action

Good-enough performance

Learning curves Convergence rate

Jared  Goodner,  George  Tsianos,  Yao  Li    

Page 43: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Hierarchical  Control  Updated  

world  

limb  

muscles  

spinal  cord  

“motor”  Cx  

“premotor”  Cx  

mechanics  

preflexes  

segmental  reflexes  

transcorQcal  reflexes  

??  

regulatory  func)on  

control  func)on  

feedback  func)on  

consolidaQon  ?  

Each control stage operates on a lower stage whose local feedback and intrinsic properties constitute a regulator that is programmed by its controller.    

Page 44: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Anthropomorphic  Design  o  Copy as many details of biological constructs as possible.

o  Hope that the machine does something useful.  

Biomime2c  Design  ü  Identify utility of each biological design feature.

ü  Understand principle of operation of the design feature.

ü  Build a machine based on that principle of operation.

ü  Demonstrate human-like capabilities enabled by that design feature.  

Page 45: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

BRAIN

SPINALCORD

MUSCLES

SKELETON

Cortico-motoneuronalprojections

Valid Analogy?

Theory of Computation

for the Spinal Cord

Page 46: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

TLaTLo

BrECRL

Incision 1

Incision 2

Lateral view

EMG recordings & muscle models

BLBS

De

TMe

Incision 3

Task: align to targets

Medial view

70

110

α

Manipulandum

Target lights

Torque PulsePerturbations

Using a Musculoskeletal Model

To Interpret Motor Control Strategies

In a Forearm Pointing Task

Cheng & Loeb (in prep.); Cheng, Brown & Loeb (2000)

Virtual Muscle, J. Neurosci. Meth. 101:117-130

http://ami.usc.edu (Projects, BION)

Page 47: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

∫ Integralkinematics

Unper turbedEMG activity

Gain

VirtualMuscle

Angular posit ion

?

With and withoutTorque pulse

? Torque

Quantifying intrinsicmuscle resistanceto perturbations

∫ Integralkinematics

Gain

VirtualMuscle

Angular position

?

UnperturbedEMG activity

Recordedkinematics

Torque

Calibration of model

Unper turbed versusreflex EMG activity

Gain

Vir tualMuscle

Torque

?

Recordedkinematics

Quantifying reflexeffects of individualmuscles

∫ Integralkinematics

Unperturbed versusreflex EMG activity

Gain

VirtualMuscle

Angular posit ion

?

Torque pulse

Torque

Effectiveness ofreflexes in controllingperturbations

Page 48: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Not all synergists are created equal.

BL

BrBSBL

BSBr

Flexion Extension

Torque(Nm)

Time (ms)

AccelAccel

Agonistepoch

Antagonistepoch

Agonist:Antagonist

EMGRatio

Session number

BS

Br

BL

Relative kinematic

independence: Lf(cm)/MA(cm)

6.6/2.5 = 2.6

11.1/3.5 = 3.2

5.4/3.2 = 1.7

Page 49: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Muscles are smart.

-200 0 300

0

0.8

1.6

Preflex torque

Unperturbed

Perturbed

Time (ms)

Torque(Nm)

Page 50: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Even inertia can be smart

Flexion

Extension

Session number

Assisting

Resisting Unperturbed

Trial number

Peakagonistepochacceleration(deg/s2 )

A

B

C

B C

Impulse ΔΓ· t Momentum J·ω .

Page 51: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

But momentum

and preflexes have fixed

costs Session 1

Sess ion 16

Sess ion 34

Error: 3.99o

Error: 3.43o

Error: 4.95o

Sess ion 34

Sess ion 16

Session 1

As siting

Resist ing

Unperturbed

Time (ms)

L ow e ne rgy uti li za ti o n

Me d e ne rg y utili zat i on

Hi g h e ne rg y utili za ti o n

Preflex to rque: 0.055

Preflex to rque: 0.087

Preflex to rque: 0.121

Acceleration(deg/s2 )

RateofEnergy

Consumption(W)

Position(deg)

Page 52: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Use Model to Understand

Reflexes

Resisting

-200 0 3000

15

30ReflexEpoch

-200 0 3000

15

30

Time (ms)

-200 0 3000

15

30

TMeLoEMG(V)

µUnperturbed

Non-reflexEpoch

Non-reflexEpoch

Composite

∫ Integralkinematics

Unper turbedEMG activity

Gain

VirtualMuscle

Angular posit ion

?

With and withoutTorque pulse

? Torque

Quantifying intrinsicmuscle resistanceto perturbations

∫ Integralkinematics

Gain

VirtualMuscle

Angular position

?

UnperturbedEMG activity

Recordedkinematics

Torque

Calibration of model

Unper turbed versusreflex EMG activity

Gain

Vir tualMuscle

Torque

?

Recordedkinematics

Quantifying reflexeffects of individualmuscles

∫ Integralkinematics

Unperturbed versusreflex EMG activity

Gain

VirtualMuscle

Angular posit ion

?

Torque pulse

Torque

Effectiveness ofreflexes in controllingperturbations

∫ Integralkinematics

Unper turbedEMG activity

Gain

VirtualMuscle

Angular posit ion

?

With and withoutTorque pulse

? Torque

Quantifying intrinsicmuscle resistanceto perturbations

∫ Integralkinematics

Gain

VirtualMuscle

Angular position

?

UnperturbedEMG activity

Recordedkinematics

Torque

Calibration of model

Unper turbed versusreflex EMG activity

Gain

Vir tualMuscle

Torque

?

Recordedkinematics

Quantifying reflexeffects of individualmuscles

∫ Integralkinematics

Unperturbed versusreflex EMG activity

Gain

VirtualMuscle

Angular posit ion

?

Torque pulse

Torque

Effectiveness ofreflexes in controllingperturbations

Page 53: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

They look like reflexes.

Are they important?

-200 0 300

-0.3

0

0.06

-200 0 300

-0 .3

0

0.06

-200 0 300

-0.08

0

0.4

-200 0 300

-0.08

0

0.4

-200 0 300

-200 0 300

-200 0 300

-200 0 300

Time (ms) Time (ms)

BLBSB rECRB

TM e LoTL aTL oDe Pe rturb ed Un pe r tu rb e d

A. Flexion resisting

BS

TMeL o

B. Flexion assisting

C. Extension resisting

D. Extension assisting

Page 54: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Preflexes alone don’t cut it.

Error w/o reflex: -3.67Error with reflex: -2.24

Error w/o reflex: 3.44Error with reflex: 1.75

Perturbed with reflexPerturbed w/o reflex

Unpe rturbed

Perturbed with refle xPerturbed w/o reflex

UnperturbedA. Flexion resisting

B. Flexion assisting

Torque(Nm)

Position(deg)

Page 55: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Time (ms)

Error w/o reflex: -3.87Error with reflex: -3.80

Error with re flex: 1.34Error w/o reflex: 3.61

C. Extension resisting

D. Extension assisting

Page 56: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Are reflexes selectively controlled?

Assisting

Resisting Unperturbed

0 500 10000

1

2

Reflex

Background

0 500 10000

1

2AverageTMeLoEMGforextensionresistingtrials

duringbackgroundandreflexepoch

Trial number

A

B

Page 57: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

MSMS: Main Goals and Features

q  Provides interactive tools for modeling musculoskeletal and prosthetic limbs and the task environments

q  Simulates the models to predict limb’s movement caused by neural controllers and external forces

q  Simulates the models in real-time VR environments with the human or non-human primate subject in the loop

Development since 1999 led by Dr. Rahman Davoodi Medical Device Development Facility, University of Southern California

Page 58: What Robo)cistsNeedtoKnow About … · 1.0 dispot. pot. T F 0.8 1.0 1.2 1.4 0.0 0.2 0.4 L F dispot. pot. 0.0 0.2 0.4 0.6 0.8 1.0 SOLmodel CF model data F o r c e (F 0) Whole-muscle

Challenge: Can we endow mechatronic prosthetic & robotic hands with haptic abilities?  

Answer: BiomimeQc  

tacQle  sensors  •   Contact  with  object  

deforms  skin  and  fluid,  changing  electrode  

impedances  •   Heat  flux  into  object  

idenQfies  material  properQes  

•   Skin  sliding  over  textures  generates  vibraQon  spectra  

recorded  by  pressure  sensor