28
Waves

Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

Embed Size (px)

Citation preview

Page 1: Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

Waves

Page 2: Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

How many waves can you identify?

• You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun. You microwave some left over pizza. The phone rings, and you turn on the radio.

• List all the waves in your new packet p 2.

Page 3: Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

What is a wave?

• A wave is a disturbance that transmits energy through matter or space.

• A medium is a substance or material which carries the wave.

Page 4: Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

P 3 Packet

• What is the difference between a mechanical wave and an electromagnetic wave?

Page 5: Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

Energetic Waves• Tie a rope to the back of your chair. Hold the

other end so that it is almost straight but not tight.

• Move the rope up and down quickly to create a single wave. Record your observations on the left side of your INB.

• Which direction does the wave move? • Compare the movement of the rope with the

movement of the wave. • Where does the energy come from?

Page 6: Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

Put a piece of tape on the rope• What direction does the tape move? Is it in the

same direction as the wave? Observe in INB

• Energy can be carried from its source by a wave. But the material does not move with the energy.

• Ex leaf on water, sound in air. • Which direction does the wave move? • Compare the movement of the tape with the

movement of the rope with the movement of the wave.

• Where does the energy come from?

Page 7: Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

Do Now• How are light and sound alike? How are they

different? Use your Nature of Waves packet to help you.

• On 2 pages (p 4) of your packet, make a gigantic Venn diagram comparing the two.

Light Sound

Page 8: Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

Two kinds of waves

• Longitudinal• Transverse

Read Types of Waves, p 6-9, highlight 3 of the most important things for each type of wave.

Page 9: Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

Longitudinal

• Vibrates parallel to (in the same direction of) wave travel – The “LONG” way– For example: sound waves

– The other end of the medium moves without the actual movement of matter.

Animation courtesy of Dr. Dan Russell, Kettering University

Page 10: Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

Animation courtesy of Dr. Dan Russell, Kettering University

Page 11: Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

Longitudinal

• Use your Slinky to demonstrate a longitudinal wave: – Work with a partner– Stretch it out along the table– One of you grasp and draw several coils of a stretched

Slinky toward yourself – Release the coils– The other student must hold his or her end of the Slinky

still– A longitudinal wave pulse will be generated and travel

down the length of the Slinky.

Page 12: Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

Longitudinal

• Are composed of – Compressions, where the parts of the medium

(coils of the Slinky) are closer together than normal

– In this investigation, you created (generated) compressional longitudinal waves

– The waves traveled through a media (the slinky)

Page 13: Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

Longitudinal

• Use your Slinky to demonstrate a longitudinal wave: – Work with a partner– Stretch it out along the table– One of you stretch a segment of the Slinky– Release the coils– The other student must hold his or her end of the Slinky

still– A longitudinal wave pulse will be generated and travel

down the length of the Slinky.

Page 14: Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

Longitudinal

• Are composed of – Rarefactions, where the parts of the medium are

farther apart than normal– In this demonstration, you created (generated)

rarefactional longitudinal waves– The waves traveled through a media (the slinky)

Page 15: Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

Transverse

• Vibrates perpendicular (at right angles) to the wave travel – An example of transverse waves are

Electromagnetic waves. Trans means across.

Animation courtesy of Dr. Dan Russell, Kettering University

Page 16: Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

Transverse

• Use your Slinky to demonstrate a transverse wave:– Work with a partner– One of you move your end of the Slinky back and forth

(left and right, like a snake crawling), perpendicular to its stretched length.

– The other student must hold his or her end of the Slinky still

– A series of transverse waves will be generated and will travel through a medium (Slinky)

Page 17: Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

Reflection

• Complete your Venn diagram comparing transverse waves and longitudinal waves.

Page 18: Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

Electromagnetic Waves

• Are waves which are capable of transmitting its energy through a vacuum (i.e., empty space)

• Produced by the vibration of electrons within atoms on the Sun's surface

• Travel through space until they reach Earth • Examples are light and heat• Are transverse waves which mean the particles

vibrate ACROSS the direction of the wave

Page 19: Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

Mechanical Waves

• Are not capable of transmitting their energy through a vacuum (space)

• Require a medium in order to transport their energy from one location to another

Sound waves are mechanical longitudinal.

Page 20: Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

Mechanical Waves

• Waves traveling through a solid medium can be either transverse waves or longitudinal waves.

Page 21: Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

Water Waves

• A combination of longitudinal & transverse

Animation courtesy of Dr. Dan Russell, Kettering University

Page 22: Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

DO NOW

Sometimes people at a sports event do “the wave”. Do you think this is a real example of a wave? Why or why not? Quick Write on p 2.

Page 23: Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

Parts of a Wave

Page 24: Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

Read and Learn

Read the Nature of Waves handout p 10-12 and define wavelength, amplitude, and frequency in your notes on p 5 of packet. Crest, trough and rest position are also important terms.

•www.scilinks.org HSTP480, HST490

Page 25: Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

Parts of a Wave

1. Wavelength – 1. In transverse waves – distance between two crests or

troughs2. In longitudinal waves – distance between two

compressions or rarefactions2. Frequency – the number of waves that pass a point

in one second1. Long wavelengths have low frequencies2. Short wavelengths have high frequencies

3. Amplitude (wave height) – the distance from the middle of a transverse wave to the crest or trough

Page 26: Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

Change amplitude!

• Hold a slinky on the floor between you and your partner. Move one end from side to side at a constant rate. The number of times you move it from side to side is (back and forth) each second is the frequency.

• Keeping the frequency the same, increase the amplitude. How did the change in amplitude affect the wavelength? Record in packet.

Page 27: Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

Change frequency!

• Now shake the slinky back and forth twice as fast (double the frequency).

• What happened to the wavelength?• Record in packet.

Page 28: Waves. How many waves can you identify? You have just returned home from a day at the beach. You are hungry from playing in the ocean under the hot sun

Summary

•Write 3 sentences showing how each property changes the other: use the terms frequency, amplitude and wavelength.