29
DESDynI TIME Es+ma+on of Forest Biomass Change from Fusion of Radar and Lidar Measurements Sassan Saatchi (Jet Propulsion Laboratory/UCLA) Ralph Dubayah (University of Maryland) David Clark (University of Missouri ) Robin Chazdon (University of ConnecCcut) David Hollinger (USDA Forest Service) Other contributors: Hank Shugart (University of Virginia) Michael Lefsky (Colorado State University) ScoJ Hensley (JPL) Maxim Neumann (JPL)

WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI   TIME  

Es+ma+on  of  Forest  Biomass  Change  from  Fusion  of  Radar  and  Lidar  Measurements    

Sassan  Saatchi  (Jet  Propulsion  Laboratory/UCLA)  Ralph  Dubayah  (University  of  Maryland)  David  Clark  (University  of  Missouri  )  

Robin  Chazdon    (University  of  ConnecCcut)  David  Hollinger  (USDA  Forest  Service)  

Other  contributors:  Hank  Shugart  (University  of  Virginia)  

Michael  Lefsky  (Colorado  State  University)  ScoJ  Hensley  (JPL)  

Maxim  Neumann  (JPL)  

Page 2: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI  

ECOSYSTEM  STRUCTURE  Baseline  Requirements  

 The  DESDynI  Mission  shall  map  aboveground  woody  biomass  within  the  greater  of  20  Mg/ha  or  20%  (errors  not  to  exceed  50  Mg/ha),  at  a  spaMal  resoluMon  of  250  m  globally  and  100  m  for  areas  of  low  biomass  annually  (  <  100  Mg/ha).  

 The  DESDynI  Mission  shall  map  global  areas  of  disturbance  at  100  resoluMon  annually  and  measure  subsequent  regrowth  to  an  accuracy  of  4  Mg/ha/yr*  at  100  (1-­‐ha)  resoluMon.  

Measurement  requirements  for  SAR  and  Lidar  Fusion  are:  

Lidar:  5  beams  on  sun-­‐synchronous  orbit  with  at  least  50  shots  within  a  600  m        grid  at  the  equator  at  the  end  of  5  years.  

Radar:  Polarimetric  (linear  polarizaMons)  L-­‐band  SAR        25-­‐35  degrees  incidence  angle  with  100m  resoluMon  (>100  looks)          Two  seasons  of  polarimetric  coverage  for  annual  biomass  maps  

     Monthly  global  imaging  capability  at  dual-­‐pol  (linear  polarizaMon)  for          mapping  disturbance  and  biomass  change    

Mission  Life+me:  5  years              

Page 3: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI  

DESDynl  Mission  ObjecMves  

Inventory  

Disturbance  

DeforestaMon  

Recovery  

Logging  

Aboveground  Biomass  from  Fusion  Of  Lidar  and  Radar  

Mapping  Deforesta+on  and  Disturbance  

Mapping  Degrada+on  (logging,  infesta+on)  

Forest  Recovery  

Page 4: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI  

Depending on antecedent history, a forest with the biomass level associated with a mature forest, could be storing carbon, losing carbon or staying the same.

This means that a single biomass “snapshot” does not completely reveal forest carbon dynamics.

Changes  of  Forest  Biomass  

Page 5: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI  

Large and Small Scale Dynamics are Different

and Influenced by Structure

Small-Scale Dynamics

Large-Scale Dynamics

Scale  of  Forest  Biomass  

Page 6: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI  

2005  storm  killed  between  300,000  and  500,000  trees  in  the  area  of  Manaus  which  is  equivalent  to  30  percent  of  the  annual  deforesta+on  in  that  same  year  for  the  Manaus  region,  which  experiences  rela+vely  low  rates  of  deforesta+on.

+mber  losses  from  Hurricane  Katrina  alone  amount  to  roughly  4.2  billion  cubic  feet  of  +mber  (15-­‐19  billion  board  feet),    spread  over  5  million  acres  of  light  to  heavily  damaged  forest  land  in  Mississippi,  Alabama,  and  Louisiana.  

2005  Storm  in  Amazon  Killed  ½  Million  Trees  (Negron-­‐Juarez  et  al.,    2010)  

2005  Katrina  Hurricane  Forest  impact  was  equivalent  to  25%  of    annual  forest  Sequestra+on  (chambers  et  al.,  2007)  

Forest  Disturbance  

Page 7: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI  

Lucas  et  al.  2002  

Forest  Recovery  Process  

Page 8: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI  

Statement  of  Problem  

1.   DESDynl  Es+ma+on  of  Annual  Deforesta+on  (Radar)  

2.   DESDynl    Es+ma+on  of  disturbance  (Fire,  Storms,  etc.)  (Radar)  

3.   DESDynl  Es+ma+on  of  Forest  Degrada+on  (Radar)  

4.   DESDynl  Es+ma+on  of  Forest  biomass  loss  (Radar/Lidar)  

5.   DESDynl  Es+ma+on  of  Forest  biomass  recovery  (Radar/Lidar)  

(  accuracy/precision,  resolu1on,  temporal  coverage)  

Page 9: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI  

Old  Growth  Height  1997  

Page 10: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI  

Old  Growth  Height  2006  

Page 11: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI  

Changes  in  Forest  Height  

Height  difference:  h(2006)-­‐h(1997)  

Mean:  1.18  m  Stdev:  8.1  m  

Page 12: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI  

Secondary  Forest  Height  1997  

Page 13: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI  

Secondary  Forest  Height  2006  

Mean:4.84  m  Stdev:  6.2  m  

Page 14: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI  

Growth  Dynamics  From  Lidar  

•  Sampling  lidar  can  be  used  to  observe  dynamics  

–  Not  efficient  for  forest  loss  mapping  (compared  to  radar  or  TM)  

–  Can  directly  measure  growth/loss  in  canopy  at  footprint  or  grid  scale  •  Orbital  cross-­‐overs  could  provide  millions  of  direct  observaMons  

Amplitude  

ElevaM

on  

1998

2005

Page 15: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI  

La  Selva  Forest  Dynamics  (2005-­‐1998)  

Biomass  Change  [Mg/ha]  0.5  ha  Old  Growth  Plots  

Field  Es+mate  

r2  =  0.79  

1:1  line  

Page 16: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI  

16  

SAR  Measurement  of  Disturbance  

•  Annual forest disturbance, deforestation, degradation, fragmentation are mapped at 100 m resolution

a)  Disturbance:  -­‐  12.5  dB   b)  Disturbance:  -­‐  5  dB  

d)  Disturbance:  -­‐  1.0  dB  c)  Disturbance:  -­‐  2.5  dB  

Maximum  Likelihood  ClassificaMon  

90%  classificaMon  accuracy  

σ dist0 ≅ 0.78σ ref

0

At  100  m  resolu+on  (~100  looks)  forest  degrada+on  of  1.0  dB  change  can  be  classified  at  90%  accuracy  by    LHV  channel  only.  

class[N,µ] = 0.9 =1−Gamma[N −

N log(µ)−1+ µ

]

Gamma(N)µ = 0.78 : -1.04 dB

Page 17: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI  

Requirement  for  PolarizaMon  (Disturbance)  

 17  

HH,  HV,  VV   HH  

HV   VV  

1.  Single  pol  (HH)  data  will  map  disturbance    with  ~50%  accuracy  2.  Dual-­‐pol  data  will  be  the    Minimum  requirement  to  map  Disturbance  with  ~80%  accuracy)  3.  Quad-­‐pol  data  will  provide  map  Disturbance  with  >  90%  accuracy  

ResoluMon:  100  m  Radar  BW:  40  MHz  

Page 18: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI  

Global  Biomass  Change  Requirements  

Brown & Schroeder 1999

Average Production: ~5 Mg/ha/yr

2.5-3% of counties had wood production > 10 Mg/ha/yr

Hardwoods

Softwoods

Temperate  &  Boreal  Forests  

Average Biomass Production of forests after disturbance: ~4 Mg/ha/yr

Tropical  Forests  

Page 19: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI  

SAR  Measurement  of  Bioamss  Recovery  

Recovery  Phase  

Disturbance  Even    

Assump+ons  for  mapping    forest  recovery:  

•       Rate  of  RegeneraMon:  4  Mg/ha/yr          Biomass  EsMmaMon  Accuracy:  20  Mg/ha          ResoluMon:  100  m  (>  100  looks)          Aker  5  year  SAR  will  measure          4Mg/ha/yr  biomass  change  at  100  m            ResoluMon  •       in  US  temperate  forests  about  50%          of  forests  produce  >  4  Mg/ha/yr.  

•       AssumpMon:  radar  looks  achieved          from  azimuth  and  range  averaging  

•   Aker  3  years,  SAR  will  not  meet  the  requirement  of  biomass  change  

•         3  year  mission  will  only  cover  forests  with  >  7  Mg/ha/yr  recovery.  Over              US  forests,  this  is  about  15%  of  forests.    

Page 20: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI  

Radar  Forest  DegradaMon  Index  

RFDI =HH −HVHH + HV

HV  HH  

HH:  Dominated  by  volume  &  volume-­‐surface    Scajering  HV:  Dominated  by  volume  scajering  RFDI  Sensi+vity  to  calibra+on  is  small  RFDI  Sensi+vity  to  topography  and  slope  is  small  

ALOS  La  Selva  Costa  Rica  

RFDI  

Page 21: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI  

RFDI  to  map  disturbance,  DeforestaMon,  Intensive  Logging  

LHH  LHV  LHV  Texture  

Page 22: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI  

RFDI  over  Slopes  ALOS  PALSAR  Peru  

ALOS  PALSAR  Peru  

Forest   Savanna  

Page 23: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI  

RFDI  &  Changes  in  Biomass  

ALOS  PALSAR  Mosaic  (Borneo)   UAVSAR    Howland  Forest  100  m  ResoluMon  80  MHz  Bandwidth  

Page 24: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI  

Radar  Forest  DegradaMon  Index  For  Forest  Recovery  EsMmates  

p(I0

< I0 >) =

NNI0N −1

< I0 >N (N −1)!exp −

NI0< I0 >

⎨ ⎪

⎩ ⎪

⎬ ⎪

⎭ ⎪

where < I0 > is the mean intensity of a homogeneous region at time t0N is equivalent number of looksFor two independent measurements I0 = HH and I1 = HV , the difference and ratios will followthe integration of the joint probability over I0d = I0 − I1

p( d< I0 >

,< I1>) =

NN exp −NI0

< I0 >

⎨ ⎪

⎩ ⎪

⎬ ⎪

⎭ ⎪

(< I0 > + < I1>)N (N −1)!× (N −1+ j)

j!(N −1− j)!j = 0

j = N −1∑

r = I1/I0

p( r< I0 >

,< I1>) = (2N −1)!r NrN −1(r + r )2N (N −1)!N

where r =< I1> / < I0 >

RFDI =I0− I

1I0

+ I1

Change Detection will be performed between the ratio of RFDI for two dates.

RFDI =I0− I

1I0

+ I1 Delta  (RFDI)*20  

Page 25: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI  

RFDI  Base  Forest  Recovery  ALOS  June  2007  

ALOS  June  2010  

Page 26: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI  

RFDI  Base  Forest  Recovery  ALOS  June  2007  

ALOS  June  2010  

RFDI10-­‐  RFDI07  

Page 27: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI  

For  N  lidar  samples  We  have  (N-­‐1)!  Δσ  samples  

25  m  100  m  

Page 28: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI  28  

L-­‐band  Measurement  of  Recovery  

Radar & Lidar Fusion of Recovery

Baysian MLE Method

20%  error  in  biomass  change  is  detectable  at    100-­‐250  m  resolu+on  

N : Number of looksProb. of Error :PE =1/2 − f (x) + f (1/ x)

Lombardo  and  Oliver,  2001  Rignot  &  vanZyl  1995  

Page 29: WE1.L09.5 - ESTIMATION OF FOREST BIOMASS CHANGE FROM FUSION OF RADAR AND LIDAR MEASUREMENTS

DESDynI  

SUMMARY  

•  Quad-­‐Pol  data  is  required  to  measure  disturbance  and  recovery  from  L-­‐band  SAR  data  

•  Increasing  cross-­‐points  in  Lidar  will  provide  es+mates  of  biomass  changes  at  the  stand  and  ecosystem  levels  

•  RFDI  based  on  dual-­‐pol  data  will  provide  the  most  consistent  index  to  classify      deforesta+on,  degrada+on  and  recovery.    However,  more  research  is  needed  to    assess  its  quan+ta+ve  capability  for  measuring  biomass  loss  and  gain.  

•  Fusion  of  L-­‐band  polarimetry  and  Lidar  has  the  poten+al  of  quan+fying  stand  scale  patch  scale  changes  in  biomass.  

•  Use  of  repeat  pass  interferometry  along  with  RFDI  has  the  poten+al  of  mapping  forest  regrowth.