16
Analog Integrated Circuits Overview and Circuit Value Added Overview and Circuit Value Added Andrew R. Neureuther EECS 105 Microelectronics Devices and Circuits, Spring 2001 Topics: MOS current vs. voltage model (large signal and small signal); M: Derivation of I vs. V starting from voltage drop along a voltage controlled resistor; Regions of operation. Week 4, Lectures 9-11, February 5-9, 2001 Version 2/8/01 Reading for week: M: HS 4.1-4.3 W: HS 4.4 F: HS 4.5-4.5.3

Week 4, Lectures 9-11, February 5-9, 2001ee105/sp01/slides_wk4_l1.pdfWeek 4, Lectures 9-11, February 5-9, 2001 Version 2/8/01 Reading for week: M: HS 4.1 -4.3 W: HS 4.4 F: HS 4.5 -4.5.3

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Analog Integrated Circuits Overview and Circuit Value AddedOverview and Circuit Value Added

    Andrew R. NeureutherEECS 105 Microelectronics Devices and Circuits, Spring 2001

    Topics: MOS current vs. voltage model (large signal and small signal);M: Derivation of I vs. V starting from voltage drop along a voltage controlled resistor; Regions of operation.

    Week 4, Lectures 9-11, February 5-9, 2001

    Version 2/8/01

    Reading for week:M: HS 4.1-4.3W: HS 4.4F: HS 4.5-4.5.3

  • Analog Integrated Circuits Overview and Circuit Value AddedOverview and Circuit Value Added

    NMOS Layout

    Four terminals!

  • Analog Integrated Circuits Overview and Circuit Value AddedOverview and Circuit Value Added

    NMOS Cross Section

    L = LMASK – 2LLateral Diffusion

    Note body contact

  • Analog Integrated Circuits Overview and Circuit Value AddedOverview and Circuit Value Added

    NMOS: ID vs. VDS and Regions

    (triode VDS < VGS-VTn)

    (saturation VDS > VGS-VTn)

    (cutoff VGS < VTn)

    (VDS = VGS-VTn)

  • Analog Integrated Circuits Overview and Circuit Value AddedOverview and Circuit Value Added

    PMOS: ID vs. VDS and Regions

    (cutoff VSG < -VTp)

    (saturation VSD > VSG+VTp)

    (triode VSD < VSG+VTp)

  • Analog Integrated Circuits Overview and Circuit Value AddedOverview and Circuit Value Added

    MOS Circuit Symbols

    EECS 141EECS 141

  • Analog Integrated Circuits Overview and Circuit Value AddedOverview and Circuit Value Added

    Flow of Mobile Electrons in Channel

    )(),( yvyxqnJ yy =

    )(),( yQyxnqx N−=⋅⋅∆

    ( ) ( )yvyQWI yNDS ⋅⋅−=

    VC(y)

    VC(y) is the channel voltage

    These terms both depend on VC(y)

  • Analog Integrated Circuits Overview and Circuit Value AddedOverview and Circuit Value Added

    Derivation of IDS vs. VDS: Set-Up

    ( ) ( ) ( )( )yVyVCyQ TnGCOXN −−=

    ( ) ( )yVVyV CGGC −=( ) ( )( )( )pCBpnTOnTn yVVVyV φφγ 22 −−−−−+=

    ( ) ( )y

    yVEyv Cyy ∂

    ∂−=−= µµ

    ( ) ( )yvyQWI yNDS ⋅⋅−=

    Solution: Integrate with respect to y from y = 0 to y = L and enforce boundary conditions VC(0) = VS, VC(L) = VD

    Result: Too messy for IC circuit analysis!

  • Analog Integrated Circuits Overview and Circuit Value AddedOverview and Circuit Value Added

    Derivation of IDS vs. VDS: Approx. Soln.

    ( ) ( )yvyQWI yNDS ⋅⋅−=1) Assume VC = 0 in VTn =>

    ( )( )pBSpnTOnTn VVV φφγ 22 −−−−+=2) Assume EY = -VDS/L

    L

    VEv DSyy µµ −=−=

    3) Assume average charge =>( ) ( )[ ]

    2TnDSGSOXTnGSOX

    NVVVCVVC

    Q−−+−

    −=

    ( )[ ] DSDSTnGSOXnDS VVVVCLW

    I ⋅−−

    = 2/µ

    ThenTnDSGS VVV >−

    Triode

    source drain

  • Analog Integrated Circuits Overview and Circuit Value AddedOverview and Circuit Value Added

    IDS vs. VDS in Triode Region

    ( )[ ] DSDSTnGSOXnDS VVVVCLW

    I ⋅−−

    = 2/µ

    TnDSGS VVV >−

    Triode

  • Analog Integrated Circuits Overview and Circuit Value AddedOverview and Circuit Value Added

    NMOS: IDS vs. VDS and Regions

    (triode VDS < VGS-VTn)

    (saturation VDS > VGS-VTn)

    (cutoff VGS < VTn)

    (VDS = VGS-VTn)

    Assume no further increase in IDbeyond VDS,Sat

    To get value in saturation plug in VDS = VGS-VTn

  • Analog Integrated Circuits Overview and Circuit Value AddedOverview and Circuit Value Added

    NMOS: ID vs. VDS Equations

    ( )[ ] DSDSTnGSOXnDS VVVVCLW

    I 2/−−

    = µ

    ( )22 TnGSOXnDS

    VVCL

    WI −

    = µ

    TnGS VV ≤

    TnDSGS VVV ≥−

    TnGSDS VVV −≥

    cutoff

    triode

    saturation

    0=DSITypical valuesVTn = 1VµµnCOX = 50 µµA/V2W/L = 4

  • Analog Integrated Circuits Overview and Circuit Value AddedOverview and Circuit Value Added

    Load Line Solution

    +_

    VOUT

    +_

    VIN

    5V

    RL = 10 kΩΩ

    VOC = 5V

    ISC = 500 µµA

  • Analog Integrated Circuits Overview and Circuit Value AddedOverview and Circuit Value Added

    Algebraic Solution: VIN = 3V

    VVOUT 3.1≈

    VVVVV TnGS 213 =−=− 1.3V < 2V => triode VDS < VGS-VTn

    ( )[ ] DSDSTnGSOXnDS VVVVCLW

    I 2/−−

    = µ

    ( ) ( )[ ]

    −=−−=

    k

    VVVVVVVAI DSDSDSDS 10

    52/13/504 2µ

    VVDS 382.1= AI DS µ362=

    Quadratic Equation for VDS

    =>

    Device Circuit

    Solution:

  • Analog Integrated Circuits Overview and Circuit Value AddedOverview and Circuit Value Added

    Algebraic Solution: VIN = 2V

    VVVVV TnGS 112 =−=−

    VVOUT 5.3≈

    3.5V > 1V => saturation VDS > VGS-VTn

    ( )22 TnGSOXnDS

    VVCL

    WI −

    = µ

    ( )

    −==−

    =

    k

    VVAVAI DSDS 10

    510012/50

    2

    4 22 µµ

    Linear equation for VDSVVDS 4= AI DS µ100=

    =>

    Device Circuit

    Solution:

  • Analog Integrated Circuits Overview and Circuit Value AddedOverview and Circuit Value Added

    Region of Operation

    VTn = 1V

    Sat

    0.25V

    0V

    1.5V 1.5V

    1V

    0V

    Triode

    3V

    2V

    3.5V

    5V

    3V

    3.5V

    Sat Cutoff

    (VB = 0V)