14
Weld Australia Technical Guidance Note AS/NZS 2980: A Summary of Changes TGN-SG03 www.weldaustralia.com.au

Weld Australia Technical Guidance Note AS/NZS 2980: A … · 2018-12-10 · 2980 2018 2 Foreword This Technical Guidance Note contains basic information relevant to the qualification

  • Upload
    others

  • View
    10

  • Download
    4

Embed Size (px)

Citation preview

Page 1: Weld Australia Technical Guidance Note AS/NZS 2980: A … · 2018-12-10 · 2980 2018 2 Foreword This Technical Guidance Note contains basic information relevant to the qualification

Weld Australia Technical Guidance Note

AS/NZS 2980: A Summary of Changes

TGN-SG03

www.weldaustralia.com.au

Page 2: Weld Australia Technical Guidance Note AS/NZS 2980: A … · 2018-12-10 · 2980 2018 2 Foreword This Technical Guidance Note contains basic information relevant to the qualification

Weld Australia Technical Guidance Note | AS/NZS 2980: A Summary of Changes | © 2018 2

ForewordThis Technical Guidance Note contains basic information relevant to the qualification of welders using AS/NZS 2980 for structural applications. It is designed to be read in conjunction with the standard, and, to assist users in the transition from the 2007 edition to the 2018 of the standard.

Future RevisionsThis Technical Guidance Note will be revised from time to time and comments aimed at improving its value to industry will be welcome. This publication is copyright and extracts from this publication shall not be reprinted or published without the Publisher’s express consent.

DisclaimerWhile every effort has been made and all reasonable care taken to ensure the accuracy of the material contained herein, the authors, editors and publishers of this publication shall not be held to be liable or responsible in any way whatsoever and expressly disclaim any liability or responsibility for any loss or damage costs or expenses howsoever caused incurred by any person whether the purchaser of this work or otherwise including but without in any way limiting any loss or damage costs or expenses incurred as a result of or in connection with the reliance whether whole or partial by any person as aforesaid upon any part of the contents of this Technical Guidance Note. Should expert assistance be required, the services of a competent professional person should be sought.

EditorMr Bruce CannonTechnical Publications Manager, Weld Australia

Weld AustraliaABN 69 003 696 526Building 3, Level 3, Pymble Corporate Centre20 Bridge Street, Pymble, NSW 2073PO Box 197, Macquarie Park BC, NSW 1670Phone: +61 (0)2 8748 0100www.weldaustralia.com.au

Page 3: Weld Australia Technical Guidance Note AS/NZS 2980: A … · 2018-12-10 · 2980 2018 2 Foreword This Technical Guidance Note contains basic information relevant to the qualification

Weld Australia Technical Guidance Note | AS/NZS 2980: A Summary of Changes | © 2018 3

About Weld AustraliaWho We AreWeld Australia represents the welding profession in Australia. Our members are made up of individual welding professionals and companies of all sizes. Weld Australia members are involved almost every facet of Australian industry and make a significant contribution to the nation’s economy.

Our primary goal is to ensure that the Australian welding industry remains both locally and globally competitive, both now and into the future.

A not-for-profit, membership-based organisation, Weld Australia is dedicated to providing our members with a competitive advantage through access to industry, research, education, certification, government, and the wider industrial community.

Weld Australia is the Australian representative member of the International Institute of Welding (IIW).

Our MissionOur mission is to represent the interests of members and safeguard the public by ensuring the integrity of in-service welds, and to promote the use of best practice technology and quality systems.

Our Value PropositionWeld Australia generates revenue through its commercial activities which is then reinvested back into the welding community for the benefit of members.

Weld Australia brings individual and company members together to deliver:• A forum for the exchange of ideas and the sharing of resources• A voice to promote the interests of the welding community and shape the market for welding services• Specialist technical problem solving and a conduit between industry and research organisations• A pathway for learning and career development and the opportunity to benchmark against world’s

best practice

Our ServicesWeld Australia provides:

• Events and Seminars• Technical Publications• Technical Support and Advisory Services• Project Management• Professional Development• Qualification and Certification

Real Solutions to Real Problems…Weld Australia has a team of highly qualified welding engineers and technologists available to provide expert advisory services on all welding related matters. With expertise in a wide range of industries, ranging from biotechnology to heavy engineering we have a unique capability to solve your welding problems.

Our advice can help you substantially increase the operational life of your plant and equipment and thereby reduce your maintenance and repair overheads.

Further InformationFor further information about Weld Australia and how we can help your business, please visit: www.weldaustralia.com.au.

Page 4: Weld Australia Technical Guidance Note AS/NZS 2980: A … · 2018-12-10 · 2980 2018 2 Foreword This Technical Guidance Note contains basic information relevant to the qualification

Weld Australia Technical Guidance Note | AS/NZS 2980: A Summary of Changes | © 2018 4

AS/NZS 2980: A Summary of Changes1.0 IntroductionIn 2018, AS/NZS 2980 Qualification of welders for fusion welding of steels was revised and published by Standards Australia. This edition of the standard now draws heavily on the requirements of AS/NZS ISO 9606-1 Qualification testing of welders — Fusion welding — Part 1: Steels upon which it is based, and in most requirements, is now identical.

Unfortunately, due to copyright restrictions, the original text from ISO 9606-1 could not be reproduced within the standard, meaning that AS/NZS 2980:2018 Qualification of welders for fusion welding of steels—Additional requirements for Australian and New Zealand only contains text and requirements that vary from the original ISO document. The 2007 edition of AS/NZS 2980 whilst being based on ISO requirements at the time of publication was not identical although many of the ISO principles within were followed.

It is anticipated that as the original ISO standard is improved, Australia will adopt the changes and as a consequence, it is likely that in the medium term AS/NZS 2980 will be superseded by AS/NZS ISO 9606-1.

2.0 HistoryAS/NZS 2980 was originally published as AS 2980 in 1987 and its contents were based on the welder qualification requirements of the American Welding Society’s AWS D1.1 Structural welding code—Steel. A limitation of the standard at the time was that it was not suited for qualifying welders on light gauge steels. In 2004, the standard was revised taking cognisance of ISO 9606-1, and addressing these limitations.

Following a request from New Zealand, the standard was co jointed in 2007 allowing New Zealand to progressively withdraw two of its aging welder qualification standards, NZS 4711 and NZS 4703. The contents of NZS 4703 have been retained within a normative appendix of AS/NZS 2980 to provide a specific welder qualification test utilised by the New Zealand dairy industry.

NZS 4711 had a similar approach to the 2004 edition of AS 2980 in that both standards allowed for a 2 year validation period, simplifying the standards jointing process and allowing the NZS 4711 qualifications to be validated (prolonged) as defined within AS/NZS 2980:2007.

In 2012, ISO completed its revision of ISO 9606-1, taking cognisance of the objections to earlier drafts by countries including Australia, Canada, and the USA. Whilst some of the changes included in ISO 9606-1:2012 were included within AS/NZS 2980:2007, other significant changes were made by ISO and are published within AS/NZS ISO 9606-1 and AS/NZS 2980:2018.

The followings sections describe the requirements of AS/NZS ISO 9606-1 and AS/NZS 2980:2018, making reference to the key differences of the 2007 edition of AS/NZS 2980.

3.0 GeneralAS/NZS 2980:2018 and AS/NZS ISO 9606-1 are closely aligned for most of their core requirements. AS/NZS 2980:2018 includes an informative Appendix (Appendix A) which provides guidance to the user on the application of AS/NZS ISO 9606-1 for Australian and New Zealand conditions.

AS/NZS 2980:2018 defers to AS/NZS ISO 9606-1 for the bulk of its requirements other than in the following instances:1. Australian standards or Australian/New Zealand standards (including AS/NZS ISO standards) listed may be

directly substituted for the referenced ISO standards;2. Welder qualifications for welds in structural steel (Appendix B) – Imperfection and test methods have been

retained in modified form from the 2007 edition;3. Welder qualification test for the New Zealand dairy industry (Appendix C) has been retained in modified form.

Page 5: Weld Australia Technical Guidance Note AS/NZS 2980: A … · 2018-12-10 · 2980 2018 2 Foreword This Technical Guidance Note contains basic information relevant to the qualification

Weld Australia Technical Guidance Note | AS/NZS 2980: A Summary of Changes | © 2018 5

3.1 TerminologyThe terminology used in the standards is ISO based and similar in most respects to that used in the 2007 edition of AS/NZS 2980. Primary differences are:1. The generic term gas metal arc welding (GMAW) is used in Australia in lieu of ISO’s metal inert gas (MIG) with a

solid wire or metal active gas (MAG) with a solid wire. Notes: 1. The term MIG is commonly used in Australia irrespective of the shielding gas type used. 2. Active gases include carbon dioxide (CO2) or argon (Ar) with additions of CO2 and/or oxygen (O2).

2. The term flux cored arc welding (FCAW) is used in Australia in lieu of the ISO’s use of tubular cored arc welding or MAG welding with a flux cored arc electrode.

3. The generic term gas tungsten arc welding (GTAW) is used in Australia in lieu of ISO’s tungsten inert gas (TIG).Note: The term TIG is also commonly used in Australia.

4.0 Essential Variables and Range of QualificationIn most respects, the essential variables remain similar across the standards with the exception that the Material group variable has been replaced by the Filler material group giving the user a broader range of qualification within AS/NZS ISO 9606-1 and AS/NZS 2980:2018. A change in arc transfer characteristics (not present in ISO 9606-1:1994) also applies across the standards consistent with Australian and North American practice.

There are some significant changes in the range of qualifications applicable within AS/NZS ISO 9606-1 and AS/NZS 2980:2018 compared with that previously specified within AS/NZS 2980:2007.

4.1 Welding ProcessesThe welding processes applicable to AS/NZS ISO 9606-1 and AS/NZS 2980:2018 have been expanded beyond those originally specified within ISO 9606-1:1994 but remain restricted to those where the welding torch (or electrode holder) can be manipulated by the welder. Whilst AS/NZS 2980:2007 referenced the automated processes such as submerged arc (SAW) and electroslag (ESW) in keeping with previous editions of AS 2980, AS/NZS ISO 9606-1 and AS/NZS 2980:2018 refer to ISO 14732 for the qualification of operators of automated processes.

Joints may be welded as single process or multi process joints in all standards. In multi process joints, each process also qualifies as individual single process joints based on the thickness of weld metal deposited for each process. Single process joints may also be used in combination to qualify multi process joints.

4.2 Product TypeTwo types of product are included within the standards, these being plate (including angles and rolled sections) and pipe (including rolled hollow sections and tubulars).

4.3 Type of WeldThe standards describe three types of welds – butt welds, fillet welds and branch connections. Whilst welders who qualified on butt welds were also deemed qualified to weld fillet welds in AS/NZS 2980 in keeping with European and ISO practice at the time, this allowance was withdrawn in ISO standards in 2012 due to observed difficulties by welders qualified for butt welds achieving root penetration in fillet welds.

AS/NZS ISO 9606-1 and AS/NZS 2980:2018 provides two options for welders to qualify for a butt weld in combination with a fillet weld, these being either:

a) Welding a 3-pass fillet in the joint shown below prior to completion of the butt joint; or

b) Welding a supplementary fillet weld test piece in the PB (i.e. HV or 2F) position.

Page 6: Weld Australia Technical Guidance Note AS/NZS 2980: A … · 2018-12-10 · 2980 2018 2 Foreword This Technical Guidance Note contains basic information relevant to the qualification

Weld Australia Technical Guidance Note | AS/NZS 2980: A Summary of Changes | © 2018 6

4.4 Filler Material GroupingsA major change incorporated within AS/NZS ISO 9606-1 and AS/NZS 2980:2018 was the change from a parent material based grouping as used within AS/NZS 2980:2007, to a 6-tier filler material system providing the welder with the opportunity to access a broader range of qualification based upon consumable useability factors. The groups are:

• FM1 – Non-alloy and fine grain steels• FM2 – High-strength steels• FM3 – Creep-resisting steels Cr < 3.75%• FM4 – Creep resisting steels 3.75 ≤ Cr ≤ 12%• FM5 – Stainless and heat-resisting allows• FM6 – Nickel and nickel alloys

4.5 Filler Material TypesRange of qualification types remains unchanged from that published within AS/NZS 2980:2007. Specifically:

• Cellulosic covered consumables qualifies cellulosic coverings only• Rutile and other non-basic coverings qualifies all non basic coverings (except cellulosic coverings)• Basic covering qualifies for all coverings other than cellulosic• Solid wire (and rod) qualifies for solid wire and metal cored wire and vice versa.• Rutile and other non-basic cored electrodes qualifies all non basic cored electrodes• Basic cored electrode qualifies for all other cored electrodes (other than metal core)

4.6 DimensionsThe basis of thickness range qualified has changed from the thickness of material welded within AS/NZS 2980:2007 to the thickness of weld metal deposited within AS/NZS ISO 9606-1 and AS/NZS 2980:2018. The actual ranges qualified remain largely unchanged. This change provides better clarity around the range qualified particularly for multi process joints and for incomplete penetration butt welds for example.

4.7 Welding PositionsThe weld positions qualified have been modified from that published in AS/NZS 2980:2007. Whilst the fillet weld positions qualified are largely unchanged within AS/NZS ISO 9606-1 and AS/NZS 2980:2018, overhead butt welds (position PE or 4G) no longer qualify vertical up (PF or 3G) welds. Likewise, butt and fillet welded joints require separate qualification.

4.8 Weld DetailsQualifications regarding backing materials have been expanded from the limited options within AS/NZS 2980:2007 to now include options for gas backing, consumable inserts and flux backing within AS/NZS 2980:2018 and AS/NZS ISO 9606-1.

Range of qualification based on layer technique for fillet welds remains unchanged.

4.9 Examination & Testing4.9.1 ExaminationThe examination requirements within AS/NZS 2980:2018 (and AS/NZS ISO 9606-1) in terms of supervision and general requirements remains similar to those within AS/NZS 2980:2007.

4.9.2 Test PiecesMinimum test piece length for butt welds in plates has decreased from ≥ 300mm within AS/NZS 2980:2007 to ≥ 200mm for AS/NZS 2980:2018 and AS/NZS ISO 9606-1. The change in length from that in the 2007 edition of AS/NZS 2980 is due to the longer length of test piece typically associated with the use of automatic and fully mechanised welding processes. A longer length may be used if required (or specified). Test piece requirements for fillet welded joints and pipe joints remains unchanged from that originally published within AS/NZS 2980:2007.

4.9.3 Welding ConditionsAll standards require that the test weld be made by the welder following a suitably qualified weld procedure (WPS), or draft procedure (pWPS), provided that the latter is successfully qualified in conjunction with the weld test. Whilst

Page 7: Weld Australia Technical Guidance Note AS/NZS 2980: A … · 2018-12-10 · 2980 2018 2 Foreword This Technical Guidance Note contains basic information relevant to the qualification

Weld Australia Technical Guidance Note | AS/NZS 2980: A Summary of Changes | © 2018 7

AS/NZS 2980:2007 is primarily aligned with the requirements of the AS/NZS 1554 series of standards (unless otherwise specified), AS/NZS 2980:2018 and AS/NZS ISO 9606-1 requires that the procedure be prepared in accordance with ISO 15609-1 or ISO 15609-2. This does not necessarily require the procedure to be qualified to ISO standards, rather these ISO standards specify the parameters that must be recorded on the WPS once qualified. Provided that the procedure being followed by the welder contains all requirements needed by the welder to reproduce the weld as specified within the appropriate application standard (e.g. AS/NZS 3992, AS/NZS 1554.1 etc), the only additional parameters that need to be reported are the parent material group numbers (including sub-group numbers) set out within ISO/TR 15608, and the welding process numbers as these details are recorded on the welders certificate of test. To assist users of AS/NZS 2980, an informative appendix containing the ISO/TR 15608 based group numbers of common steels welded in Australia is included in the standard.

4.9.4 Test MethodsTest requirements specified remain unchanged across the standards and are summarised as follows:

a. Butt welds:• VT + RT; or,

Note: If RT used with GMAW, FCAW (metal core only) or oxy-acetylene processes, additional bend or fracture tests required (Cl 6.5.2.4).

• VT + UT (≥ 8mm ferritic steel only); or,• VT + bend tests; or,• VT + fracture tests; or,• VT + notched tensile test (pipe with OD ≤25mm only).

b. Fillet and branch welds:• VT + fracture tests; or,• VT + macros; or;• VT + RT (pipe only).

Notes:1. The Australian test methods for bend testing, fracture testing, macro testing and visual examination (VT), are similar to the ISO

methods specified within AS/NZS ISO 9606-1, and provide similar technical outcomes. In some cases, the ISO test methods provide for alternative test details not available under AS 2205 or other test methodologies.

2. For radiographic (RT) and ultrasonic (UT) examinations, the specified ISO methods must be utilised if the weld procedure being followed by the welder is qualified to ISO standards. If the procedure was qualified to standards such as AS/NZS 1554.1, AS/NZS 3992 or other Australian standards then the Australian RT or UT test method must be used.

The appropriate standard for the method of test will vary. In most cases, the AS 2205 Method for destructive testing of welds in metal series tests should be utilised where AS/NZS 2980 (2007 and 2018 editions) are being followed.

Where radiography or ultrasonic examination is required, the acceptance requirements for imperfections associated with the specified weld test acceptance criteria must be followed. For example, if either AS/NZS 1554.1 or AS/NZS 3992 is specified, the Australian non destructive test methods referenced within must be used. If ISO 5817 is specified for test acceptance, then the ISO non destructive test methods referenced within ISO 9606-1 must be used.

4.10 Acceptance RequirementsDefault test acceptance criteria within each of the standards are as follows unless otherwise specified:

1. AS/NZS 2980:2007 – Requirements based on AS/NZS 1554.1 and AWS D1.1.2. AS/NZS 2980:2018 – Requirements based on AS/NZS 1554.1 and AWS D1.1.3. AS/NZS ISO 9606-1 – Requirements based on ISO 5817.

All of the above standards allow alternative acceptance criteria when specified. For example, AS/NZS ISO 9606-1 can utilise AS/NZS 1554.1 for structural applications, and as specified within AS/NZS 3992 for pressure equipment applications.

4.11 Re-testsWhilst AS/NZS 2980:2007 is silent on the retests in the event of a weld test failure, AS/NZS ISO 9606-1 (and similarly AS/NZS 2980:2018) allows for the welder to repeat the test once without additional training.

Page 8: Weld Australia Technical Guidance Note AS/NZS 2980: A … · 2018-12-10 · 2980 2018 2 Foreword This Technical Guidance Note contains basic information relevant to the qualification

Weld Australia Technical Guidance Note | AS/NZS 2980: A Summary of Changes | © 2018 8

4.12 Period of Validity4.12.1 Confirmation of ValidityAll standards provide a method of confirmation of validity every six months and in all cases, the basic requirements are similar. The period of validity may be extended every six months up to the limits as indicated below. Extending the period of validity every six months is also consistent with the requirements of application standards such as the AS/NZS1554 series and AS/NZS 3992.

4.12.2 Revalidation/Prolongation of QualificationAS/NZS ISO 9606-1 and AS/NZS 2980:2018 offer three methods of revalidation of the welder’s certificate of test, with AS/NZS 2980:2007 offering only one method. In summary, the methods are:

1. The welder’s qualification certificate of test remains valid for up to three years after which the welder must be retested.

2. The welder’s qualification certificate of test remains valid for up to two years. To revalidate the certificate, two welds produced in the previous 6 months must be tested as per the original requirements, reproducing the original test conditions other than thickness and pipe outside diameter. Note: A similar method was used within AS/NZS 2980:2007 that did not require the original position of test to be reproduced.

3. The welder’s qualification test is valid indefinitely provided that the certificate is reconfirmed every six months, the employers quality program is verified as compliant with ISO 3834-2 or ISO 3834-3, and the welder has not changed employer.

4.13 Welder’s Qualification Test CertificateAll standards require a certificate of test to be issued the welder. An electronic certificate is also acceptable. Requirements that need to be specified are similar however the format used is at the discretion of the examining body.

Usually only one certificate is issued per test, but in the case of a multi process joint, certificates for each process may be issued as well as the certificate for the joint as a whole.

4.14 DesignationAS/NZS 2980:2007 did not include the option to generate a qualification designation as computerised systems for welder qualifications were not widely available in Australia at the time. Whilst a designation can easily be generated if required, AS/NZS ISO 9606-1 and AS/NZS 2980:2018 requires that the designation be recorded on the welder’s certificate of test. The designation enables the certificate reviewer to ascertain the basis of qualification of the welder from the coding used, or alternatively, it enables the fabricator to rapidly search for welders with specific attributes of test.

4.15 Job KnowledgeJob knowledge requirements across all standards are optional, and are similar in terms of syllabus items. AS/NZS 2980:2007 does not define the syllabus other than to state that welders who have successfully completed the AS 1796 theory examination are deemed to comply.

Whilst AS/NZS ISO 9606-1 (and by reference and AS/NZS 2980:2018) defines the syllabus items within its Annex B, these items remain consistent with the AS 1796 theory syllabus competency requirements.

5.0 Transition RequirementsWelders who have valid AS/NZS 2980:2007 qualification test certificates are able to transition to either AS/NZS ISO 9606-1 or AS/NZS 2980:2018 when prolongation (or validation) falls due. The following apply:

1. AS/NZS ISO 9606-1 (and AS/NZS 2980:2018) allows welders to transition directly from national standards however the terms and conditions of AS/NZS ISO 9606-1 apply for the transition process. In situations where the welder may not have had two welds tested that reproduce the original weld test conditions (excluding thickness and pipe diameter (where relevant)), it may be simpler (and cheaper) for the fabricator to simply opt to retest the welder.

2. Welders qualified to weld both butt and fillet welds under AS/NZS 2980:2007 will need undertake a fillet weld test to maintain both the fillet and butt weld qualifications, unless the welder can demonstrate the ability to satisfactorily produce fillet welds from those produced and tested in the previous six months – see item 1 above.

Page 9: Weld Australia Technical Guidance Note AS/NZS 2980: A … · 2018-12-10 · 2980 2018 2 Foreword This Technical Guidance Note contains basic information relevant to the qualification

Weld Australia Technical Guidance Note | AS/NZS 2980: A Summary of Changes | © 2018 9

3. In cases where the welder qualifications are transitioning from AS/NZS 2980:2007, fabricators who are required to routinely radiograph or ultrasonically examine their welds may prefer to remain with the two year validation method, or, in all other cases, transition to the three year retest method during the transition period irrespective of the application of AS/NZS ISO 9606-1 or AS/NZS 2980:2018.

6.0 SummaryEssential variables and significant changes to major items for the standards are summarised in Table 1.

7.0 ReferencesStandards referenced in this note include the following:

1. AS 1796 Certification of welders and welding supervisors2. AS 2205 Method for destructive testing of welds in metal3. AS 2980:1987 Qualification of arc welders for welding of steels4. AS/NZS 2980:2007 Qualification of welders for fusion welding of steels5. AS/NZS 2980:2018 Qualification of welders for fusion welding of steels — Additional requirements for

Australian and New Zealand6. AS/NZS ISO 9606-1 Qualification testing of welders — Fusion welding — Part 1: Steels7. AS/NZS 3992 Pressure equipment—Welding and brazing qualification8. NZS 4703 Welder qualification tests for stainless steel pipe for the dairy industry9. NZS 4711 Qualification tests for metal arc welders10. AWS D1.1 Structural welding code—Steel11. ISO 5817 Welding — Fusion-welded joints in steel, nickel, titanium and their alloys (beam welding excluded)

— Quality levels for imperfections12. ISO 9606-1:2012 Qualification testing of welders — Fusion welding — Part 1: Steels13. ISO 14732 Welding personnel — Qualification testing of welding operators and weld setters for mechanized

and automatic welding of metallic materials14. ISO 15609-1 Specification and qualification of welding procedures for metallic materials — Welding

procedure specification — Part 1: Arc welding15. ISO 15609-2 Specification and qualification of welding procedures for metallic materials — Welding

procedure specification — Part 1: Gas welding16. ISO/TR 15608 Welding — Guidelines for a metallic materials grouping system

Page 10: Weld Australia Technical Guidance Note AS/NZS 2980: A … · 2018-12-10 · 2980 2018 2 Foreword This Technical Guidance Note contains basic information relevant to the qualification

Wel

d Au

stra

lia T

echn

ical

Gui

danc

e N

ote

| A

S/N

ZS 2

980:

A S

umm

ary

of C

hang

es |

© 2

018

10

Var

iabl

eA

S/N

ZS 2

980:

2007

AS/

NZS

ISO

960

6-1 &

AS/

NZS

298

0:20

18W

eldi

ng p

roce

ss

A

rc tr

ansf

er c

hara

cter

istic

s

Mul

ti pr

oces

s jo

int

Proc

esse

s in

clud

e:•

GM

AW, G

TAW

, MM

AW, F

CAW

, PAW

, OW

• M

echa

nise

d SA

W•

ESW

, EG

WC

hang

e in

arc

tran

sfer

mod

e•

Root

pro

cess

qua

lifies

, roo

t pro

cess

and

fill/

cap

proc

ess

qual

ifies

as

ssm

b; b

oth

in c

ombi

natio

n an

d si

ngly

• Tw

o si

ngle

pro

cess

as

per a

bove

qua

lify

in c

ombi

natio

n

Cha

nges

are

:•

FCAW

(met

al c

ore)

add

ed, a

dditi

onal

GTA

W v

aria

nts

• Pa

rt m

echa

nise

d SA

W o

nly

• ES

W, E

GW

rem

oved

Shor

t arc

qua

lifies

oth

er m

odes

but

not

vic

e ve

rsa

No

chan

ge

Prod

uct t

ype

Plat

e &

pipe

(tub

e)N

o ch

ange

Type

of w

eld

• Bu

tt w

elds

qua

lify

all t

ypes

exc

ept b

ranc

h w

elds

• Bu

tt w

elds

qua

lify

butt

and

fille

t wel

ds•

Fille

t wel

ds q

ualif

y fil

let w

elds

• Sp

ecia

l wel

ds o

ptio

n

• Bu

tt w

elds

qua

lify

all b

utt w

elds

exc

ept b

ranc

h w

elds

• O

ptio

ns to

qua

lify

butt

and

fille

t wel

ds a

t the

sam

e tim

e•

Fille

t wel

ds q

ualif

y fil

let w

elds

• Sp

ecia

l wel

d op

tion

Mat

eria

l gro

ups

• Q

ualifi

catio

n lin

ked

to m

ater

ial g

roup

s•

11 b

asic

gro

ups

base

d on

ISO

/TR

1560

8•

Not

ess

entia

l var

iabl

e•

Reco

rd d

etai

ls o

f mat

eria

l wel

ded

on c

ertifi

cate

of t

est

Fille

r mat

eria

l gro

upN

ot a

n es

sent

ial v

aria

ble

• Si

x gr

oups

FM

1 to

FM

6, b

ased

on

com

posi

tion

• G

roup

s w

ith s

imila

r or b

ette

r use

abilit

y qu

alifi

es fo

r sim

ilar o

r m

ore

usea

ble

type

sFi

ller m

ater

ial t

ype

• M

MAW

– c

ellu

losi

c qu

alifi

es c

ellu

losi

c on

ly•

Basi

c ty

pes

qual

ifies

bas

ic, r

utile

and

var

iant

s•

Rutil

e an

d va

riant

s qu

alifi

es ru

tile

and

varia

nts

• So

lid w

ire a

nd m

etal

cor

e qu

alifi

es s

olid

wire

and

met

al c

ore

No

chan

ge

Dim

ensi

ons

Butt

join

ts –

pla

te th

ickn

ess

• <3

mm

qua

lifies

t to

2t

• 3

to 1

2mm

qua

lifies

3 to

2t

• ≥1

2mm

qua

lifies

≥3m

mPi

pe•

≤25Ø

qua

lifies

D to

2D

• >2

5Ø q

ualifi

es ≥

0.5D

(25m

m m

inim

um)

Fille

t wel

ds (p

late

thic

knes

s)•

<3m

m q

ualifi

es t

to 2

t•

≥3m

m q

ualifi

es ≥

3mm

Butt

join

ts –

dep

osite

d m

etal

thic

knes

s•

<3m

m q

ualifi

es g

reat

er o

f s to

3m

m o

r s to

2s

• 3

to 1

2mm

qua

lifies

3 to

2s

• ≥1

2mm

qua

lifies

≥3m

mPi

pe•

≤25Ø

qua

lifies

D to

2D

• >2

5Ø q

ualifi

es ≥

0.5D

(25m

m m

inim

um)

Fille

t wel

ds (p

late

thic

knes

s)•

<3m

m q

ualifi

es t

to 2

t•

≥3m

m q

ualifi

es ≥

3mm

Tabl

e 1:

Sum

mar

y of

ess

entia

l var

iabl

es a

nd m

ain

chan

ges

Page 11: Weld Australia Technical Guidance Note AS/NZS 2980: A … · 2018-12-10 · 2980 2018 2 Foreword This Technical Guidance Note contains basic information relevant to the qualification

Wel

d Au

stra

lia T

echn

ical

Gui

danc

e N

ote

| A

S/N

ZS 2

980:

A S

umm

ary

of C

hang

es |

© 2

018

11

Var

iabl

eA

S/N

ZS 2

980:

2007

AS/

NZS

ISO

960

6-1 &

AS/

NZS

298

0:20

18W

eldi

ng p

ositi

on•

OH

(PE)

qua

lifies

all

exce

pt V

D (P

G)

• O

ther

pos

ition

s pr

ovid

ed in

clud

ing

pipe

, fixe

d an

d ro

tate

d N

ote:

Pos

ition

s as

per

AS

3545

• O

H (P

E) +

VU

(PF)

or H

-L04

5 qu

alifi

es a

ll bu

tt po

sitio

n•

OH

(PD

or P

E) fi

llet q

ualifi

es a

ll fil

lets

exc

ept V

U (P

F) &

VD

(PG

)•

VU (P

F) fi

llet q

ualifi

es F

(PA)

, HV

(PB)

and

VU

(PF)

fille

ts•

VD (P

G) fi

llet q

ualifi

es V

D (P

G) fi

llet o

nly

• Pi

pe p

ositi

ons

sim

plifi

edW

eld

deta

ils•

Back

ing

optio

ns li

mite

d to

sin

gle

side

s an

d m

ater

ial b

acki

ng•

Sing

le la

yer fi

llet o

nly

qual

ifies

sin

gle

laye

r fille

t. M

ultil

ayer

qu

alifi

es m

ultil

ayer

and

sin

gle

laye

r

• Ba

ckin

g op

tions

exp

ande

d to

incl

ude

cera

mic

, flux

, gas

ba

ckin

gs a

nd c

onsu

mab

le in

serts

.•

Sing

le la

yer fi

llet o

nly

qual

ifies

sin

gle

laye

r fille

t. M

ultil

ayer

qu

alifi

es m

ultil

ayer

and

sin

gle

laye

rTe

st m

etho

d op

tions

Base

d on

ISO

opt

ions

but

use

s AS

220

5 an

d Au

stra

lian

RT a

nd U

T m

etho

ds•

Both

sta

ndar

ds u

se s

ame

optio

ns a

s AS

/NZS

298

0:20

07•

AS/N

ZS IS

O 9

606-

1 te

st m

etho

ds IS

O b

ased

. Aus

tralia

n RT

and

U

T m

etho

ds u

sed

if Au

stra

lian

acce

ptan

ce c

riter

ia s

peci

fied.

• AS

/NZS

298

0:20

18 u

ses

AS 2

205

and

Aust

ralia

n RT

and

UT

met

hods

Acce

ptan

ce c

riter

iaBa

sed

on A

WS

D1.1

unl

ess

othe

rwis

e sp

ecifi

ed•

AS/N

ZS IS

O 9

606-

1 –

ISO

unl

ess

spec

ified

oth

erw

ise

• AS

/NZS

298

0:20

18 a

s pe

r AS/

NZS

298

0:20

07 u

nles

s sp

ecifi

ed

othe

rwis

eRe

test

sN

ot c

onsi

dere

dRe

test

onc

e w

ithou

t add

ition

al tr

aini

ng if

faile

d

Perio

d of

val

idity

• 2

year

s –

valid

ity p

rolo

nged

bas

ed o

n 2

test

s re

prod

ucin

g or

igin

al c

ondi

tions

oth

er th

an p

ositi

on, t

hick

ness

and

pip

e O

D.•

Requ

ires

confi

rmat

ion

ever

y 6

mon

ths

• W

elde

r may

cha

nge

empl

oyer

3 op

tions

:•

3 ye

ars

– re

test

requ

ired

• 2

year

s - v

alid

ity p

rolo

nged

bas

ed o

n 2

test

s re

prod

ucin

g or

igin

al c

ondi

tions

oth

er th

an th

ickn

ess

and

pipe

OD

• In

defin

ite if

em

ploy

er’s

qual

ity p

rogr

am v

erifi

ed to

AS/

NZS

ISO

38

34 2

or A

S/N

ZS IS

O 3

834

3•

All o

ptio

ns re

quire

con

firm

atio

n ev

ery

six

mon

ths

• W

elde

r may

cha

nge

empl

oyer

oth

er th

an fo

r ind

efini

te o

ptio

n Ta

ble

1: Su

mm

ary

of e

ssen

tial v

aria

bles

and

mai

n ch

ange

s (c

ontin

ued)

Page 12: Weld Australia Technical Guidance Note AS/NZS 2980: A … · 2018-12-10 · 2980 2018 2 Foreword This Technical Guidance Note contains basic information relevant to the qualification

Weld Australia Technical Guidance Note | AS/NZS 2980: A Summary of Changes | © 2018 12

Weld Australia Technical NotesTN 1 - The Weldability of SteelsGives guidance on the preheat and heat input conditions (run size, current, voltage) required for acceptable welds and to avoid cold cracking in a wide variety of steels. The Note is applicable to a wide range of welding processes.

TN 2 - Successful Welding of AluminiumThis note covers the major welding processes as they are used for the welding and repair of aluminium and its alloys. Information is given on the processes, equipment, consumables and techniques. It also provides information on the range of alloys available and briefly covers safety, quality assurance, inspection and testing, costing and alternative joining processes.

TN 3 - Care and Conditioning of Arc Welding ConsumablesGives the basis and details for the correct care, storage and conditioning of welding consumables to control hydrogen and to ensure high quality welding.

TN 4 - The Industry Guide to Hardfacing for the Control of WearDescribes wear mechanisms and gives guidance on the selection of hardfacing consumables and processes for a wide range of applications. Includes Australian Hardfacing Suppliers Compendium 1998.

TN 5 - Flame Cutting of SteelsGives a wealth of practical guidance on flame cutting including detailed procedures for efficient cutting, selection of equipment and gases, practices for identifying and curing defective cutting, methods of maximising economy and other important guidance on the use of steels with flame cut surfaces.

TN 6 - Control of Lamellar TearingDescribes the features and mechanisms of this important mode of failure and the means of controlling tearing through suitable design, material selection, fabrication and inspection. Acceptance standards, repair methods, specification requirements and methods of investigation are proposed. Four appendices give details on the mechanism, material factors, tests for susceptibility and the important question of restraint.

TN 7 - Health and Safety in WeldingProvides information on all aspects of health and safety in welding and cutting. Designed to provide this information in such a way that it is readily useable for instruction in the shop and to provide guidance to management. Recommendations are given for safe procedures to be adopted in a wide variety of situations in welding fabrication.

TN 8 - Economic Design of WeldmentsPrinciples and guidance are given on methods and procedures for optimising design of weldments and welded joints and connections to maximise economy in welding fabrication. Factors influencing the overall cost of weldments which need to be considered at the design stage are discussed.

TN 9 - Welding Rate in Arc Welding Processes: Part 1 MMAWGives practical guidance and information on the selection of welding conditions to improve productivity during manual metal arc welding (MMAW). Graphs are provided showing rates as a function of weld size. The graphs enable a direct comparison of different types of welding electrodes when used for butt and fillet welds in various welding positions.

TN 10 - Fracture MechanicsProvides theory and gives practical guidance for the design and fabrication of structures, planning of maintenance and assessment of the likelihood of brittle or ductile initiation from flaws in ferrous and non-ferrous alloys. Engineering critical assessment case histories are discussed.

TN 11 - Commentary on the Structural Steel Welding Standard AS/NZS 1554The Note complements AS/NZS 1554 parts 1 to 7, by presenting background information which could not be

Page 13: Weld Australia Technical Guidance Note AS/NZS 2980: A … · 2018-12-10 · 2980 2018 2 Foreword This Technical Guidance Note contains basic information relevant to the qualification

Weld Australia Technical Guidance Note | AS/NZS 2980: A Summary of Changes | © 2018 13

included in the Standard. It discusses the requirements of the Standard with particular emphasis on new or revised clauses. In explaining the application of the Standard to welding in steel construction, the commentary emphasises the need to rely on the provisions of the Standard to achieve satisfactory weld quality.

TN 12 - Minimising Corrosion in Welded Steel StructuresDesigned to provide practical guidance and information on corrosion problems associated with the welding of steel structures, together with possible solutions for minimising corrosion.

TN 13 - Stainless Steels for Corrosive Environments (A Joint publication with ACA)Provides guidance on the selection of stainless steels for different environments. Austenitic, ferritic and martensitic stainless steels are described together with the various types of corrosive attack. Aspects of welding procedure, design, cleaning and maintenance to minimise corrosion are covered.

TN 15 - Welding and Fabrication of Quenched and Tempered SteelProvides information on quenched and tempered steels generally available in Australia and gives guidance on welding processes, consumables and procedures and on the properties and performance of welded joints. Information is also provided on other fabrication operations such as flame cutting, plasma cutting, shearing and forming.

TN 16 - Welding Stainless SteelThis Technical Note complements Technical Note Number 13 by detailing valuable information on the welding of most types of stainless steels commonly used in industry.

TN 18 - Welding of CastingsProvides basic information on welding procedures for the welding processes used to weld and repair ferrous and non-ferrous castings. It also provides information on the range of alloys available and briefly covers non-destructive inspection, on-site heating methods and safety.

TN 19 - Cost Effective Quality Management for WeldingProvides guidelines on the application of the AS/NZS ISO 9000 series of Quality Standards within the welding and fabrication industries. Guidance on the writing, development and control of Welding Procedures is also given.

TN 20 - Repair of Steel PipelinesProvides an outline of methods of assessment and repair to a pipeline whilst allowing continuity of supply.

TN 21 - Submerged Arc WeldingProvides an introduction to submerged arc welding equipment, process variables, consumables, procedures and techniques, characteristic weld defects, applications and limitations. Describes exercises to explore the range of procedures and techniques with the use of solid wire (single and multiple arcs) and provides welding practice sheets, which may be used as instruction sheets to supplement demonstrations and class work, or as self-instruction units.

TN 22 - Welding Electrical SafetyProvides information and guidance on welding electrical safety issues: welding equipment, the body and the workplace.

TN 23 - Environmental Improvement GuidelinesProvides information and guidance on how to reduce consumption in the Welding and Fabrication industry, while reducing the impact on the environment at the same time.

TN 25 – Welding Specification for the Water IndustryPublished with the Water Services Association of Australia. Applies to all metal fabrication and repair work involving welding, carried out by a Water Agency (WA) and its Contractors/Subcontractors. Prescribes weld preparation, qualification of welding procedures and personnel, workmanship and inspection requirements for welds related to the arc welding by manual metal arc and other processes approved by the WA responsible Welding Coordinator.

Page 14: Weld Australia Technical Guidance Note AS/NZS 2980: A … · 2018-12-10 · 2980 2018 2 Foreword This Technical Guidance Note contains basic information relevant to the qualification

Weld AustraliaABN 69 003 696 526

Building 3, Level 3, Pymble Corporate Centre20 Bridge Street, Pymble, NSW 2073

PO Box 197, Macquarie Park BC, NSW 1670Phone: +61 (0)2 8748 0100www.weldaustralia.com.au