prev

next

of 25

Published on

14-Dec-2015View

235Download

0

Embed Size (px)

Transcript

- Slide 1

What is it, why do we need it and how do we do it. Slide 2 How long would it take to count to one million? How many atoms are in one cup of water? What is the mass of the earth in grams? What is the rest mass of a single electron? Slide 3 23 days. It might not seem like it but a million is a big number but small when compared to other much larger numbers in science. Slide 4 24,000,000,000,000,000,000,000,000 One glass of water has that many atoms in it. That is more atoms than there are cups of water in all the oceans. Slide 5 24,000,000,000,000,000,000,000,000 One glass of water has that many atoms in it. That is more atoms than there are cups of water in all the oceans. sextillion septillion quintillion quadrillion trillion billion million thousand hundred Slide 6 6,000,000,000,000,000,000,000,000,000g The mass of the earth! Slide 7 The rest mass of a single electron! 0.000000000000000000000000000000911kg Slide 8 Which number is easier to use? 0.000000000000000000000000000000911kg or 9.11x10 -31 kg 24,000,000,000,000,000,000,000,000g or 2.4 x10 25 6,000,000,000,000,000,000,000,000,000g or 6 x10^ 27 Slide 9 Calculating the force of gravity the sun exerts on the earth. Multiplication and Division are easier! Slide 10 An abbreviation for very large and very small numbers in science. Slide 11 1a) Identify five objects smaller than the eye can see. 1b) Briefly Describe what the object is. 1c) Express its size in scientific and standard notation. 2a) Find five objects bigger than the sun. 2b) Briefly Describe what the object is. 2c) Express its size in scientific and standard notation. 3) Is the sun a large object on astronomical scales? 4) What is scientific notation and why do we use it? Click the Picture of a Link, if that is Down Click Here.Here Slide 12 Order of Magnitude: Using the scale of the universe app, what order of magnitude do the following objects have in meters? Express them in scientific notation and include a fact about them. A Human Being Titanic Boeing 747 Hummingbird Mitochondrion A Blue Whale Angel Falls Tyrannosaurus Rex String Up Quark Water Molecule Mount Everest Ant Ganymede Proxima Centauri Observable Universe Total Human Height Sirius A Kuiper Belt Gomezs Hamburger Glucose Tarantula Nebula Andromeda Galaxy A Light Year ESTIMATE Height of School Telephone Pole Length of CT Distance of US Length of Mall Height of Holy Land Diameter of Golf Ball Length of Pencil Thickness of Paper The Number of Golf balls that could fit: On a school bus. In a suitcase In our classroom In a bathtub BINGO! Guess How Many Jelly Beans are in the Jar and Win it! Slide 13 An abbreviation for very large and very small numbers in science. Slide 14 Some number written in the form A x 10 B one non-zero number to the left of a decimal point. Move decimals left or right and count the spaces. Moving Left = positive exponent (big numbers) Moving right = negative exponent (small numbers) Some number written in the form A x 10 B one non-zero number to the left of a decimal point. Move decimals left or right and count the spaces. Moving Left = positive exponent (big numbers) Moving right = negative exponent (small numbers) 100 1000 24,000 365,445 2 0.001 0.000001 0.0000904 5.03 x 10 6 4.3x10 -8 100 1000 24,000 365,445 2 0.001 0.000001 0.0000904 5.03 x 10 6 4.3x10 -8 1.Where is the decimal? 2.Where do I want it? 3.How far did I move it? 4.Negative or Positive? Slide 15 1234 1,020,000 18,300 54,234,012 4 million 0.00109 0.0000000034 0.0000904 1/10 12 thousandth 2.345x10 9 3.03 x 10 8 2.1x10 -6 9x10 -31 1234 1,020,000 18,300 54,234,012 4 million 0.00109 0.0000000034 0.0000904 1/10 12 thousandth 2.345x10 9 3.03 x 10 8 2.1x10 -6 9x10 -31 Convert to Scientific Notation Convert to Standard Notation Slide 16 An abbreviation for very large and very small numbers in science. Slide 17 Rule 1 Example Slide 18 Rule 1 Example Multiply the leading numbers and add the exponents! Slide 19 Calculating the force of gravity the sun exerts on the earth. 6.67 x 1.9891 x 5.97219 x 10 (-11 + 30 + 24) 1.496 x 1.496 x 10 (11+11) Slide 20 (3x10 8 ) x (6x10 1 ) = (2.235x10 8 ) x (6.453x10 1 ) = Slide 21 Rule 2 Example Slide 22 Rule 2 Example Divide the leading numbers and subtract the exponents! Slide 23 (8x10 8 ) (4x10 1 ) = (3x10 4 ) (6x10 7 ) = Slide 24 (2x10 2 ) + (4x10 1 ) = (2.5x10 4 ) + (4.4x10 3 ) = Convert to same power. Keep the exponent. Add the leading numbers Convert to same power. Keep the exponent. Add the leading numbers Slide 25 (4.45x10 9 ) x (3.43x10 0 ) = (2.5x10 5 ) x (3x10 6 ) = (4x10 13 ) x (3x10 2 ) = (2x10 4 ) x (3.5x10 2 ) = (2.5x10 4 ) - (4.4x10 3 ) = (2x10 2 ) - (4x10 1 ) = (3.6x10 5 ) + (4x10 6 ) = Convert to same power. Keep the exponent. Add the leading numbers Convert to same power. Keep the exponent. Add the leading numbers Multiplying Multiply the Leading numbers Add the Exponents Multiply the Leading numbers Add the Exponents Divide the Leading numbers Subtract the Exponents Divide the Leading numbers Subtract the Exponents Dividing Adding and Subtracting (9x10 6 ) (3x10 4 ) (9.34x10 6 ) (3.85x10 4 ) (4x10 4 ) (8x10 6 ) (12x10 6 ) (3x10 7 ) = = = =