23
Weakly nonlocal fluid mechanics Peter Ván Budapest University of Technology and Economics, Department of Chemical Physics – One component fluid mechanics - quantum (?) fluids – Quantum potential • Why Fisher information? – Two component fluid mechanics – sand (?) – Conclusions

Weakly nonlocal fluid mechanics Peter Ván Budapest University of Technology and Economics, Department of Chemical Physics –One component fluid mechanics

Embed Size (px)

Citation preview

Weakly nonlocal fluid mechanicsPeter Ván

Budapest University of Technology and Economics, Department of Chemical Physics

– One component fluid mechanics - quantum (?) fluids

– Quantum potential • Why Fisher information?

– Two component fluid mechanics – sand (?)– Conclusions

general framework of anyThermodynamics (?) macroscopic (?)

continuum (?) theories

Thermodynamics science of macroscopic energy changes

Thermodynamics

science of temperature

Why nonequilibrium thermodynamics?

reversibility – special limit

General framework: – fundamental balances– objectivity - frame indifference– Second Law

Phenomenology – minimal or no microscopic information

Second Law – “super-principle”

– valid for all kind of dynamics – like symmetries

Beyond local equilibrium – memory and inertia

Beyond local state – nonlocality

universality

weak – short range - not gravity – higher order gradients

Non-equilibrium thermodynamics

aa ja basic balances ,...),( va

– basic state:– constitutive state:– constitutive functions:

a

)C(aj,...),,(C aaa

weakly nonlocalSecond law:

0)C()C(s ss j

Constitutive theory

Method: Liu procedure, Lagrange-Farkas multipliersSpecial: irreversible thermodynamics

(universality)

Origin of quantum mechanics:

motivation – interpretation – derivation (?)Is there any? (Holland, 1993)

– optical analogy– quantized solutions

– standard (probability)– de Broglie – Bohm– stochastic

– hydrodynamic – Kaniadakis– Frieden-Plastino

(Fisher based)

– Hall-Reginatto

Justified by the consequences.“The Theory of Everything.”

(Laughlin-Pines, 2000)

– Points of views– Equivalent

(for a single particle)

– stochastic– de Broglie-Bohm

Schrödinger equation:

)(

2

2

xVmt

i

Madelung transformation:iSeR

Sm

:v2: R

de Broglie-Bohm form:

)( VUQM v

R

R

mUQM

2

2

2

Hydrodynamic form:

VQM Pv

R

R

mUQM

2

2

2

0 v

Fundamental questions in quantum mechanics:

– Why we need variational principles?(What is the physics behind?)

– Why we need a wave function?(What is the physics behind?)

– Where is frame invariance (objectivity)?

One component weakly nonlocal fluid

),,,(C vv ),,,,(Cwnl vv

)C(),C(),C(s Pjs

Liu procedure (Farkas’s lemma):

constitutive state

constitutive functions

0 v

0)C()C(s s j0Pv )C(

... Pvjs2

)(s),(s2

e

vv

2),(s),,(s

2

e

vv

),( v basic state

0:s2

ss2

1 22

s

vIP

rv PPP

reversible pressurerP

Potential form: Qr U P

)()( eeQ ssU Euler-Lagrange form

Variational origin

Schrödinger-Madelung fluid

222),,(

22v

v

SchM

SchMs

2

8

1 2rSchM IP

(Fisher entropy)

Bernoulli equation

Schrödinger equation

v ie

Landau fluid

2

)(),(

2 LanLans

22

2 IP Lan

rLan

22

1 2 LanLanU

Alternate fluid

2)(),(

AltAlts

)(

42IP Altr

Alt

2Alt

AltU

Korteweg fluids:

22)( IP prKor

– Isotropy

))(,(),( 2 ss

– Extensivity (mean, density)

– Additivity

),(),())(,( 22112121 ssDs

Unique under physically reasonable conditions.

Origin of quantum potential – weakly nonlocal statistics:

ln

)())(,(

2

22 ks

FisherBoltzmann-Gibbs-Shannon

Extreme Physical Information (EPI) principle (Frieden, 1998)

– Mass-scale invariance (particle interpretation)

),(),( ss

Two component weakly nonlocal fluid

2211density of the solid componentvolume distribution function

),,( v

),,,,,( vv C

constitutive functions

)C(),C(),C(s s Pj

basic state

constitutive state

00 v

0Pv )C(0)C()C(s s j

Constraints: )3(),2(),2(),1(),1(

.)(

,)(

,)(

,s

,s

,s

,s

,s

,s

s54s

s5s

s5s

5

4

3

2

1

0PIj

0Pj

0Pj

0

vv

v

v

.s

,s

,s

,s

0

0

0

0

isotropic, second order

Liu equations

Solution:

2

)(),(

2),(m),(s),,,,(s

22

e

vv

).,,()(),()( 1 vjPvj CmCs

Simplification:

0:)s(:)m( vIPv

.p

s,),,(,1m2e1

0vj

0:)2

)(p(

2

vIP

Pr

Coulomb-Mohr

vLPPP vr

isotropy: Navier-Stokes like + ...

Entropy inequality:

Properties

1 Other models: a) Goodman-Cowin

2)2)(p( 2r IP

h configurational force balance

b) Navier-Stokes type: somewhere

2)( s

2)(2

pt

spt

)(ln

2

11

N

S

t

s

unstable

stable

2 Coulomb-Mohr

nPnN r: NPS r:

222 )( stNS

Conclusions− Weakly nonlocal statistical physics − Universality (Second Law – super-principle)

− independent of interpretation− independent of micro details

phenomenological background behind any statistical-kinetic theory (Kaniadakis - kinetic,

Frieden-Plastino - maxent)

− Method - more theories/models− Material stability

Thermodynamics = theory of material stabilitye.g. phase transitions (gradient systems?)

What about quantum mechanics?

– There is a meaning of dissipation.– There is a family of equilibrium (stationary) solutions.

0v .constEUU SchM – There is a thermodynamic Ljapunov function:

dVEUL

22

22

1

2),(

v

v

semidefinite in a gradient (Soboljev ?) space