3
',':', 186 Chapter8 SequencesandSeriesofFunctions Figure 8'3 The graphs of Qt' Q+' and Oto counterto intuition and the proofs ale a bit involved. when this happens' it is a ;;;Jtd* to slow down, readcarefully' andthink hard' The first ,"rult giroisun interesting relationship between^ continuous functions and polynomiut., u purtl.ot.ty simplJ classof continuous functions" Let f be a continuous function on [a, bl andlet e > o. Then there exists a polynomial P such that lP(x) - f(ai- t e ior att x = la'bl' There are no restrictions on / otherthanthatofcor,tinoity.Consequently,everycontinuous.functiononaclosed andbounded interval irl#uniror* iin lt of u ."qu.nre of polynomials. There are several ways to prou" ,fri, ,"*tr. On" method ii presented below. A few of the "o*pututions in ihe proof will be left to the reader' TTIEOREM 8.f 1 Weierstrass Approximation Theorem. If /, is a continuous function on la, bl,then thereexistsa sequence { & } of polynomials suchthat { & } converges uniformlY to f onla, bl' Proof.Wewillprovethetheoremforthecaseinwhich/isacontinuousfunction on [0, 1] with /(0) :;: Tiij' rn" proof that the general case follows from this result will be left asan exercise' Extendthe function r i" n ov letting f (x) :0 for x. IR.\ [0, 1]. The funcrion / is then continuous foi utt r"ut numU"ri. f'oreach positive integer n'let Qn be the polynomial defined ii'A-t;l: i)tt - t21' whe'e c' is a constant chosen so that T],Q This s 8.3.f, Notin of va The t that i the f will l IR, tl xe It is The fron

WeiertrassThm Gordon

Embed Size (px)

DESCRIPTION

Proof of Weiertrass Theorem

Citation preview

  • ' , ': ',

    186 Chapter8 SequencesandSeriesofFunctions

    Figure 8'3 The graphs of Qt' Q+' and Oto

    counter to intuition and the proofs ale a bit involved. when this happens' it is a

    ;;;Jtd* to slow down, read carefully' and think hard'The first ,"rult girois un interesting relationship between^ continuous functions

    and polynomiut., u purtl.ot.ty simplJ class of continuous functions" Let f be a

    continuous function on [a, bl andlet e > o. Then there exists a polynomial P

    such that lP(x) - f(ai- t e ior att x = la'bl' There are no restrictions on /

    otherthanthatofcor,tinoity.Consequently,everycontinuous.functiononaclosedand bounded interval irl#uniror* iin lt of u ."qu.nre of polynomials.

    There are

    several ways to prou" ,fri, ,"*tr. On" method ii presented below. A few of the

    "o*pututions in ihe proof will be left to the reader'

    TTIEOREM 8.f 1 Weierstrass Approximation Theorem. If /, is a continuousfunction on la, bl,then there exists a sequence { & } of polynomials such

    that { & }converges uniformlY to f onla, bl'

    Proof.Wewillprovethetheoremforthecaseinwhich/isacontinuousfunctionon [0, 1] with /(0) :;: Tiij' rn" proof that the general case

    follows from this

    result will be left as an exercise'Extend the function r i" n ov letting f (x) :0 for x. IR.\ [0, 1]. The funcrion

    / is then continuous foi utt r"ut numU"ri. f'oreach positive integer n'let Qn be the

    polynomial defined ii'A-t;l: i)tt - t21' whe'e c' is a constant chosen so that

    T] ,Q"

    This s8.3. f,

    Notinof vat

    The tthat ithe fwill

    lIR, tlxe

    It isThefron

  • elrtrsod

    e slsrxo

    eraqr'flluenbesuoJ

    '0:

    uA,ytftf

    luql

    9'8

    ueroaqr

    luor;

    s.4aoIIoJ

    ueqt

    ll

    '[t

    'g] uo

    g

    o1 ,(luro;run

    se8re.tuoc

    {"f,}

    ecuenbes

    eql''8lueroeqJ

    .{g

    'g

    o1 se8re.,ruoo

    {,(zg

    -

    Dyl}

    ecuenbes

    eql

    leql

    e,rord

    ol

    llncgJrp

    lou

    sI

    1I

    '(r9

    -

    DYI

    '

    u(rx

    -

    I)uc:

    (Y)"4

    '

    '[I'g]

    >

    r

    rod'g

    !

    lr

    -

    (l

    raneueqm (,,1),

    l(r)I

    -

    6){ll3q}

    Llrns

    0

    <

    I

    slsrxe

    ereql'U

    uo

    snonuquoc

    ,(gurogrun

    st

    ,f

    ecur5

    '0

    < t

    lal

    puu

    /

    ro5

    punoq e eq

    W

    te-I

    '[i

    l0]

    uo

    /

    o1

    fluroyun

    seSre,ruoc

    {u7}

    acuenbes

    oql

    luql

    e,rord

    pm

    oA[

    :r

    ur

    lururou,(1od

    e

    sr

    !'

    1eql

    s^aolloJ

    1l

    'r

    Jo

    luepuedepur

    era

    I

    lo

    suoDcunJ

    eql

    ecurs

    .r

    ur

    pruou,(1od

    e sp1ar,(

    I

    ol

    lcedser

    q1r,u

    3ur1er3e1ul

    'l

    Jo

    suorlsunJ

    eJe

    lq1

    sluercuJeoc

    qlr./y\ r

    ur

    pruoudlod e

    se uellu,tn

    eq

    uuc

    (x -

    DuaQ)/

    uorsserdxe

    aq;

    0r

    x-

    f

    'tp(x

    -

    tluA(t)I

    I

    :

    tp(t)uo(]+

    r)I

    I

    : (*l'd

    'J

    x tJ

    sp1ar,(

    lur8elul

    oql

    uI selqeue^

    Jo

    uo4ntrtsqns

    u Sunluur

    puu

    [I

    '0]

    Iu^retur

    oql

    Jo

    oprslno

    I

    II

    roJ

    O

    :

    Q) {

    }uql

    SuBoy

    ,k

    U

    *-

    [t

    'O] :'a

    uoncunJ

    e

    euueq

    't'8

    e;n8rg

    ur u1y\oqs

    en

    s,"fi

    IEJe.\es;o

    sqder8

    eql

    'u

    1e

    tol

    9t

    >

    rJ

    lID

    s,4aoqs

    sIqJ

    'tpgi'Ott+

    v\{'

    [

    :

    r*r',

    .

    tJ

    [8I

    ul

    '-